Amperometric L-Lactate Biosensor Based upon a Gold Nanoparticles/Reduced Graphene Oxide/Polyallylamine Hydrochloride Modified Screen-Printed Graphite Electrode
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Equipment and Materials
2.3. Preparation of GA-LDH/AuNPs-ERGO-PAH/SPE Biosensor
- AuNPs-GO-PAH composite preparation and deposition on SPE electrode, labelled AuNPs-GO-PAH/SPE;
- Electrochemical reduction of GO on the AuNPs-GO-PAH/SPE modified sensor; and
- Immobilization of L-LDH on the surface of AuNPs-ERGO-PAH/SPE by cross-linking with glutaraldehyde (GA).
3. Results and Discussion
3.1. Optimization of Immobilization Method
3.2. Optimization of the Working pH
3.3. Optimization of the Working Potential
3.4. Optimization of Coenzyme Concentration
3.5. Biosensor Calibration for L-Lactic Acid
3.6. Stability of the GA-LDH/AuNPs-ERGO-PAH/SPE Biosensor
3.7. Selectivity of the GA-L-LDH/AuNPs-ERGO-PAH/SPE Biosensor
3.8. Detection of L-Lactic Acid in Food Sample
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuşbaz, A.; Göcek, İ.; Baysal, G.; Kök, F.N.; Trabzon, L.; Kizil, H.; Karagüzel Kayaoğlu, B. Lactate detection by colorimetric measurement in real human sweat by microfluidic-based biosensor on flexible substrate. J. Text. Inst. 2019, 110, 1725–1732. [Google Scholar] [CrossRef]
- Bravo, I.; Revenga-Parra, M.; Pariente, F.; Lorenzo, E. Reagent-Less and Robust Biosensor for Direct Determination of Lactate in Food Samples. Sensors 2017, 17, 144. [Google Scholar] [CrossRef] [Green Version]
- Shkotova, L.; Bohush, A.; Voloshina, I.; Smutok, O.; Dzyadevych, S. Amperometric biosensor modified with platinum and palladium nanoparticles for detection of lactate concentrations in wine. Sn Appl. Sci. 2019, 1, 8. [Google Scholar] [CrossRef] [Green Version]
- Farina, D.; Zinellu, M.; Fanari, M.; Porcu, M.C.; Scognamillo, S.; Puggioni, G.M.G.; Rocchitta, G.; Serra, P.A.; Pretti, L. Development of a biosensor telemetry system for monitoring fermentation in craft breweries. Food Chem. 2017, 218, 479–486. [Google Scholar] [CrossRef]
- Seheult, J.; Fitzpatrick, G.; Boran, G. Lactic acidosis: an update. Clin. Chem. Lab. Med. 2017, 55, 322–333. [Google Scholar] [CrossRef] [PubMed]
- Komesu, A.; Oliveira, J.A.R.d.; Martins, L.H.d.S.; Wolf Maciel, M.R.; Maciel Filho, R. Lactic Acid Production to Purification: A Review. BioResources 2017, 12, 20. [Google Scholar] [CrossRef]
- Fernandes Nascimento, E.M.; Augusta Pedutti Dal Molin Kiss, M.; Meireles Santos, T.; Lambert, M.; Pires, F.O. Determination of Lactate Thresholds in Maximal Running Test by Heart Rate Variability Data Set. Asian J. Sports Med. 2017, 8, e58480. [Google Scholar] [CrossRef] [Green Version]
- Rishi, L.; Yaqoob, M.; Asghar, M.; Nabi, A.; Munawar, N. Flow Injection Determination of Lactate Using Immobilized Lactate Dehydrogenase Enzyme with Tris(2,2 ’-Bipyridyl)Ruthenium(III) Chemiluminescence Detection. Anal. Lett. 2016, 49, 654–664. [Google Scholar] [CrossRef]
- Milagres, M.P.; Brandão, S.C.C.; Magalhães, M.A.; Minim, V.P.R.; Minim, L.A. Development and validation of the high performance liquid chromatography–ion exclusion method for detection of lactic acid in milk. Food Chem. 2012, 135, 1078–1082. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, H.; Fukushima, T.; Lee, J.-A.; Tsukamoto, K.; Moriya, K.; Ono, Y.; Imai, K. Determination of serum d-lactic and l-lactic acids in normal subjects and diabetic patients by column-switching HPLC with pre-column fluorescence derivatization. Anal. Bioanal. Chem. 2003, 377, 886–891. [Google Scholar] [CrossRef]
- Chan, D.; Barsan, M.M.; Korpan, Y.; Brett, C.M.A. L-lactate selective impedimetric bienzymatic biosensor based on lactate dehydrogenase and pyruvate oxidase. Electrochim. Acta 2017, 231, 209–215. [Google Scholar] [CrossRef]
- Dagar, K.; Pundir, C.S. An improved amperometric L-lactate biosensor based on covalent immobilization of microbial lactate oxidase onto carboxylated multiwalled carbon nanotubes/copper nanoparticles/polyaniline modified pencil graphite electrode. Enzym. Microb. Technol. 2017, 96, 177–186. [Google Scholar] [CrossRef]
- Kucherenko, I.S.; Topolnikova, Y.V.; Soldatkin, O.O. Advances in the biosensors for lactate and pyruvate detection for medical applications: A review. Trac-Trends Anal. Chem. 2019, 110, 160–172. [Google Scholar] [CrossRef]
- Pereira, A.C.; Aguiar, M.R.; Kisner, A.; Macedo, D.V.; Kubota, L.T. Amperometric biosensor for lactate based on lactate dehydrogenase and Meldola Blue coimmobilized on multi-wall carbon-nanotube. Sens. Actuators B Chem. 2007, 124, 269–276. [Google Scholar] [CrossRef]
- Rahman, M.M.; Shiddiky, M.J.A.; Rahman, M.A.; Shim, Y.-B. A lactate biosensor based on lactate dehydrogenase/nictotinamide adenine dinucleotide (oxidized form) immobilized on a conducting polymer/multiwall carbon nanotube composite film. Anal. Biochem. 2009, 384, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Piano, M.; Serban, S.; Pittson, R.; Drago, G.A.; Hart, J.P. Amperometric lactate biosensor for flow injection analysis based on a screen-printed carbon electrode containing Meldola’s Blue-Reinecke salt, coated with lactate dehydrogenase and NAD(+). Talanta 2010, 82, 34–37. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, J.S.; Slaughter, G. Lactic Acid Biosensor Based on Lactate Dehydrogenase Immobilized on Au Nanoparticle Modified Microwire Electrode. IEEE Sens. J. 2020, 20, 4034–4040. [Google Scholar] [CrossRef]
- Manna, B.; Raj, C.R. Covalent functionalization and electrochemical tuning of reduced graphene oxide for the bioelectrocatalytic sensing of serum lactate. J. Mater. Chem. B 2016, 4, 4585–4593. [Google Scholar] [CrossRef]
- Batra, B.; Narwal, V.; Pundir, C.S. An amperometric lactate biosensor based on lactate dehydrogenase immobilized onto graphene oxide nanoparticles-modified pencil graphite electrode. Eng. Life Sci. 2016, 16, 786–794. [Google Scholar] [CrossRef]
- Khan, M.; Tahir, M.N.; Adil, S.F.; Khan, H.U.; Siddiqui, M.R.H.; Al-warthan, A.A.; Tremel, W. Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications. J. Mater. Chem. A 2015, 3, 18753–18808. [Google Scholar] [CrossRef] [Green Version]
- Istrate, O.M.; Rotariu, L.; Marinescu, V.E.; Bala, C. NADH sensing platform based on electrochemically generated reduced graphene oxide-gold nanoparticles composite stabilized with poly(allylamine hydrochloride). Sens. Actuators B Chem. 2016, 223, 697–704. [Google Scholar] [CrossRef]
- Azzouzi, S.; Rotariu, L.; Benito, A.M.; Maser, W.K.; Ben Ali, M.; Bala, C. A novel amperometric biosensor based on gold nanoparticles anchored on reduced graphene oxide for sensitive detection of l-lactate tumor biomarker. Biosens. Bioelectron. 2015, 69, 280–286. [Google Scholar] [CrossRef] [Green Version]
- Barsan, M.M.; Ghica, M.E.; Brett, C.M.A. Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: A review. Anal. Chim. Acta 2015, 881, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.Y.; Wang, Y.Y.; Duan, X.X. Biofunctional polyelectrolytes assembling on biosensors—A versatile surface coating method for protein detections. Anal. Chim. Acta 2017, 964, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Rotariu, L.; Istrate, O.-M.; Bala, C. Poly(allylamine hydrochloride) modified screen-printed carbon electrode for sensitive and selective detection of NADH. Sens. Actuators B Chem. 2014, 191, 491–497. [Google Scholar] [CrossRef]
- Lawal, A.T. Recent progress in graphene based polymer nanocomposites. Cogent Chem. 2020, 6, 1833476. [Google Scholar] [CrossRef]
- Istrate, O.M.; Rotariu, L.; Bala, C. Electrochemical determination of NADH using screen printed carbon electrodes modified with reduced graphene oxide and poly(allylamine hydrochloride). Microchim. Acta 2016, 183, 57–65. [Google Scholar] [CrossRef]
- Bilgi, M.; Ayranci, E. Biosensor application of screen-printed carbon electrodes modified with nanomaterials and a conducting polymer: Ethanol biosensors based on alcohol dehydrogenase. Sens. Actuators B Chem. 2016, 237, 849–855. [Google Scholar] [CrossRef]
- Fritz, P.J. Rabbit Lactate Dehydrogenase Isozymes: Effect of pH on Activity. Science 1967, 156, 82–83. [Google Scholar] [CrossRef]
- Teymourian, H.; Salimi, A.; Hallaj, R. Low potential detection of NADH based on Fe3O4 nanoparticles/multiwalled carbon nanotubes composite: Fabrication of integrated dehydrogenase-based lactate biosensor. Biosens. Bioelectron. 2012, 33, 60–68. [Google Scholar] [CrossRef]
- Nesakumar, N.; Sethuraman, S.; Krishnan, U.M.; Rayappan, J.B.B. Fabrication of lactate biosensor based on lactate dehydrogenase immobilized on cerium oxide nanoparticles. J. Colloid Interface Sci. 2013, 410, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Vargas, E.; Ruiz, M.A.; Campuzano, S.; de Rivera, G.G.; López-Colino, F.; Reviejo, A.J.; Pingarrón, J.M. Implementation of a new integrated d-lactic acid biosensor in a semiautomatic FIA system for the simultaneous determination of lactic acid enantiomers. Application to the analysis of beer samples. Talanta 2016, 152, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ding, S.; Cao, S.; Zhu, A.; Shi, G. Functional surface engineering of quantum dot hydrogels for selective fluorescence imaging of extracellular lactate release. Biosens. Bioelectron. 2016, 80, 315–322. [Google Scholar] [CrossRef] [PubMed]
Matrix | pH | Linear Range (µM) | LOD (µM) | Sensitivity (µA/mM·cm2) | RSD (%) | Ref. |
---|---|---|---|---|---|---|
MWCNT/MB | 7 | 100–10,000 | 100 | 3.46 | N.R. | [14] |
pTTA/MWCNT | 7 | 5–90 | 1 | 0.0106 | 4.3 | [15] |
MBRS | 6.5 | 550–10,000 | 556 | N.R. | 4.28 | [16] |
Fe3O4 nanoparticles/MWCNTs/NAD+ | 7.5 | 50–500 | 5 | 7.67 | 4.7 | [30] |
CeO2-Nano | 7.4 | 200–2000 | 50 | N.R. (571,19 µA/mM) | 2.8 | [31] |
DP/TTH | 7.3 | 1.4–55 | N.R. | 0.0044 | 4.7 | [32] |
NB/MSA/CDTe/QDs | 7.4 | 50–10,000 | 50 | N.R. | N.R. | [33] |
AuNPs-ERGO-PAH | 7.5 | 500–3000 4000–16,000 | 1 | 1.08 0.28 | 4.2 | This work |
Interfering Compound | Current Ratio 1 | |
---|---|---|
L:I = 1:1 | L:I = 1:0.1 | |
Acetic acid | 1.25 | 0.95 |
Ethanol | 1.0 | 0.93 |
Glucose | 1.2 | 0.98 |
Ascorbic acid | 1.41 | 1.12 |
Glutamic acid | 1.02 | 0.94 |
Sample | Replicate | ΔI, nA | L-Lactic Acid, g/L | |
---|---|---|---|---|
Biosensor | Spectrometric Assay | |||
yogurt | 1 | 110 | 8.48 ± 0.37 | 8.25 ± 0.24 |
2 | 105 | |||
3 | 116 | |||
wine | 1 | 91 | 2.13 ± 0.11 | 2.05 ± 0.07 |
2 | 80 | |||
3 | 85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Istrate, O.-M.; Rotariu, L.; Bala, C. Amperometric L-Lactate Biosensor Based upon a Gold Nanoparticles/Reduced Graphene Oxide/Polyallylamine Hydrochloride Modified Screen-Printed Graphite Electrode. Chemosensors 2021, 9, 74. https://doi.org/10.3390/chemosensors9040074
Istrate O-M, Rotariu L, Bala C. Amperometric L-Lactate Biosensor Based upon a Gold Nanoparticles/Reduced Graphene Oxide/Polyallylamine Hydrochloride Modified Screen-Printed Graphite Electrode. Chemosensors. 2021; 9(4):74. https://doi.org/10.3390/chemosensors9040074
Chicago/Turabian StyleIstrate, Oana-Maria, Lucian Rotariu, and Camelia Bala. 2021. "Amperometric L-Lactate Biosensor Based upon a Gold Nanoparticles/Reduced Graphene Oxide/Polyallylamine Hydrochloride Modified Screen-Printed Graphite Electrode" Chemosensors 9, no. 4: 74. https://doi.org/10.3390/chemosensors9040074
APA StyleIstrate, O. -M., Rotariu, L., & Bala, C. (2021). Amperometric L-Lactate Biosensor Based upon a Gold Nanoparticles/Reduced Graphene Oxide/Polyallylamine Hydrochloride Modified Screen-Printed Graphite Electrode. Chemosensors, 9(4), 74. https://doi.org/10.3390/chemosensors9040074