Theoretical and Experimental Research on Ammonia Sensing Properties of Sulfur-Doped Graphene Oxide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of S-GO
2.3. Sensor Fabrication and Gas Sensor Measurement System
3. Results and Discussion
3.1. Characterization
3.2. Gas Sensing Properties
3.3. Theoretical Basis and Computational Method
3.4. Calculations and Analyses
3.5. Performance Comparison to Other Graphene-Based NH3 Gas Sensors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yuan, Z.; Han, E.; Meng, F.; Zuo, K. Detection and identification of volatile organic compounds based on temperature-modulated ZnO sensors. IEEE Trans. Instrum. Meas. 2020, 69, 4533–4544. [Google Scholar] [CrossRef]
- Meng, F.; Qi, T.; Zhang, J.; Zhu, H.; Yuan, Z.; Liu, C.; Qin, W.; Ding, M. MoS2-templated porous hollow MoO3 microspheres for highly selective ammonia sensing via a Lewis acid-base interaction. IEEE Trans. Ind. Electron. 2021, 1, 1. [Google Scholar]
- Li, J.; Yan, H.; Dang, H.; Meng, F. Structure design and application of hollow core microstructured optical fiber gas sensor: A review. Opt. Laser Technol. 2021, 135, 106658. [Google Scholar] [CrossRef]
- Yuan, Z.; Yang, C.; Gao, H.; Qin, W.; Meng, F. High response formic acid gas sensor based on MoS2 nanosheets. IEEE Trans. Nanotechnol. 2021, 1, 177–184. [Google Scholar] [CrossRef]
- Qin, W.; Yuan, Z.; Gao, H.; Zhang, R.; Meng, F. Perovskite-structured LaCoO3 modified ZnO gas sensor and investigation on its gas sensing mechanism by first principle. Sens. Actuators B Chem. 2021, 341, 130015. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, L.; Lin, X. Proton-conductive gas sensor: A new way to realize highly selective ammonia detection for analysis of exhaled human breath. ACS Sens. 2020, 5, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Hwang, I.; Park, J.; Choi, K.; Park, J.; Lee, J. Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity. Nannotechnology 2008, 19, 095508. [Google Scholar] [CrossRef]
- Rao, B. Zinc oxide ceramic semi-conductor gas sensor for ethanol vapour. Mater. Chem. Phys. 2000, 64, 62–65. [Google Scholar] [CrossRef]
- Kwak, D.; Wang, M.; Koski, K.; Zhang, L.; Sokol, H.; Maric, R.; Lei, Y. Molybdenum trioxide (α-MoO3) nanoribbons for ultrasensitive Ammonia (NH3) gas detection: Integrated experimental and density functional theory simulation studies. ACS Appl. Mater. Interfaces 2019, 11, 10697–10706. [Google Scholar] [CrossRef]
- Farjadian, F.; Abbaspour, S.; Sadatlu, M. Recent developments in graphene and graphene oxide: Properties, synthesis, and modifications: A review. ChemistrySelect 2020, 5, 10200–10219. [Google Scholar] [CrossRef]
- Bai, L.; Zhang, Y.; Tong, W. Graphene for energy storage and conversion: Synthesis and interdisciplinary applications. Electrochem. Energy Rev. 2020, 3, 395–430. [Google Scholar] [CrossRef]
- Hussain, A.; Mehdi, S.; Abbas, N. Synthesis of graphene from solid carbon sources: A focused review. Mater. Chem. Phys. 2020, 248, 294–301. [Google Scholar] [CrossRef]
- Chernozatonskii, L.; Artyukh, A.; Kvashnin, A. Mechanical engineering effect in electronic and optical properties of graphene nanomeshes. ACS Appl. Mater. Interfaces 2020, 12, 55189–55194. [Google Scholar] [CrossRef]
- Vozniakovskii, A.A.; Voznyakovskii, A.P.; Kidalov, S.V. Structure and paramagnetic properties of graphene nanoplatelets prepared from biopolymers using self-propagating high-temperature synthesis. J. Struct. Chem. 2020, 61, 826–834. [Google Scholar] [CrossRef]
- Madurani, K.; Suprapto, S.; Machrita, N. Progress in graphene synthesis and its application: History, challenge and the future outlook for research and industry. ECS J. Solid State Sci. Technol. 2020, 9, 093230. [Google Scholar] [CrossRef]
- Sun, Z.; Hu, Y. Ultrafast, low-cost, and mass production of high-quality graphene. Angew. Chem. Int. Ed. 2020, 59, 9232–9234. [Google Scholar] [CrossRef]
- Yuan, Z.; Liu, Y.; Zhang, J.; Meng, F.; Zhang, H. Rose-like MoO3/MoS2/rGO low temperature ammonia sensors based on multi-gas detection methods. IEEE Trans. Instrum. Meas. 2021, 70, 9506109. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhao, J.; Meng, F.; Qin, W. Sandwich-like composites of double-layer Co3O4 and reduced graphene oxide and their sensing properties to volatile organic compounds. J. Alloy. Compd. 2019, 793, 24–30. [Google Scholar] [CrossRef]
- Meng, F.; Chang, Y.; Qin, W.; Yuan, Z.; Zhao, J.; Zhang, J. ZnO-reduced graphene oxide composites sensitized with graphitic carbon nitride nanosheets for ethanol sensing. ACS Appl. Nano Mater. 2019, 2, 2734–2742. [Google Scholar] [CrossRef]
- Wei, D.; Liu, Y.; Wang, Y. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 2009, 9, 1752–1758. [Google Scholar] [CrossRef]
- Panchakarla, L.; Subrahmanyam, K.; Saha, S. Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv. Mater. 2009, 21, 4726–4730. [Google Scholar] [CrossRef]
- Nundy, S.; Ghosh, A.; Nath, R.; Paul, A.; Tahir, A.A.; Mallick, T.K. Reduced Graphene Oxide (rGO) Aerogel: Efficient adsorbent for the elimination of An-timony (III) and (V) from wastewater. J. Hazard. Mater. 2021, 420, 126554. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Tai, H.; Xie, T.; Su, Y.; Yuan, Z.; Liu, C.; Jiang, Y. A facile method to develop novel TiO2/rGO layered film sensor for detecting ammonia at room temperature. Mater. Lett. 2016, 165, 127–130. [Google Scholar] [CrossRef]
- Guo, Y.; Sun, X.; Liu, Y.; Wang, W.; Qiu, H.; Gao, J. One pot preparation of reduced graphene oxide (RGO) or Au (Ag) nanoparticle-RGO hybrids using chitosan as a reducing and stabilizing agent and their use in methanol electrooxidation. Carbon 2012, 50, 2513–2523. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, G.; Cao, W.; Wei, Y.; Liang, J.; Guo, L.; Cao, M. Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride. ACS Appl. Mater. Interfaces 2014, 6, 7471–7478. [Google Scholar] [CrossRef]
- Yang, Z.; Yao, Z.; Li, G.; Fang, G.; Nie, H.; Liu, Z.; Zhou, X.; Chen, X.; Huang, S. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 2012, 6, 205–211. [Google Scholar] [CrossRef]
- Wohlgemuth, S.; White, R.; Willinger, M.; Titirici, M.; Antonietti, M. A one-pot hydrothermal synthesis of sulfur and nitrogen doped car-bon aerogels with enhanced electrocatalytic activity in the oxygen reduction reaction. Green Chem. 2012, 14, 1515. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Yao, B.; Li, C. An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 2013, 64, 225. [Google Scholar] [CrossRef]
- Sharma, N.; Sharma, V.; Jain, Y. Synthesis and characterization of graphene oxide (GO) and reduced graphene oxide (rGO) for gas sensing application. Macromol. Symp. 2017, 376, 1700006. [Google Scholar] [CrossRef]
- Aslam, M.; Kalyar, M.; Raza, Z. Synthesis and structural characterization of separate graphene oxide and reduced graphene oxide nanosheets. Mater. Res. Express 2016, 3, 105036–105046. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, E.; Han, J. A novel biomolecule-mediated reduction of graphene oxide: A multifunctional anti-cancer agent. Molecules 2016, 21, 375. [Google Scholar] [CrossRef]
- Si, Y.; Samulski, E.T. Synthesis of water soluble graphene. Nano Lett. 2008, 8, 1679–1682. [Google Scholar] [CrossRef] [PubMed]
- Stankovich, S.; Piner, R.; Nguyen, S.T. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 2006, 44, 3342–3347. [Google Scholar] [CrossRef]
- Gómez, R.; López, T.; Ortiz-Islas, E. Effect of sulfation on the photoactivity of TiO2 sol–gel derived catalysts. J. Mol. Catal. A Chem. 2003, 193, 217–226. [Google Scholar] [CrossRef]
- Clark, S.; Segall, M.; Pickard, C. First principles methods using CASTEP. Z. Kristallogr. 2005, 220, 567–570. [Google Scholar] [CrossRef] [Green Version]
- Segall, M.; Lindan, P.; Probert, M. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 2002, 14, 2717–2744. [Google Scholar] [CrossRef]
- Qin, H.; Feng, C.; Luan, X.; Yang, D. First-principles investigation of adsorption behaviors of small molecules on pentagraphene. Nanoscale Res. Lett. 2018, 13, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Yuan, J.; Giannozzi, P. Gas adsorption on graphene doped with B, N, Al, and S: A theoretical study. Appl. Phys. Lett. 2009, 95, 232105. [Google Scholar] [CrossRef]
- Li, S.; Zhao, J.; Li, L. Sodium adsorption and intercalation in bilayer graphene doped with B, N, Si and P: A first-principles study. J. Electron. Mater. 2020, 49, 6336–6347. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, A.; Singh, R.; Kashyap, R.; Kumar, D. Room temperature ammonia gas sensor using ester functionalization of graphene oxide. Mater. Res. Express 2019, 6, 095618. [Google Scholar] [CrossRef]
- Tai, H.; Yuan, Z.; Zheng, W.; Ye, Z.; Liu, C.; Du, X. ZnO nanoparticles/reduced graphene oxide bilayer thin films for improved NH3-sensing performances at room temperature. Nanoscale Res. Lett. 2016, 11, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Q.; Li, X.; Wang, J. Percolation effect of reduced graphene oxide (rGO) On ammonia sensing of rGO-SnO2 composite based sensor. Sens. Actuators B 2017, 243, 1115–1126. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Y.; Wang, X.; Wang, J.; Gaskov, A.M.; Akbar, S.A. Reduced graphene oxide (rGO) decorated TiO2 microspheres for selective room-temperature gas sensors. Sens. Actuators B 2016, 230, 330–336. [Google Scholar] [CrossRef]
- Ye, Z.; Jiang, Y.; Tai, H.; Yuan, Z. The investigation of reduced graphene oxide/P3HT composite films for ammonia detection. Integr. Ferroelectr. 2014, 154, 73–81. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Hu, N.; Wang, Y.; Zhang, Y.; Zhou, Z. Ammonia gas sensors based on chemically reduced graphene oxide sheets self-assembled on Au electrodes. Nanoscale Res. Lett. 2014, 9, 251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Element | Weight% | Atom% |
---|---|---|
C | 69.42 | 83.05 |
O | 3.39 | 3.05 |
Si | 27.10 | 13.86 |
S | 0.09 | 0.04 |
Total | 100.00 | 100.00 |
Wavenumber (cm−1) | 1250 | 1300 | 1600 |
Chemical bond | S-O | C-OH | C=C |
Materials | Concentration of Ammonia (ppm) | Sensitivity (%) | Response/Recovery Time (s) | Reference |
---|---|---|---|---|
GO/ester | 100 | 12 | 55/80 | [40] |
rGO/SnO2 | 50 | 30 | 60/120 | [42] |
Py/rGO | 100 | 22 | 134/310 | [45] |
rGO/P3HT | 50 | 13 | 92/415 | [44] |
TiO2/rGO | 50 | 5.5 | Slow/slow | [43] |
ZnO/rGO | 50 | 3.05 | 84/216 | [41] |
Sulfer/GO | 10 | 73 | 112/33 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Liao, Z.; Meng, F.; Yuan, Z. Theoretical and Experimental Research on Ammonia Sensing Properties of Sulfur-Doped Graphene Oxide. Chemosensors 2021, 9, 220. https://doi.org/10.3390/chemosensors9080220
Yu Y, Liao Z, Meng F, Yuan Z. Theoretical and Experimental Research on Ammonia Sensing Properties of Sulfur-Doped Graphene Oxide. Chemosensors. 2021; 9(8):220. https://doi.org/10.3390/chemosensors9080220
Chicago/Turabian StyleYu, Yao, Zhijia Liao, Fanli Meng, and Zhenyu Yuan. 2021. "Theoretical and Experimental Research on Ammonia Sensing Properties of Sulfur-Doped Graphene Oxide" Chemosensors 9, no. 8: 220. https://doi.org/10.3390/chemosensors9080220
APA StyleYu, Y., Liao, Z., Meng, F., & Yuan, Z. (2021). Theoretical and Experimental Research on Ammonia Sensing Properties of Sulfur-Doped Graphene Oxide. Chemosensors, 9(8), 220. https://doi.org/10.3390/chemosensors9080220