The New Approach to a Pattern Recognition of Volatile Compounds: The Inflammation Markers in Nasal Mucus Swabs from Calves Using the Gas Sensor Array
Abstract
:1. Introduction
2. Materials and Methods
2.1. Device and Sensor Array Characteristics
2.2. Analysed Samples
2.3. Measurements with Sensor Array
2.4. Clinical and Laboratory Tests of Calves
2.5. Data Treatment
3. Results and Discussion
3.1. The Clinical State of the Calves
3.2. Sensors Efficiency Parameters A(i/j) for Individual Volatile Compounds
3.3. Sensors Efficiency Parameters A(i/j) for Individual Volatile Compounds
3.4. Qualitative Evaluation of the Headspace Composition over the Nasal Swabs Samples
3.4.1. Projection of Cross Mass-Sensitivity Parameters Spectra for Nasal Swabs Samples onto the Principal Components Space for Spectra of Individual Substances
3.4.2. Projection of Cross Mass-Sensitivity Parameters Spectra for Individual Substances on the Principal Component Space Obtained on Real Biosamples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pandey, S.K.; Kim, K.H. Human body-odor components and their determination. Trac-Trends Anal. Chem. 2011, 30, 784–796. [Google Scholar] [CrossRef]
- Duan, Z.H.; Kjeldsen, P.; Scheutz, C. Improving the analytical flexibility of thermal desorption in determining unknown VOC samples by using re-collection. Sci. Total Environ. 2021, 768, 11. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.Y.; Liu, H.; Zhu, L.T.; Li, M.W.; Xia, X.M.; Qi, J.T. Soil organic matter determination based on artificial olfactory system and PLSR-BPNN. Meas. Sci. Technol. 2021, 32, 035801. [Google Scholar] [CrossRef]
- Kuang, H.; Li, Y.; Jiang, W.; Wu, P.; Tan, J.; Zhang, H.; Pang, Q.; Ma, S.; An, T.; Fan, R. Simultaneous determination of urinary 31 metabolites of VOCs, 8-hydroxy-2 ‘-deoxyguanosine, and trans-3 ‘-hydroxycotinine by UPLC-MS/MS: C-13- and N-15-labeled isotoped internal standards are more effective on reduction of matrix effect. Anal. Bioanal. Chem. 2019, 411, 7841–7855. [Google Scholar] [CrossRef]
- Orazbayeva, D.; Kenessov, B.; Koziel, J.A. Quantification of naphthalene in soil using solid-phase microextraction, gas-chromatography with mass-spectrometric detection and standard addition method. Int. J. Biol. Chem. 2018, 11, 4–11. [Google Scholar] [CrossRef]
- Thorson, J.; Collier-Oxandale, A.; Hannigan, M. Using A Low-Cost Sensor Array and Machine Learning Techniques to Detect Complex Pollutant Mixtures and Identify Likely Sources. Sensors 2019, 19, 3723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Natale, C.; Paolesse, R.; Martinelli, E.; Capuano, R. Solid-state gas sensors for breath analysis: A review. Anal. Chim. Acta 2014, 824, 1–17. [Google Scholar] [CrossRef]
- Saidi, T.; Tahri, K.; El Bari, N.; Ionescu, R.; Bouchikhi, B. Detection of Seasonal Allergic Rhinitis from Exhaled Breath VOCs Using an Electronic Nose Based on an Array of Chemical Sensors. In Proceedings of the IEEE Sensors, Busan, Korea, 1–4 November 2015; pp. 1566–1569. [Google Scholar]
- Wilson, A.D. Biomarker Metabolite Signatures Pave the Way for Electronic-nose Applications in Early Clinical Disease Diagnoses. Curr. Metab. 2017, 5, 90–101. [Google Scholar] [CrossRef]
- Garcia, R.A.; Morales, V.; Martín, S.; Vilches, E.; Toledano, A. Volatile Organic Compounds Analysis in Breath Air in Healthy Volunteers and Patients Suffering Epidermoid Laryngeal Carcinomas. Chromatographia 2014, 77, 501–509. [Google Scholar] [CrossRef]
- Martin, A.N.; Farquar, G.R.; Jones, A.D.; Frank, M. Human breath analysis: Methods for sample collection and reduction of localized background effects. Anal. Bioanal. Chem. 2010, 396, 739–750. [Google Scholar] [CrossRef]
- Turner, C.; Španěl, P.; Smith, D. A longitudinal study of breath isoprene in healthy volunteers using selected ion flow tube mass spectrometry (SIFT-MS). Physiol. Meas. 2006, 27, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Turner, C.; Španěl, P.; Smith, D. A longitudinal study of ammonia, acetone and propanol in the exhaled breath of 30 subjects using selected ion flow tube mass spectrometry, SIFT-MS. Physiol. Meas. 2006, 27, 321–337. [Google Scholar] [CrossRef] [PubMed]
- Turner, C.; Španěl, P.; Smith, D. A longitudinal study of methanol in the exhaled breath of 30 healthy volunteers using selected ion flow tube mass spectrometry, SIFT-MS. Physiol. Meas. 2006, 27, 637–648. [Google Scholar] [CrossRef] [PubMed]
- Turner, C.; Španěl, P.; Smith, D. A longitudinal study of ethanol and acetaldehyde in the exhaled breath of healthy volunteers using selected-ion flow-tube mass spectrometry. Rapid Commun. Mass Spectrom. 2006, 20, 61–68. [Google Scholar] [CrossRef]
- Morisco, F.; Aprea, E.; Lembo, V.; Fogliano, V.; Vitaglione, P.; Mazzone, G.; Cappellin, L.; Gasperi, F.; Masone, S.; De Palma, G.D.; et al. Rapid ‘‘Breath-Print’’ of liver cirrhosis by Proton Transfer Reaction Time-of-Flight Mass Spectrometry: A pilot study. PLoS ONE 2013, 8, e59658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amal, H.; Shi, D.-Y.; Ionescu, R.; Zhang, W.; Hua, Q.-L.; Pan, Y.-Y.; Tao, L.; Liu, H.; Haick, H. Assessment of ovarian cancer conditions from exhaled breath. Int. J. Cancer. 2015, 136, E614–E622. [Google Scholar] [CrossRef] [PubMed]
- Machado, R.F.; Laskowski, D.; Deffenderfer, O.; Burch, T.; Zheng, S.; Mazzone, P.J.; Mekhail, T.; Jennings, C.; Stoller, J.K.; Pyle, J.; et al. Detection of Lung Cancer by Sensor Array Analyses of Exhaled Breath. Am. J. Respir. Crit. Care Med. 2005, 171, 1286–1291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amal, H.; Leja, M.; Funka, K.; Lasina, I.; Skapars, R.; Sivins, A.; Ancans, G.; Kikuste, I.; Vanags, A.; Tolmanis, I.; et al. Breath testing as potential colorectal cancer screening tool. Int. J. Cancer. 2016, 138, 229–236. [Google Scholar] [CrossRef]
- Wang, C.; Ke, C.; Wang, X.; Chi, C.; Guo, L.; Luo, S.; Guo, Z.; Xu, G.; Zhang, F.; Li, E. Noninvasive detection of colorectal cancer by analysis of exhaled breath. Anal. Bioanal. Chem. 2014, 406, 4757–4763. [Google Scholar] [CrossRef]
- Ulanowska, A.; Kowalkowski, T.; Hrynkiewicz, K.; Jackowski, M.; Buszewski, B. Determination of volatile organic compounds in human breath for Helicobacter pylori detection by SPME-GC/MS. Biomed. Chromatogr. 2011, 25, 391–397. [Google Scholar] [CrossRef]
- Altomare, D.F.; Di Lena, M.; Porcelli, F.; Trizio, L.; Travaglio, E.; Tutino, M.; Dragonieri, S.; Memeo, V.; de Gennaro, G. Exhaled volatile organic compounds identify patients with colorectal cancer. Br. J. Surg. 2013, 100, 144–150. [Google Scholar] [CrossRef]
- Giuliani, C.; Lazzaro, L.; Calamassi, R.; Calamai, L.; Romoli, R.; Fico, G.; Foggi, B.; Lippi, M.M. A volatolomic approach for studying plant variability: The case of selected Helichrysum species (Asteraceae). Phytochemistry 2016, 130, 128–143. [Google Scholar] [CrossRef]
- Wang, H.; Geppert, H.; Fischer, T.; Wieprecht, W.; Moller, D. Determination of Volatile Organic and Polycyclic Aromatic Hydrocarbons in Crude Oil with Efficient Gas-Chromatographic Methods. J. Chromatogr. Sci. 2015, 53, 647–654. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Zhao, M.P. Methods for Detection of Volatile Organic Compounds in Human Exhaled Breath. Prog. Chem. 2010, 22, 140–147. [Google Scholar]
- Zhou, J.; Lu, X.Q.; Tian, B.X.; Wang, C.L.; Shi, H.; Luo, C.P.; Li, X.Q. A gas chromatography-flame ionization detection method for direct and rapid determination of small molecule volatile organic compounds in aqueous phase. 3 Biotech 2020, 10, 520. [Google Scholar] [CrossRef]
- Zhu, X.P.; Ma, H.L.; Zhu, X.H.; Chen, J.P. Determination of 67 volatile organic compounds in ambient air using thermal desorption-gas chromatography-mass spectrometry. Chin. J. Chromatogr. 2019, 37, 1228–1234. [Google Scholar] [CrossRef]
- Lvova, L.; Kirsanov, D.; Legin, A.; Di Natale, C. (Eds.) Multisensor Systems for Chemical Analysis—Materials and Sensors; Pan Stanford Publishing: Singapore, 2013; p. 392. ISBN 9789814411158. [Google Scholar]
- Kuchmenko, T.A.; Lvova, L.B. A Perspective on Recent Advances in Piezoelectric Chemical Sensors for Environmental Monitoring and Foodstuffs Analysis. Chemosensors 2019, 7, 39. [Google Scholar] [CrossRef] [Green Version]
- Kuchmenko, T.A. Electronic nose based on nanoweights, expectation and reality. Pure Appl. Chem. 2017, 89, 1587–1601. [Google Scholar] [CrossRef]
- Kuchmenko, T.A.; Umarkhanov, R.U.; Grazhulene, S.S.; Zaglyadova, S.V.; Shkinev, V.M. Microstructural investigations of sorption layers in mass-sensitive sensors for the detection of nitrogen-containing compounds. J. Surf. Invest. X-Ray Synchrotron Neutron Tech. 2014, 8, 312–320. [Google Scholar] [CrossRef]
- Kuchmenko, T.A.; Umarkhanov, R.U.; Menzhulina, D.A. Биогидроксиапатит—новая фаза для селективного микровзвешивания паров органических соединений—маркеров воспаления в носовой слизи телят и человека Сообщение 1. Сорбция в модельных системах. Sorbtsionnye Khromatograficheskie Protsessy 2021, 21, 142–152. [Google Scholar] [CrossRef]
- Kuchmenko, T.A.; Umarkhanov, R.U.; Menzhulina, D.A. Биогидроксиапатит–новая фаза для селективного микровзвешивания паров—маркеров воспаления в носовой слизи телят и человека Сообщение 2. Анализ реальных объектов. Sorbtsionnye Khromatograficheskie Protsessy 2021, 21, 216–224. [Google Scholar] [CrossRef]
- Sauerbrey, G.Z. The use of quartz oscillators for weighing thin layers and for microweighing. J. Phys. 1959, 155, 206–222. [Google Scholar] [CrossRef]
- McGuirk, S.M. Disease management of dairy calves and heifers. Vet. Clin. N. Am. Food Anim. Pract. 2008, 24, 139–153. [Google Scholar] [CrossRef] [PubMed]
- Chernitskiy, A.; Shabunin, S.; Kuchmenko, T.; Safonov, V. On-farm diagnosis of latent respiratory failure in calves. Turk. J. Vet. Anim. Sci. 2019, 43, 707–715. [Google Scholar] [CrossRef]
- Kuchmenko, T.A.; Shuba, A.A.; Umarkhanov, R.U.; Chernitskii, A.E. “Electronic nose” signals correlation evaluation for nasal mucus and exhaled breath condensate of calves with the clinical and laboratory indicators. Anal. Control 2019, 23, 557–562. [Google Scholar]
- Kuchmenko, T.A.; Shuba, A.A.; Belskikh, N.V. The identification parameters of organic substances in multisensors piezoquartz microbalance. Anal. Control 2012, 16, 151–161. [Google Scholar]
- Kuchmenko, T.; Umarkhanov, R.; Lvova, L. E-nose for the monitoring of plastics catalytic degradation through the released Volatile Organic Compounds (VOCs) detection. Sens. Actuat. B 2020, 322, 128585. [Google Scholar] [CrossRef]
- Kuchmenko, T.A.; Shuba, A.A.; Umarkhanov, R.U.; Drozdova, E.V.; Chernitskii, A.E. Application of a Piezoelectric Nose to Assessing the Respiratory System in Calves by Volatile Compounds. J. Anal. Chem. 2020, 75, 645–652. [Google Scholar] [CrossRef]
Compound | Abbreviation | Min. Concentration. ppmv | Max. Concentration. ppmv |
---|---|---|---|
Ammonia | Am | 2.2 | 6.5 |
Methylamine | MA | 3.5 | 10.4 |
Benzylamine | BA | 1.5 | 4.5 |
Diethylamine | DEA | 1.6 | 4.7 |
Acetone | Ac | 2.2 | 6.7 |
Methylethylketone | MEK | 1.8 | 5.5 |
4-methylpetanone-2 | 4MP2 | 1.3 | 3.9 |
5-methylhexanone-2 | 5MH2 | 1.2 | 3.5 |
1-phenylbutanone-2 | 1PhB2 | 1.1 | 3.3 |
Cyclopentanone | CP | 1.8 | 5.5 |
Cyclohexanone | CH | 1.6 | 4.8 |
3-methylcyclohexanone | 3MCH | 1.5 | 4.5 |
Acetaldehyde | AcAl | 2.9 | 8.7 |
Ethanol | Et | 2.8 | 8.4 |
Propanol-1 | Prop1 | 2.2 | 6.5 |
Butanol-1 | But1 | 1.8 | 5.3 |
Butanol-2 | But2 | 1.8 | 5.3 |
Pentanol-1 | Pent1 | 1.5 | 4.5 |
Acetic acid | AAcid | 2.5 | 7.6 |
Butyric acid | BAcid | 1.8 | 5.3 |
Ethylacetate | EtAc | 1.7 | 5.0 |
Water | Water | 9.0 | 25 |
Sample Number | Date of Investigation | Diagnosis |
---|---|---|
1.1 | 16 January 2020 | Bilateral bronchopneumonia (chronical) |
1.2 | 22 January 2020 | |
2.1 | 16 January 2020 | Bilateral bronchopneumonia |
2.2 | 23 January 2020 | |
3.1 | 16 January 2020 | Bilateral bronchopneumonia |
3.2 | 23 January 2020 | |
4.1 | 18 January 2020 | Healthy respiratory system |
4.2 | 24 January 2020 | Bronchitis |
5.1 | 18 January 2020 | Bronchitis |
5.2 | 24 January 2020 | Right-sided pneumonia |
A(i/j) | Water | Ethyl- Acetate | Acetone | Ketones | Alcohols | Acetaldehyde | Organic Acids | Ammonia | Amines |
---|---|---|---|---|---|---|---|---|---|
A(1/2) | 1.3–1.6 | 0.44–0.80 | 0.50–0.80 | 0.56–0.71 | 0.33–0.67 | 0.50–0.75 | 1.0–1.5 | 1.0–1.2 | 0.38–1.5 |
A(1/3) | 1.6–2.3 | 1.0–1.2 | 1.3–0.75 | 0.82–1.3 | 0.67–1.2 | 1.0–1.5 | 1.5–2.0 | 1.3–2.5 | 1.0–2.0 |
A(1/4) | 0.60–0.80 | 0.44–0.64 | 0.5–0.8 | 0.56–0.80 | 0.43–0.75 | 0.57–1.0 | 0.63–1.0 | 0.8–1.3 | 0.6–1.0 |
A(1/5) | 0.83–1.3 | 1.0–1.3 | 0.75–1.3 | 0.75–1.7 | 1.0–1.5 | 1.5–2.0 | 1.0–1.5 | 1.3–1.8 | 1.2–3.0 |
A(1/6) | 1.7–2.7 | 1.0–1.3 | 1.3–1.7 | 1.3–1.7 | 1.0–1.5 | 1.3–2.0 | 1.6–2.0 | 1.3–2.0 | 1.3–1.6 |
A(1/7) | 1.0–1.5 | 0.50–0.78 | 0.50–0.80 | 0.50–0.83 | 0.43–0.86 | 0.67–1.0 | 1.0–1.3 | 0.80–1.4 | 0.50–1.0 |
A(1/8) | 0.45–0.60 | 0.11–0.18 | 0.08–0.20 | 0.11–0.19 | 0.07–0.18 | 0.21–0.26 | 0.36–0.50 | 0.44–1.0 | 0.67–1.0 |
A(2/3) | 1.2–1.7 | 1.7–2.3 | 1.4–1.8 | 1.6–2.2 | 2.1–3.0 | 2.0 | 1.0–2.0 | 1.3–3.0 | 1.0–2.3 |
A(2/4) | 0.40–0.63 | 0.89–1.1 | 0.88–1.2 | 0.82–1.4 | 1.0–1.6 | 1.1–2.0 | 0.63–1.0 | 0.8–1.3 | 0.5–1.1 |
A(2/5) | 0.75–1.0 | 1.4–2.3 | 1.3–2.0 | 1.8–3.4 | 1.8–3.5 | 2.0–3.0 | 1.0–1.3 | 1.3–1.5 | 0.8–2.0 |
A(2/6) | 1.2–1.8 | 2.5–3.0 | 1.7–2.3 | 1.9–3.3 | 2.3–3.8 | 2.0–3.0 | 1.3–2.0 | 1.3–2.0 | 1.0–2.7 |
A(2/7) | 0.75–1.3 | 1.1–1.3 | 0.86–1.4 | 1.0–1.4 | 1.2–1.6 | 1.3–1.5 | 0.8–1.3 | 0.80–1.2 | 0.57–1.2 |
A(2/8) | 0.32–0.45 | 0.23–0.29 | 0.15–0.28 | 0.19–0.27 | 0.24–0.34 | 0.42–0.47 | 0.29–0.44 | 0.44–0.86 | 0.27–0.50 |
A(3/4) | 0.28–0.38 | 0.44–0.63 | 0.50–0.83 | 0.55–0.75 | 0.50–0.75 | 0.57–1.0 | 0.29–0.67 | 0.29–1.0 | 0.43–1.5 |
A(3/5) | 0.88–1.5 | 0.83–1.3 | 0.75–1.3 | 1.0–2.2 | 0.83–1.5 | 1.0–1.5 | 0.40–1.0 | 0.50–1.0 | 0.6–1.3 |
A(3/6) | 0.6–1.3 | 1.3–1.7 | 1.0–2.0 | 1.2–1.7 | 1.0–1.7 | 1.0–1.5 | 1.0–1.3 | 0.7–1.5 | 0.89–1.5 |
A(3/7) | 0.50–0.71 | 0.50–0.71 | 0.57–0.83 | 0.61–0.71 | 0.50–0.75 | 0.67 | 0.40–0.80 | 0.40–0.75 | 0.43–0.83 |
A(3/8) | 0.19–0.38 | 0.11–0.16 | 0.10–0.19 | 0.11–0.19 | 0.10–0.15 | 0.21–0.24 | 0.14–0.29 | 0.22–0.33 | 0.12–0.33 |
A(4/5) | 1.3–2.0 | 2.0–3.0 | 1.3–1.8 | 1.6–3.0 | 1.5–2.5 | 1.5–2.3 | 1.3–1.6 | 1.0–1.8 | 1.6–2.0 |
A(4/6) | 2.3–3.8 | 2.7–3.0 | 1.7–2.1 | 1.8–2.5 | 1.7–3.0 | 1.5–2.3 | 1.7–2.7 | 1.5–2.3 | 1.3–2.5 |
A(4/7) | 1.6–2.0 | 1.1–1.5 | 0.71–1.3 | 0.84–1.3 | 0.83–1.3 | 0.8–1.2 | 1.0–1.6 | 0.75–1.4 | 0.33–1.7 |
A(4/8) | 0.72–0.83 | 0.22–0.32 | 0.13–0.30 | 0.16–0.32 | 0.17–0.26 | 0.21–0.41 | 0.36–0.62 | 0.33–1.0 | 0.08–0.75 |
A(5/6) | 1.4–2.3 | 1.0–1.8 | 1.0–1.7 | 0.71–1.3 | 1.0–2.0 | 0.75–1.3 | 1.3–2.5 | 1.0–1.5 | 0.50–1.3 |
A(5/7) | 0.83–1.3 | 0.38–0.78 | 0.43–0.83 | 0.32–0.67 | 0.43–0.81 | 0.50–0.67 | 0.75–1.3 | 0.60–0.80 | 0.40–0.79 |
A(5/8) | 0.37–0.55 | 0.09–0.18 | 0.07–0.20 | 0.05–0.15 | 0.08–0.16 | 0.14–0.24 | 0.27–0.44 | 0.33–0.57 | 0.04–0.50 |
A(6/7) | 0.50–0.83 | 0.38–0.50 | 0.29–0.67 | 0.37–0.67 | 0.38–0.60 | 0.50–0.67 | 0.40–0.60 | 0.50–0.60 | 0.33–0.64 |
A(6/8) | 0.22–0.31 | 0.08–0.11 | 0.07–0.13 | 0.07–0.15 | 0.07–0.12 | 0.14–0.21 | 0.14–0.31 | 0.22–0.43 | 0.08–0.42 |
A(7/8) | 0.38–0.45 | 0.17–0.25 | 0.14–0.28 | 0.17–0.26 | 0.16–0.27 | 0.29–0.35 | 0.31–0.44 | 0.44–0.71 | 0.17–0.75 |
Pure Substance | Nasal Swab Sample | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1.1 | 1.2 | 2.1 | 2.2 | 3.1 | 3.2 | 4.1 | 4.2 | 5.1 | 5.2 | |
Ammonia | 0.168 | 0.185 | 0.236 | 0.212 | 0.063 * | 0.197 | 0.171 | 0.101 | 0.192 | 0.287 |
Methylamine | 0.008 | 0.069 | 0.032 | 0.059 | 0.091 | 0.069 | 0.076 | 0.040 | 0.067 | 0.057 |
Benzylamine | 0.204 | 0.189 | 0.223 | 0.200 | 0.322 | 0.190 | 0.234 | 0.253 | 0.194 | 0.250 |
Diethylamine | 0.111 | 0.227 | 0.095 | 0.216 | 0.129 | 0.223 | 0.224 | 0.102 | 0.220 | 0.083 |
Acetone 2 ppmv | 0.175 | 0.176 | 0.322 | 0.344 | 0.313 | 0.249 | 0.250 | 0.290 | 0.256 | 0.293 |
Acetone 7 ppmv | 0.286 | 0.714 | 0.358 * | 0.750 * | 0.243 * | 0.135 | 0.343 | 0.429 * | 0.081 | 0.386 * |
Methylethylketone | 0.314 | 0.688 | 0.158 | 0.679 | 0.260 | 0.137 | 0.457 | 0.500 | 0.096 | 0.160 |
4-methylpetanone-2 | 0.218 | 0.403 | 0.350 | 0.331 | 0.280 | 0.322 | 0.389 | 0.158 | 0.397 | 0.081 |
5-methylhexanone-2 | 0.221 | 0.333 | 0.273 | 0.261 | 0.279 | 0.335 | 0.320 | 0.331 | 0.327 | 0.188 |
1-phenylbutanone-2 | 0.177 | 0.194 | 0.175 | 0.184 | 0.243 | 0.191 | 0.192 | 0.086 | 0.188 | 0.071 |
Cyclopentanone | 0.336 | 0.358 | 0.381 | 0.445 | 0.313 | 0.433 | 0.349 | 0.325 | 0.352 | 0.339 |
Cyclohexanone | 0.132 | 0.284 | 0.269 | 0.290 | 0.297 | 0.283 | 0.138 | 0.253 | 0.288 | 0.291 |
3-methylcyclohexanone | 0.324 * | 0.434 * | 0.466 | 0.443 | 0.303 | 0.432 * | 0.419 | 0.418 | 0.427 * | 0.369 |
Acetaldehyde | 0.026 | 0.035 | 0.104 | 0.120 | 0.142 | 0.136 | 0.048 | 0.016 | 0.029 | 0.033 |
Ethanol | 0.039 | 0.326 | 0.160 | 0.242 | 0.220 | 0.328 | 0.314 | 0.052 | 0.228 | 0.069 |
Propanol-1 | 0.188 | 0.257 | 0.218 | 0.210 | 0.227 | 0.258 | 0.248 | 0.158 | 0.253 | 0.231 |
Butanol-1 | 0.269 | 0.292 | 0.256 | 0.298 | 0.251 | 0.311 | 0.303 | 0.149 | 0.289 | 0.166 |
Butanol-2 | 0.150 | 0.167 | 0.159 | 0.157 | 0.149 | 0.165 | 0.165 | 0.067 | 0.163 | 0.072 |
Pentanol-1 | 0.166 | 0.278 | 0.175 | 0.277 | 0.234 | 0.279 | 0.183 | 0.142 | 0.182 | 0.248 |
Acetic acid | 0.123 | 0.141 | 0.059 | 0.171 | 0.029 | 0.150 | 0.122 | 0.055 | 0.148 | 0.083 |
Butyric acid | 0.085 | 0.056 * | 0.179 * | 0.054 * | 0.084 | 0.201 * | 0.061 | 0.139 * | 0.055 | 0.144 * |
Ethyl acetate | 0.254 | 0.292 * | 0.304 | 0.378 | 0.303 * | 0.293 | 0.281 * | 0.276 | 0.285 | 0.317 |
Water | 0.711 * | 0.712 * | 0.488 * | 0.496 * | 0.026 | 0.498 * | 0.722 * | 0.405 * | 0.709 * | 0.438 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuchmenko, T.; Shuba, A.; Umarkhanov, R.; Lvova, L. The New Approach to a Pattern Recognition of Volatile Compounds: The Inflammation Markers in Nasal Mucus Swabs from Calves Using the Gas Sensor Array. Chemosensors 2021, 9, 116. https://doi.org/10.3390/chemosensors9060116
Kuchmenko T, Shuba A, Umarkhanov R, Lvova L. The New Approach to a Pattern Recognition of Volatile Compounds: The Inflammation Markers in Nasal Mucus Swabs from Calves Using the Gas Sensor Array. Chemosensors. 2021; 9(6):116. https://doi.org/10.3390/chemosensors9060116
Chicago/Turabian StyleKuchmenko, Tatiana, Anastasiia Shuba, Ruslan Umarkhanov, and Larisa Lvova. 2021. "The New Approach to a Pattern Recognition of Volatile Compounds: The Inflammation Markers in Nasal Mucus Swabs from Calves Using the Gas Sensor Array" Chemosensors 9, no. 6: 116. https://doi.org/10.3390/chemosensors9060116
APA StyleKuchmenko, T., Shuba, A., Umarkhanov, R., & Lvova, L. (2021). The New Approach to a Pattern Recognition of Volatile Compounds: The Inflammation Markers in Nasal Mucus Swabs from Calves Using the Gas Sensor Array. Chemosensors, 9(6), 116. https://doi.org/10.3390/chemosensors9060116