Current State of Laser-Induced Fluorescence Spectroscopy for Designing Biochemical Sensors
Abstract
:1. Introduction
2. Designing a LIF Detection System
3. Excitation Light Sources
4. Molecular Probes/Tags
5. Sample Cell Configurations
6. Electrooptical Detector Technologies
7. Commercial Availability of LIF Detection Systems
8. Modern LIF Technologies
9. Sensors (Site Characterization and Analysis Penetrometer System)
10. Laser-Induced Breakdown Spectroscopy
11. Detection of Viruses in Wastewater Using LIF
12. Fluorescence Detection of Transition Metal Oxide Nanoparticles
13. Conclusion/Future Developments
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gerardi, A.R.; Lubbeck, J.L.; Colyer, C.L. Dimethylditetradecylammonium bromide (2C 14DAB) as a self-assembled surfactant coating for detection of protein-dye complexes by CE-LIF. J. Solid State Electrochem. 2009, 13, 633–638. [Google Scholar] [CrossRef]
- Khan, S.; Newport, D.; Le Calvé, S. Gas Detection Using Portable Deep-UV Absorption. Sensors 2019, 19, 5210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zare, R.N. My life with lIF: A personal account of developing laser-induced fluorescence. Annu. Rev. Anal. Chem. 2012, 5, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Chen, L.; Jangili, P.; Sharma, A.; Li, W.; Hou, J.T.; Qin, C.; Yoon, J.; Kim, J.S. Design and applications of fluorescent detectors for peroxynitrite. Coord. Chem. Rev. 2018, 374, 36–54. [Google Scholar] [CrossRef]
- Hofzumahaus, A.; Holland, F. Laser-induced fluorescence based detection system for measurement of tropospheric OH using 308 nm excitation at low pressure. Opt. Methods Atmos. Chem. 1993, 1715, 163–173. [Google Scholar] [CrossRef]
- Knewtson, K.E.; Rane, D.; Peterson, B.R. Targeting Fluorescent Sensors to Endoplasmic Reticulum Membranes Enables Detection of Peroxynitrite during Cellular Phagocytosis. ACS Chem. Biol. 2018, 13, 2595–2602. [Google Scholar] [CrossRef]
- Gu, B.; Liu, C.; Wu, Y.; Zhang, C.; Shen, Y.; Liu, M. Application of a colorimetric and near-infrared fluorescent probe in peroxynitrite detection and imaging in living cells. ACS Omega 2020, 5, 27530–27535. [Google Scholar] [CrossRef]
- Ihara, D.; Hazama, H.; Nishimura, T.; Morita, Y.; Awazu, K. Fluorescence detection of deep intramucosal cancer excited by green light for photodynamic diagnosis using protoporphyrin IX induced by 5-aminolevulinic acid: An ex vivo study. J. Biomed. Opt. 2020, 25, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, M.; Yamada, N.; Tian, X.; Bull, S.D.; Minoshima, M.; Kikuchi, K.; Mackenzie, A.B.; James, T.D. Sensing Peroxynitrite in Different Organelles of Murine RAW264.7 Macrophages With Coumarin-Based Fluorescent Probes. Front. Chem. 2020, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.K.; Song, M.W.K.; Norbasch, A.; Prendergas, F. What Can be Expected from Laser Induced Fluorescence? Available online: http://www.oeso.org/OESO/books/Vol_5_Eso_Junction/Articles/art299.html (accessed on 30 May 2021).
- Szarka, M.; Szigeti, M.; Guttman, A. Imaging Laser-Induced Fluorescence Detection at the Taylor Cone of Electrospray Ionization Mass Spectrometry. Anal. Chem. 2019, 91, 7738–7743. [Google Scholar] [CrossRef]
- Jin, Y.; Chen, C.; Meng, L.; Chen, J.; Li, M.; Zhu, Z.; Lin, J. A CE-LIF method to monitor autophagy by directly detecting LC3 proteins in HeLa cells. Analyst 2012, 137, 5571–5575. [Google Scholar] [CrossRef] [PubMed]
- Qiao, J.; Qi, L.; Mu, X.; Chen, Y. Monolith and coating enzymatic microreactors of l-asparaginase: Kinetics study by MCE-LIF for potential application in acute lymphoblastic leukemia (ALL) treatment. Analyst 2011, 136, 2077–2083. [Google Scholar] [CrossRef] [PubMed]
- Feás, X.; Fente, C.A.; Cepeda, A. Fast and sensitive new high performance liquid chromatography laser induced fluorescence (HPLC-LIF) method for quinine. Comparative study in soft drinks. J. Liq. Chromatogr. Relat. Technol. 2009, 32, 2600–2614. [Google Scholar] [CrossRef]
- Kang, J.; Wang, Y.; Chen, Y.; Li, R. Fast and ultrasensitive detection of toxic heavy metals in water by LIBS-LIF technique. Opt. InfoBase Conf. Pap. 2017, F83-A, 1–3. [Google Scholar] [CrossRef]
- Bandeira, R.D.D.C.C.; Uekane, T.M.; Cunha, C.P.D.; Rodrigues, J.M.; la Cruz, M.H.C.D.; Godoy, R.L.D.O.; Fioravante, A.D.L. Comparison of High Performance Liquid Chromatography with Fluorescence Detector and with Tandem Mass Spectrometry Methods for Detection and Quantification of Ochratoxin A in Green and Roasted Coffee Beans. Arch. Biol. Technol. 2013, 56, 911–920. [Google Scholar] [CrossRef]
- Baldwin, M.A. Protein identification by mass spectrometry: Issues to be considered. Mol. Cell. Proteomics 2004, 3, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Gabbarini, V.; Rossi, R.; Ciparisse, J.F.; Malizia, A.; Divizia, A.; De Filippis, P.; Anselmi, M.; Carestia, M.; Palombi, L.; Divizia, M.; et al. Laser-induced fluorescence (LIF) as a smart method for fast environmental virological analyses: Validation on Picornaviruses. Sci. Rep. 2019, 9, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Sun, X. Design, Synthesis and Evaluation of Fluorescent Sensors for the Detection of Saccharide and Reactive Oxygen Species. Ph.D. Thesis, University of Bath, Bath, UK, 2015. [Google Scholar]
- Wu, L.; Sedgwick, A.C.; Sun, X.; Bull, S.D.; He, X.P.; James, T.D. Reaction-Based Fluorescent Probes for the Detection and Imaging of Reactive Oxygen, Nitrogen, and Sulfur Species. Acc. Chem. Res. 2019, 52, 2582–2597. [Google Scholar] [CrossRef] [Green Version]
- Laser-Induced Fluorescence. Available online: https://clu-in.org/characterization/technologies/lif.cfm (accessed on 30 May 2021).
- Perry, S.J. Design of a Low-Cost Capillary Electrophoresis Laser-Induced Fluorescence System: Lessons Learned When Trying to Build the Lowest Possible Cost System; Brigham Young University: Provo, UT, USA, 2018. [Google Scholar]
- NASA’s New Way to Track Formaldehyde. Available online: https://www.nasa.gov/topics/technology/features/formaldehyde-track.html (accessed on 30 August 2021).
- Cazorla, M.; Wolfe, G.M.; Bailey, S.A.; Swanson, A.K.; Arkinson, H.L.; Hanisco, T.F. A new airborne laser-induced fluorescence instrument for in situ detection of formaldehyde throughout the troposphere and lower stratosphere. Atmos. Meas. Tech. 2015, 8, 541–552. [Google Scholar] [CrossRef] [Green Version]
- Day, D.A.; Wooldridge, P.J.; Dillon, M.B.; Thornton, J.A.; Cohen, R.C. A thermal dissociation laser-induced fluorescence instrument for in situ detection NO2, peroxy nitrates, alkyl nitrates, and HNO3. J. Geophys. Res. Atmos. 2002, 107, ACH-4. [Google Scholar] [CrossRef]
- Rollins, A.W.; Rickly, P.S.; Gao, R.S.; Ryerson, T.B.; Brown, S.S.; Peischl, J.; Bourgeois, I. Single-photon laser-induced fluorescence detection of nitric oxide at sub-parts-per-trillion mixing ratios. Atmos. Meas. Tech. 2020, 13, 2425–2439. [Google Scholar] [CrossRef]
- Rogers, S.R.; Webster, T.; Livingstone, W.; O’Driscoll, N.J. Airborne Laser-Induced Fluorescence (LIF) Light Detection and Ranging (LiDAR) for the Quantification of Dissolved Organic Matter Concentration in Natural Waters. Estuaries Coast 2012, 35, 959–975. [Google Scholar] [CrossRef]
- St. Germain, R. Laser-Induced Fluorescence Primer. Available online: https://www.dakotatechnologies.com/info/newsletters/article/2016/03/16/laser-induced-fluorescence-primer (accessed on 31 May 2021).
- Caneve, L.; Colao, F.; Del Franco, M.; Palucci, A.; Pistilli, M.; Spizzichino, V. Multispectral imaging system based on laser-induced fluorescence for security applications. In Proceedings of the Optics and Photonics for Counterterrorism, Crime Fighting, and Defence XII, Edinburgh, UK, 26–27 September 2016; Volume 9995, p. 8. [Google Scholar] [CrossRef]
- Zhange, Z.; Park, J.; Barrett, H.; Dooley, S.; Davies, C.; Verhagen, M.F. Capillary Electrophoresis-Sodium Dodecyl Sulfate with Laser-Induced Fluorescence Detection As a Highly Sensitive and Quality Control-Friendly Method for Monitoring Adeno-Associated Virus Capsid Protein Purity. Hum. Gene Ther. 2021, 32, 628–637. [Google Scholar] [CrossRef]
- Cai, S.Z.; Zhang, Q.F.; Xu, X.P.; Hu, D.H.; Qu, Y.M. Research of Laser Induced Fluorescence Detection Techniques Based on Microfluidic Devices. Adv. Mater. Res. 2014, 989–994, 2761–2763. [Google Scholar]
- Overview of Filters and Light Sources. Available online: https://www.thermofisher.com/ca/en/home/life-science/cell-analysis/cell-analysis-learning-center/molecular-probes-school-of-fluorescence/fluorescence-basics/overview-filters-light-sources.html#:~:text=1)Themostpopularsources,varyingintensityacrosst (accessed on 28 May 2021).
- Fulton, M.L. Color correction of metal halide arc lamp sources. Opt. Eng. 2003, 42, 2155. [Google Scholar] [CrossRef]
- Lee, A.C.H.; Elson, D.S.; Neil, M.A.; Kumar, S.; Ling, B.W.; Bello, F.; Hanna, G.B. Solid-state semiconductors are better alternatives to arc-lamps for efficient and uniform illumination in minimal access surgery. Surg. Endosc. 2009, 23, 518–526. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, R.; Aldwell, B.; Yin, S.; Meyer, M.; Robinson, A.J.; Lupoi, R. Energy efficiency of a quartz tungsten halogen lamp: Experimental and numerical approach. Therm. Sci. Eng. Prog. 2019, 13, 100385. [Google Scholar] [CrossRef]
- Davidson, M.W. Tungsten-Halogen Incandescent Lamps. Available online: http://zeiss-campus.magnet.fsu.edu/articles/lightsources/tungstenhalogen.html (accessed on 28 May 2021).
- Burgin, R.; Edwards, E. The Tungsten Lamp Decade. Light. Res. Technol. 1970, 2, 95–108. [Google Scholar] [CrossRef]
- Aswani, K.K. Emerging LED Technologies for Fluorescence Microscopy. Microsc. Today 2016, 24, 22–27. [Google Scholar] [CrossRef] [Green Version]
- Dang, F.; Geng, X.; Li, J.; Wang, J.; Guan, Y. A miniaturized and high sensitive dual channel fluorimeter based on compact collinear optical arrangement. Talanta 2020, 211, 120698. [Google Scholar] [CrossRef] [PubMed]
- Wood, M. How do LEDs Work? Part 3. Available online: https://www.mikewoodconsulting.com/articles/Protocol%20Fall%202009%20-%20How%20do%20LEDs%20Work3.pdf (accessed on 20 September 2021).
- Sato, K.; Watanabe, R.; Hanaoka, H.; Nakajima, T.; Choyke, P.L.; Kobayashi, H. Comparative effectiveness of light emitting diodes (LEDs) and lasers in near infrared photoimmunotherapy. Oncotarget 2016, 7, 14324–14335. [Google Scholar] [CrossRef] [Green Version]
- Tango, W.J.; Link, J.K.; Zare, R.N. Spectroscopy of K2 Using Laser-Induced Fluorescence. J. Chem. Phys. 1968, 49, 4264–4268. [Google Scholar] [CrossRef]
- Da Silva, J.M.; Utkin, A.B. Application of laser-induced fluorescence in functional studies of photosynthetic biofilms. Processes 2018, 6, 227. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Lou, Y.; Wang, R.; Yan, D.; Li, X.; Zhao, X.; Chen, D.; Zhao, Q. Design of remote laser-induced fluorescence system’s acquisition circuit. In Proceedings of the AOPC 2017: Optical Spectroscopy and Imaging, Beijing, China, 4–6 June 2017; Volume 10461, p. 34. [Google Scholar] [CrossRef]
- Li, H.; Van’t Hag, L.; Yousef, Y.A.; Melø, T.B.; Razi Naqvi, K. Single shot laser flash photolysis with a fibre-coupled reference beam monitor. Photochem. Photobiol. Sci. 2013, 12, 404–406. [Google Scholar] [CrossRef] [PubMed]
- Boutonnet, A.; Morin, A.; Petit, P.; Vicendo, P.; Poinsot, V.; Couderc, F. Pulsed lasers versus continuous light sources in capillary electrophoresis and fluorescence detection studies: Photodegradation pathways and models. Anal. Chim. Acta 2016, 912, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Smyder, J.A.; Amori, A.R.; Odoi, M.Y.; Stern, H.A.; Peterson, J.J.; Krauss, T.D. The influence of continuous vs. pulsed laser excitation on single quantum dot photophysics. Phys. Chem. Chem. Phys. 2014, 16, 25723–25728. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.D.; McKay, C.P.; Duncan, A.G.; Sims, R.C.; Anderson, A.J.; Grossl, P.R. An instrument design for non-contact detection of biomolecules and minerals on Mars using fluorescence. J. Biol. Eng. 2014, 8, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fellner, L.; Kraus, M.; Gebert, F.; Walter, A.; Duschek, F. Multispectral LIF-based standoff detection system for the classification of cbe hazards by spectral and temporal features. Sensors 2020, 20, 2524. [Google Scholar] [CrossRef]
- Babichenko, S.; Gala, J.L.; Bentahir, M.; Piette, A.S.; Poryvkina, L.; Rebane, O.; Smits, B.; Sobolev, I.; Soboleva, N. Non-Contact, Real-Time Laser-Induced Fluorescence Detection and Monitoring of Microbial Contaminants on Solid Surfaces Before, During and After Decontamination. J. Biosens. Bioelectron. 2018, 9, 255. [Google Scholar] [CrossRef]
- Gratton, E.; Barry, N.P.; Beretta, S.; Celli, A. Multiphoton fluorescence microscopy. Methods 2001, 25, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Miller, D.R.; Jarrett, J.W.; Hassan, A.M.; Dunn, A.K. Deep tissue imaging with multiphoton fluorescence microscopy. Curr. Opin. Biomed. Eng. 2017, 4, 32–39. [Google Scholar] [CrossRef]
- Ash, C.; Dubec, M.; Donne, K.; Bashford, T. Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods. Lasers Med. Sci. 2017, 32, 1909–1918. [Google Scholar] [CrossRef]
- Xu, C.; Zipfel, W.; Shear, J.B.; Williams, R.M.; Webb, W.W. Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy. Proc. Natl. Acad. Sci. USA 1996, 93, 10763–10768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Campbell, R.E.; Ting, A.Y.; Tsien, R.Y. Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol. 2002, 3, 906–918. [Google Scholar] [CrossRef] [PubMed]
- CF® DYES Next Generation Fluorescent Dyes. Available online: https://biotium.com/technology/cf-dyes/ (accessed on 30 May 2021).
- Tsien, R.Y. The green fluorescent protein. Annu. Rev. Biochem. 1998, 67, 509–544. [Google Scholar] [CrossRef] [PubMed]
- Remington, S.J. Green fluorescent protein: A perspective. Protein Sci. 2011, 20, 1509–1519. [Google Scholar] [CrossRef] [Green Version]
- Guo, P.; Wang, Y.; Zhuang, Q. Highly sensitive and selective biosensor for heparin detection with rhodamine B-labelled peptides as fluorescent bioreceptors. Sens. Actuators B Chem. 2019, 299, 126873. [Google Scholar] [CrossRef]
- Wichgers Schreur, P.J.; Kortekaas, J. Single-Molecule FISH Reveals Non-selective Packaging of Rift Valley Fever Virus Genome Segments. PLoS Pathog. 2016, 12, 1–21. [Google Scholar] [CrossRef]
- Berneschi, S.; Baldini, F.; Applicata, F.; Carrara, N.; Cosci, A.; Enrico, R.; Cosi, F.; Applicata, F.; Carrara, N.; Farnesi, D.; et al. Localized immunoassay in flow-through optical microbubble resonator (conference presentation). In Proceedings of the Silicon Photonics and Photonic Integrated Circuits V, Brussels, Belgium, 3–7 April 2016; Volume 9891, p. 2227812. [Google Scholar] [CrossRef]
- Ferrara, F.; Listwan, P.; Waldo, G.S.; Bradbury, A.R.M. Fluorescent labeling of antibody fragments using split GFP. PLoS ONE 2011, 6, 1–9. [Google Scholar] [CrossRef]
- McConnell, E.M.; Ventura, K.; Dwyer, Z.; Hunt, V.; Koudrina, A.; Holahan, M.R.; Derosa, M.C. In Vivo Use of a Multi-DNA Aptamer-Based Payload/Targeting System to Study Dopamine Dysregulation in the Central Nervous System. ACS Chem. Neurosci. 2019, 10, 371–383. [Google Scholar] [CrossRef]
- Chen, Q.; Zhao, W.; Fung, Y. Determination of acrylamide in potato crisps by capillary electrophoresis with quantum dot-mediated LIF detection. Electrophoresis 2011, 32, 1252–1257. [Google Scholar] [CrossRef]
- Hsu, S.C.; Chen, Y.H.; Tu, Z.Y.; Han, H.V.; Lin, S.L.; Chen, T.M.; Kuo, H.C.; Lin, C.C. Highly Stable and Efficient Hybrid Quantum Dot Light-Emitting Diodes. IEEE Photonics J. 2015, 7, 1–10. [Google Scholar] [CrossRef]
- Borah, P.; Siboh, D.; Kalita, P.K.; Sarma, J.K.; Nath, N.M. Quantum confinement induced shift in energy band edges and band gap of a spherical quantum dot. Phys. B Condens. Matter 2018, 530, 208–214. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, T. A quantum dot model for nanoparticles in polymer nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 276–283. [Google Scholar] [CrossRef]
- Bai, X.F.; Zhao, Y.W.; Xin, W.; Yin, H.W. Eerdunchaolu Transition Probability and Frequency of an Electron in an Asymmetric Gaussian Confinement Potential Quantum Dot with Electromagnetic Field. Iran. J. Sci. Technol. Trans. A Sci. 2019, 43, 2027–2034. [Google Scholar] [CrossRef]
- Ranjbar-Navazi, Z.; Omidi, Y.; Eskandani, M.; Davaran, S. Cadmium-free quantum dot-based theranostics. TrAC Trends Anal. Chem. 2019, 118, 386–400. [Google Scholar] [CrossRef]
- Gidwani, B.; Sahu, V.; Shukla, S.S.; Pandey, R.; Joshi, V.; Jain, V.K.; Vyas, A. Quantum dots: Prospectives, toxicity, advances and applications. J. Drug Deliv. Sci. Technol. 2021, 61, 102308. [Google Scholar] [CrossRef]
- Ca, N.X.; Hien, N.T.; Luyen, N.T.; Lien, V.T.K.; Thanh, L.D.; Do, P.V.; Bau, N.Q.; Pham, T.T. Photoluminescence properties of CdTe/CdTeSe/CdSe core/alloyed/shell type-II quantum dots. J. Alloys Compd. 2019, 787, 823–830. [Google Scholar] [CrossRef]
- Rana, M.; Jain, A.; Rani, V.; Chowdhury, P. Glutathione capped core/shell CdSeS/ZnS quantum dots as a medical imaging tool for cancer cells. Inorg. Chem. Commun. 2020, 112, 107723. [Google Scholar] [CrossRef]
- Peng, X.; Schlamp, M.C.; Kadavanich, A.V.; Alivisatos, A.P. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 1997, 119, 7019–7029. [Google Scholar] [CrossRef]
- Smith, A.M.; Mohs, A.M.; Nie, S. Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nat. Nanotechnol. 2009, 4, 56–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adegoke, O.; Seo, M.W.; Kato, T.; Kawahito, S.; Park, E.Y. An ultrasensitive SiO2-encapsulated alloyed CdZnSeS quantum dot-molecular beacon nanobiosensor for norovirus. Biosens. Bioelectron. 2016, 86, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Bailey, R.E.; Nie, S. Alloyed semiconductor quantum dots: Tuning the optical properties without changing the particle size. J. Am. Chem. Soc. 2003, 125, 7100–7106. [Google Scholar] [CrossRef] [PubMed]
- AbouElhamd, A.R.; Al-Sallal, K.A.; Hassan, A. Review of core/shell quantum dots technology integrated into building’s glazing. Energies 2019, 12, 1058. [Google Scholar] [CrossRef] [Green Version]
- Oh, E.; Liu, R.; Nel, A.; Gemill, K.B.; Bilal, M.; Cohen, Y.; Medintz, I.L. Meta-analysis of cellular toxicity for cadmium-containing quantum dots. Nat. Nanotechnol. 2016, 11, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Zeng, S.; Zhang, B.; Swihart, M.T.; Yong, K.T.; Prasad, P.N. New Generation Cadmium-Free Quantum Dots for Biophotonics and Nanomedicine. Chem. Rev. 2016, 116, 12234–12327. [Google Scholar] [CrossRef]
- Yaghini, E.; Turner, H.; Pilling, A.; Naasani, I.; MacRobert, A.J. In vivo biodistribution and toxicology studies of cadmium-free indium-based quantum dot nanoparticles in a rat model. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 2644–2655. [Google Scholar] [CrossRef]
- Bardhan, R.; Grady, N.K.; Cole, J.R.; Joshi, A.; Halas, N.J. Fluorescence enhancement by au nanostructures: Nanoshells and nanorods. ACS Nano 2009, 3, 744–752. [Google Scholar] [CrossRef]
- Joyce, C.; Fothergill, S.M.; Xie, F. Recent advances in gold-based metal enhanced fluorescence platforms for diagnosis and imaging in the near-infrared. Mater. Today Adv. 2020, 7, 100073. [Google Scholar] [CrossRef]
- Bavali, A.; Parvin, P.; Mortazavi, S.Z.; Nourazar, S.S. Laser induced fluorescence spectroscopy of various carbon nanostructures (GO, G and nanodiamond) in Rd6G solution. Biomed. Opt. Express 2015, 6, 1679. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.C.; Zhao, G.; Lu, H.; Dutta, M.; Stroscio, M.A. Quantum-dot-based aptamer beacons for K+ detection. IEEE Sens. J. 2013, 13, 1549–1553. [Google Scholar] [CrossRef]
- Santana, C.P.; Mansur, A.A.P.; Carvalho, S.M.; da Silva-Cunha, A.; Mansur, H.S. Bi-functional quantum dot-polysaccharide-antibody immunoconjugates for bioimaging and killing brain cancer cells in vitro. Mater. Lett. 2019, 252, 333–337. [Google Scholar] [CrossRef]
- Dobhal, G.; Ayupova, D.; Laufersky, G.; Ayed, Z.; Nann, T.; Goreham, R.V. Cadmium-free quantum dots as fluorescent labels for exosomes. Sensors 2018, 18, 3308. [Google Scholar] [CrossRef] [Green Version]
- Nagaraj, S.; Karnes, H.T. Comparison of orthogonal and collinear geometric approaches for design of a laboratory constructed diode laser induced fluorescence detector for capillary electrophoresis. Instrum. Sci. Technol. 2000, 28, 119–129. [Google Scholar] [CrossRef]
- Fluorescence Detector FP-4020/4025. Available online: http://www.jasco.nl/fluorescence-detector/ (accessed on 28 May 2021).
- Dada, O.O. Laser-induced fluorescence detector with a fiber-coupled micro GRIN lens for capillary electrophoresis. Appl. Opt. 2020, 59, 4849. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.L.; Fang, Q.; Zhang, T.; Jin, X.H.; Fang, Z.L. Laser-induced fluorescence detection system for microfluidic chips based on an orthogonal optical arrangement. Anal. Chem. 2006, 78, 3827–3834. [Google Scholar] [CrossRef]
- Lo, L.D. Integrated Laser-Induced Fluorescence Detection for Parallelizable Microfluidic Single Cell Analysis. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 2017. [Google Scholar]
- Pan, J.Z.; Fang, P.; Fang, X.X.; Hu, T.T.; Fang, J.; Fang, Q. A low-cost palmtop high-speed capillary electrophoresis bioanalyzer with laser induced fluorescence detection. Sci. Rep. 2018, 8, 1791. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Lei, J.; Huo, D.; Hou, C.; Yang, P.; Huang, J.; Luo, X. A laser-induced fluorescent detector for pesticide residue detection based on the spectral recognition method. Anal. Methods 2018, 10, 5507–5515. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Q.; Hu, X.M.; Yang, D.F. An LED-induced fluorescence detection system with integrated on-chip lens based on microfluidic chips technology. Photonics Lasers Med. 2013, 2, 51–57. [Google Scholar] [CrossRef]
- Dolan, J.W. How Does It Work? Part V: Fluorescence Detectors. Available online: http://www.lcresources.com/tsbible/34092016.pdf (accessed on 20 September 2021).
- Duca, Z.A.; Speller, N.C.; Cantrell, T.; Stockton, A.M. A modular, easy-to-use microcapillary electrophoresis system with laser-induced fluorescence for quantitative compositional analysis of trace organic molecules. Rev. Sci. Instrum. 2020, 91, 104101. [Google Scholar] [CrossRef]
- Tyndall, D.; Rae, B.R.; Li, D.D.U.; Arlt, J.; Johnston, A.; Richardson, J.A.; Henderson, R.K. A high-throughput time-resolved mini-silicon photomultiplier with embedded fluorescence lifetime estimation in 0.13 μm CMOS. IEEE Trans. Biomed. Circuits Syst. 2012, 6, 562–570. [Google Scholar] [CrossRef]
- Dorosz, P.; Baszczyk, M.; Kucewicz, W. The study of single cells in a system based on silicon photomultipliers. In Proceedings of the 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC), Sydney, NSW, Australia, 10–17 November 2018; pp. 1–2. [Google Scholar] [CrossRef]
- Sun, X.; Krainak, M.A.; Hasselbrack, W.E.; La Rue, R.A.; Sykora, D.F. Single-photon counting at 950-1300 nm: Using InGaAsP photocathode-GaAs avalanche diode hybrid photomultiplier tubes. J. Mod. Opt. 2009, 56, 284–295. [Google Scholar] [CrossRef]
- Concepts in Digital Imaging: Technology Photomultiplier Tubes. Available online: http://hamamatsu.magnet.fsu.edu/articles/photomultipliers.html (accessed on 2 June 2021).
- Lubsandorzhiev, B.K. On the history of photomultiplier tube invention. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2006, 567, 236–238. [Google Scholar] [CrossRef] [Green Version]
- Saveliev, V. The recent development and study of silicon photomultiplier. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2004, 535, 528–532. [Google Scholar] [CrossRef]
- The Inventor of the Semiconductor Laser, Super Luminosity LED and Optical Fiber Advocates Effective Energy Usage. Available online: https://books.google.com.hk/books?id=5MRsECGrRXMC&pg=PA7&lpg=PA7&dq=The+inventor+of+the+semiconductor+laser,+super+luminosity+LED+and+optical+fiber+advocates+effective+energy+usage&source=bl&ots=NoonPzXYAp&sig=ACfU3U0aGOadPLJXxZ0GLuuf-Q7Q8TZWpA&hl=zh-CN&sa=X&ved=2ahUKEwjqxd3Eip7zAhWULqYKHXSEDZ0Q6AF6BAgCEAM#v=onepage&q=The%20inventor%20of%20the%20semiconductor%20laser%2C%20super%20luminosity%20LED%20and%20optical%20fiber%20advocates%20effective%20energy%20usage&f=false (accessed on 20 September 2021).
- Lawrence, W.G.; Varadi, G.; Entine, G.; Podniesinski, E.; Wallace, P.K. A comparison of avalanche photodiode and photomultiplier tube detectors for flow cytometry. In Proceedings of the Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues VI, San Jose, CA, USA, 19–24 January 2008; Volume 6859, p. 68590M. [Google Scholar] [CrossRef]
- Avalanche Photodiodes. Available online: https://www.rp-photonics.com/avalanche_photodiodes.html#:~:text=Typicalapplicationsofavalanchephotodiodes,timedomainreflectometers(OTDR) (accessed on 3 June 2021).
- Golovin, V.; Saveliev, V. Novel type of avalanche photodetector with Geiger mode operation. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2004, 518, 560–564. [Google Scholar] [CrossRef]
- Ruch, M.L.; Sivels, C.B.; Czyz, S.A.; Flaska, M.; Pozzi, S.A. Comparison between silicon photomultipliers and photomultiplier tubes for pulse shape discrimination with stilbene. In Proceedings of the 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Seattle, WA, USA, 8–15 November 2014; pp. 6–8. [Google Scholar] [CrossRef]
- Piatek, S. What is an SiPM and How Does It Work? Available online: https://hub.hamamatsu.com/jp/en/technical-note/how-sipm-works/index.html#:~:text=ASiPMmostresemblesa,andissmallerinsize (accessed on 2 June 2021).
- Yang, X.; Yan, W.; Bai, H.; Lv, H.; Liu, Z. A scanning laser induced fluorescence detection system for capillary electrophoresis microchip based on optical fiber. Optik 2012, 123, 2126–2130. [Google Scholar] [CrossRef]
- Product Overview. Available online: https://ibsen.com/products/ (accessed on 30 May 2021).
- Silicon Avalanche Photodiodes C30902 Series High Speed APDs for Analytical and Biomedical Lowest Light Detection Applications; Perkin Elmer: Waltham, MA, USA.
- Wu, Q.; Wang, L.; Zu, L. A LabVIEW-Based Virtual Instrument System for Laser-Induced Fluorescence Spectroscopy. J. Autom. Methods Manag. Chem. 2011, 2011, 1–7. [Google Scholar] [CrossRef] [Green Version]
- What is Laser Induced Fluorescence? Available online: https://www.edinst.com/blog/what-is-laser-induced-fluorescence/ (accessed on 14 June 2021).
- Larson, A.P.; Ahlberg, H.; Folestad, S. Semiconductor laser-induced fluorescence detection in picoliter volume flow cells. Appl. Opt. 1993, 32, 794. [Google Scholar] [CrossRef]
- Coulter, B. PA 800 Plus Pharmaceutical Analysis System. 2009; pp. 1–170. Available online: https://sciex.com/products/capillary-electrophoresis/pa-800-plus-pharmaceutical-analysis-system (accessed on 30 May 2021).
- Applications of Planar Laser Induced Fluorescence. Available online: https://andor.oxinst.com/learning/view/article/applications-of-planar-laser-induced-fluorescence#:~:text=PlanarLaser-InducedFluorescence%2Cor,capturedonadigitalcamera. (accessed on 19 September 2021).
- Measurement Principles of Planar-LIF. Available online: https://www.dantecdynamics.com/solutions-applications/solutions/fluid-mechanics/laser-induced-fluorescence/measurement-principles-of-planar-lif/ (accessed on 27 June 2021).
- Zetalif Laser. Available online: https://www.adelis-tech.com/product/zetalif-laser/ (accessed on 31 May 2021).
- Capillary Electrophoresis with Laser Induced Fluorescence Detection (LIF). Available online: https://www.agilent.com/en/products/capillary-electrophoresis-ce-ms/ce-ce-ms-systems/7100-ce-system/ce-lif (accessed on 31 May 2021).
- Schröder, D.; Schröder, M.; Werner, E.; Meusel, J.; Lorenzen, D.; Hennig, P. Improved laser diode for high power and high temperature applications. In Proceedings of the High-Power Diode Laser Technology and Applications VII, San Jose, CA, USA, 24–29 January 2009; Volume 7198. [Google Scholar] [CrossRef]
- A History of the Laser: 1960–2019. Available online: https://www.photonics.com/Articles/A_History_of_the_Laser_1960_-_2019/a42279 (accessed on 4 June 2021).
- Slusher, R.E. Laser technology. Rev. Mod. Phys. 1999, 71, S471–S479. [Google Scholar] [CrossRef]
- Warren-smith, S.C.; Sinchenko, E.; Stoddart, P.R.; Monro, T.M. Core Microstructured Optical Fiber. IEEE Photonics Technol. Lett. 2010, 22, 1385–1387. [Google Scholar] [CrossRef]
- Flusberg, B.A.; Cocker, E.D.; Piyawattanametha, W.; Jung, J.C.; Eunice, L.; Cheung, M.; Schnitzer, M.J. Fiber optic imaging. Nat. Methods 2010, 2, 941–950. [Google Scholar] [CrossRef]
- Perales, M.; Wu, C.-L.; Yang, M. Merits of a hybrid fluorescent fiber sensor and power over fiber partial discharge detection solution. In Proceedings of the Fiber Optic Sensors and Applications XV, Orlando, FL, USA, 15–19 April 2018; Volume 10654, p. 5. [Google Scholar] [CrossRef]
- Emory, J.M.; Peng, Z.; Young, B.; Hupert, M.L.; Rousselet, A.; Patterson, D.; Ellison, B.; Soper, S.A. Design and development of a field-deployable single-molecule detector (SMD) for the analysis of molecular markers. Analyst 2012, 137, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Sabri, N.; Aljunid, S.A.; Salim, M.S.; Fouad, S. Fiber optic sensors: Short review and applications. Springer Ser. Mater. Sci. 2015, 204, 299–311. [Google Scholar] [CrossRef]
- Zhao, Y.; Hu, X.G.; Hu, S.; Peng, Y. Applications of fiber-optic biochemical sensor in microfluidic chips: A review. Biosens. Bioelectron. 2020, 166, 112447. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, C.; Chen, Y. Development and performance evaluation of portable 405 nm laser-induced fluorescence detector. In Proceedings of the Optics in Health Care and Biomedical Optics X, Online, 11–16 October 2020; Volume 11553, p. 67. [Google Scholar] [CrossRef]
- Skinner, C.D. A PDMS sheath flow cuvette for high-sensitivity LIF measurements in CE. Electrophoresis 2009, 30, 372–378. [Google Scholar] [CrossRef]
- Maheedhar, K.; Vidyasagar, M.; Vadhiraja, B.; Fernandes, D.J. Journal of Cancer and Treatment Protein Profile Studies of Cervical Tissue Homogenates Using HPLC-LIF. Int. J. Cancer Treat. 2018, 1, 47–52. [Google Scholar]
- Nguyen, B.T.; Kang, M.J. Application of capillary electrophoresis with laser-induced fluorescence to immunoassays and enzyme assays. Molecules 2019, 24, 1977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamei, T. Laser-induced fluorescence detection modules for point-of-care microfluidic biochemical analysis. Procedia Eng. 2011, 25, 709–712. [Google Scholar] [CrossRef]
- Xiao, H.; Li, X.; Zou, H.; Yang, L.; Wang, Y.; Wang, H.; Le, X.C.; Zou, H. CE-LIF coupled with flow cytometry for high-throughput quantitation of fluorophores in single intact cells. Electrophoresis 2006, 27, 3452–3459. [Google Scholar] [CrossRef] [PubMed]
- Hawthorne, S.B.; St Germain, R.W.; Azzolina, N.A. Laser-induced fluorescence coupled with solid-phase microextraction for in situ determination of PAHs in sediment pore water. Environ. Sci. Technol. 2008, 42, 8021–8026. [Google Scholar] [CrossRef] [PubMed]
- Patil, A.; Choudhari, K.S.; Prabhu, V.; Unnikrishnan, V.K.; Bhat, S.; Pai, K.M.; Kartha, V.B.; Santhosh, C. Highly Sensitive High Performance Liquid Chromatography-Laser Induced Fluorescence for Proteomics Applications. ISRN Spectrosc. 2012, 2012, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Dada, O.O.; Huge, B.J.; Dovichi, N.J. Simplified sheath flow cuvette design for ultrasensitive laser induced fluorescence detection in capillary electrophoresis. Analyst 2012, 137, 3099–3101. [Google Scholar] [CrossRef] [Green Version]
- EPA Office of Research and Development. Site Characterization and Analysis Penetrometer System (SCAPS); EPA: Washington, DC, USA, 1995. [Google Scholar]
- Davis, W.M.; Cespedes, E.R.; Lee, L.T.; Powell, J.F.; Goodson, R.A. Rapid delineation of subsurface petroleum contamination using the site characterization and analysis penetrometer system. Environ. Geol. 1997, 29, 228–237. [Google Scholar] [CrossRef]
- Laser-Induced Fluorescence (LIF). Available online: http://www.cpeo.org/techtree/ttdescript/lasinfl.htm (accessed on 27 June 2021).
- Palombi, L.; Raimondi, V. A Compact LIF Spectrometer for in-Field Operation in Polar Environments. Sensors 2021, 21, 1729. [Google Scholar] [CrossRef] [PubMed]
- Laserglow Technologies. Available online: https://www.laserglow.com (accessed on 27 June 2021).
- Fu, X.; Li, G.; Dong, D. Improving the Detection Sensitivity for Laser-Induced Breakdown Spectroscopy: A Review. Front. Phys. 2020, 8, 1–11. [Google Scholar] [CrossRef]
- Goueguel, C.; Laville, S.; Loudyi, H.; Chaker, M.; Sabsabi, M.; Vidal, F. Detection of lead in brass by laser-induced breakdown spectroscopy combined with laser-induced fluorescence. In Proceedings of the Photonics North, Montréal, QC, Canada, 2–4 June 2008; Volume 7099, p. 709927. [Google Scholar] [CrossRef] [Green Version]
- Hilbk-Kortenbruck, F.; Noll, R.; Wintjens, P.; Falk, H.; Becker, C. Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence. Spectrochim. Acta Part B At. Spectrosc. 2001, 56, 933–945. [Google Scholar] [CrossRef]
- Nagli, L.; Gaft, M. Combining laser-induced breakdown spectroscopy with molecular laser-induced fluorescence. Appl. Spectrosc. 2016, 70, 585–592. [Google Scholar] [CrossRef]
- Tang, Z.; Zhou, R.; Hao, Z.; Ma, S.; Zhang, W.; Liu, K.; Li, X.; Zeng, X.; Lu, Y. Micro-destructive analysis with high sensitivity using double-pulse resonant laser-induced breakdown spectroscopy. J. Anal. At. Spectrom. 2019, 34, 1198–1204. [Google Scholar] [CrossRef]
- Zhang, D.; Gao, Q.; Li, B.; Liu, J.; Li, Z. Ammonia measurements with femtosecond laser-induced plasma spectroscopy. Appl. Opt. 2019, 58, 1210. [Google Scholar] [CrossRef]
- Fontana, F.F.; Tassios, S.; Stromberg, J.; Tiddy, C.; van der Hoek, B.; Uvarova, Y.A. Integrated laser-induced breakdown spectroscopy (LIBS) and multivariate wavelet tessellation: A new, rapid approach for lithogeochemical analysis and interpretation. Minerals 2021, 11, 312. [Google Scholar] [CrossRef]
- Li, J.; Hao, Z.; Zhao, N.; Zhou, R.; Yi, R.; Tang, S.; Guo, L.; Li, X.; Zeng, X.; Lu, Y. Spatially selective excitation in laser-induced breakdown spectroscopy combined with laser-induced fluorescence. Opt. Express 2017, 25, 4945. [Google Scholar] [CrossRef]
- Li, J.; Guo, L.; Zhao, N.; Yang, X.; Yi, R.; Li, K.; Zeng, Q.; Li, X.; Zeng, X.; Lu, Y. Determination of cobalt in low-alloy steels using laser-induced breakdown spectroscopy combined with laser-induced fluorescence. Talanta 2016, 151, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhang, W.; Tang, Z.; Zhou, R.; Yan, J.; Zhu, C.; Liu, K.; Li, X.; Zeng, X. Determination of uranium in ores using laser-induced breakdown spectroscopy combined with laser-induced fluorescence. J. Anal. At. Spectrom. 2020, 35, 626–631. [Google Scholar] [CrossRef]
- Yi, R.; Li, J.; Yang, X.; Zhou, R.; Yu, H.; Hao, Z.; Guo, L.; Li, X.; Zeng, X.; Lu, Y. Spectral Interference Elimination in Soil Analysis Using Laser-Induced Breakdown Spectroscopy Assisted by Laser-Induced Fluorescence. Anal. Chem. 2017, 89, 2334–2337. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhu, Z.; Zhou, R.; Zhao, N.; Yi, R.; Yang, X.; Li, X.; Guo, L.; Zeng, X.; Lu, Y. Determination of Carbon Content in Steels Using Laser-Induced Breakdown Spectroscopy Assisted with Laser-Induced Radical Fluorescence. Anal. Chem. 2017, 89, 8134–8139. [Google Scholar] [CrossRef]
- Gravel, J.-F.; Boudreau, D. Laser-Based Detection of Atmospheric Halocarbons. Rev. Fluoresc. 2006 2007, 421–443. [Google Scholar] [CrossRef]
- Hitachi Vulcan Handheld Metal Analyzer. Available online: https://verichek.net/product/hitachi-vulcan-handheld-metal-analyzer (accessed on 27 June 2021).
- Rehse, S.J. A review of the use of laser-induced breakdown spectroscopy for bacterial classification, quantification, and identification. Spectrochim. Acta Part B At. Spectrosc. 2019, 154, 50–69. [Google Scholar] [CrossRef]
- Hellmér, M.; Paxéus, N.; Magnius, L.; Enache, L.; Arnholm, B.; Johansson, A.; Bergström, T.; Norder, H. Detection of pathogenic viruses in sewage provided early warnings of hepatitis A virus and norovirus outbreaks. Appl. Environ. Microbiol. 2014, 80, 6771–6781. [Google Scholar] [CrossRef] [Green Version]
- Corpuz, M.V.A.; Buonerba, A.; Vigliotta, G.; Zarra, T.; Ballesteros, F.; Campiglia, P.; Belgiorno, V.; Korshin, G.; Naddeo, V. Viruses in wastewater: Occurrence, abundance and detection methods. Sci. Total Environ. 2020, 745, 140910. [Google Scholar] [CrossRef]
- Brahim Belhaouari, D.; Wurtz, N.; Grimaldier, C.; Lacoste, A.; Pires de Souza, G.A.; Penant, G.; Hannat, S.; Baudoin, J.P.; La Scola, B. Microscopic observation of sars-like particles in rt-qpcr sars-cov-2 positive sewage samples. Pathogens 2021, 10, 516. [Google Scholar] [CrossRef]
- Ottawapublichealth.ca Measuring SARS-CoV-2 RNA (or Measuring COVID-19 Indicators) in Wastewater as an Early Indicator to Help Determine COVID-19 Activity in the Community. Available online: https://www.ottawapublichealth.ca/en/reports-research-and-statistics/Wastewater_COVID-19_Surveillance.aspx (accessed on 30 June 2021).
- Coker, V.S. Nanoscience: Volume 1: Nanostructures through Chemistry; O’Brien, P., Ed.; SPR—Nanoscience; The Royal Society of Chemistry: London, UK, 2012; ISBN 978-1-84973-435-6. [Google Scholar]
- Friedman, A.; Claypool, S.; Liu, R. The Smart Targeting of Nanoparticles. Curr. Pharm. Des. 2013, 19, 6315–6329. [Google Scholar] [CrossRef] [Green Version]
- Razzaque, S.; Hussain, S.Z.; Hussain, I.; Tan, B. Design and utility of metal/metal oxide nanoparticles mediated by thioether end-functionalized polymeric ligands. Polymers 2016, 8, 156. [Google Scholar] [CrossRef] [Green Version]
- Taman, R.; Ossman, M.E.; Mansour, M.S.; Farag, H.A. Metal Oxide Nano-particles as an Adsorbent for Removal of Heavy Metals. J. Adv. Chem. Eng. 2015, 5, 1–8. [Google Scholar] [CrossRef]
- Behzadi, S.; Serpooshan, V.; Tao, W.; Hamaly, M.A.; Mahmoud, Y.; Dreaden, E.C.; Brown, D.; Alkilany, A.M.; Omid, C.; Mahmoudi, M. Cellular Uptake of Nanoparticles: Journey Inside the Cell. Chem. Soc. Rev. 2018, 46, 4218–4244. [Google Scholar] [CrossRef]
- Nikolova, M.P.; Chavali, M.S. Metal oxide nanoparticles as biomedical materials. Biomimetics 2020, 5, 27. [Google Scholar] [CrossRef]
- De, A.; Ghosh, S.; Chakrabarti, M.; Ghosh, I.; Banerjee, R.; Mukherjee, A. Effect of low-dose exposure of aluminium oxide nanoparticles in Swiss albino mice: Histopathological changes and oxidative damage. Toxicol. Ind. Health 2020, 36, 567–579. [Google Scholar] [CrossRef]
- Bratovcic, A. Synthesis, Characterization, applications, and toxicity of lead oxide nanoparticles. In Lead Chemistry; IntechOpen: London, UK, 2020. [Google Scholar]
- Saxena, P.; Sangela, V. Harish Toxicity evaluation of iron oxide nanoparticles and accumulation by microalgae Coelastrella terrestris. Environ. Sci. Pollut. Res. 2020, 27, 19650–19660. [Google Scholar] [CrossRef] [PubMed]
- Kehrer, J.P. Free Radicals as Mediators of Tissue Injury and Disease. Crit. Rev. Toxicol. 1993, 23, 21–48. [Google Scholar] [CrossRef]
- Slavin, Y.N.; Asnis, J.; Häfeli, U.O.; Bach, H. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 2017, 15, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Sengul, A.B.; Asmatulu, E. Toxicity of metal and metal oxide nanoparticles: A review. Environ. Chem. Lett. 2020, 18, 1659–1683. [Google Scholar] [CrossRef]
- Pink, M.; Verma, N.; Schmitz-Spanke, S. Benchmark dose analyses of toxic endpoints in lung cells provide sensitivity and toxicity ranking across metal oxide nanoparticles and give insights into the mode of action. Toxicol. Lett. 2020, 331, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Ramchandran, V.; Gernand, J.M. Examining the in vivo pulmonary toxicity of engineered metal oxide nanomaterials using a genetic algorithm-based dose-response-recovery clustering model. Comput. Toxicol. 2020, 13, 100113. [Google Scholar] [CrossRef]
- Vakili-Ghartavol, R.; Momtazi-Borojeni, A.A.; Vakili-Ghartavol, Z.; Aiyelabegan, H.T.; Jaafari, M.R.; Rezayat, S.M.; Arbabi Bidgoli, S. Toxicity assessment of superparamagnetic iron oxide nanoparticles in different tissues. Artif. Cells Nanomed. Biotechnol. 2020, 48, 443–451. [Google Scholar] [CrossRef]
- El Bialy, B.E.; Hamouda, R.A.; Eldaim, M.A.A.; El Ballal, S.S.; Heikal, H.S.; Khalifa, H.K.; Hozzein, W.N. Comparative toxicological effects of biologically and chemically synthesized copper oxide nanoparticles on mice. Int. J. Nanomed. 2020, 15, 3827–3842. [Google Scholar] [CrossRef]
- Halder, A.K.; Melo, A.; Cordeiro, M.N.D.S. A unified in silico model based on perturbation theory for assessing the genotoxicity of metal oxide nanoparticles. Chemosphere 2020, 244, 125489. [Google Scholar] [CrossRef]
- Zhang, H.; Shi, J.; Su, Y.; Li, W.; Wilkinson, K.J.; Xie, B. Acute toxicity evaluation of nanoparticles mixtures using luminescent bacteria. Environ. Monit. Assess. 2020, 192, 1–8. [Google Scholar] [CrossRef]
- Długosz, O.; Szostak, K.; Staroń, A.; Pulit-Prociak, J.; Banach, M. Methods for reducing the toxicity of metal and metal oxide NPs as biomedicine. Materials 2020, 13, 279. [Google Scholar] [CrossRef] [Green Version]
- Sudhakaran, S.; Athira, S.S.; Varma, H.K.; Mohanan, P.V. Determination of the bioavailability of zinc oxide nanoparticles using ICP-AES and associated toxicity. Colloids Surf. B Biointerfaces 2020, 188, 110767. [Google Scholar] [CrossRef]
- Abdussalam-Mohammed, W. Comparison of Chemical and Biological Properties of Metal Nanoparticles (Au, Ag), with Metal Oxide Nanoparticles (ZnO-NPs) and their Applications. Adv. J. Chem. A 2020, 3, 192–210. [Google Scholar] [CrossRef]
- Garcia-Fernandez, J.; Turiel, D.; Bettmer, J.; Jakubowski, N.; Panne, U.; García, L.R.; Llopis, J.; González, C.S.; Montes-Bayón, M. In vitro and in situ experiments to evaluate the biodistribution and cellular toxicity of ultrasmall iron oxide nanoparticles potentially used as oral iron supplements. Nanotoxicology 2020, 14, 388–403. [Google Scholar] [CrossRef]
- Oliveira, E.M.N.; Selli, G.I.; von Schmude, A.; Miguel, C.; Laurent, S.; Vianna, M.R.M.; Papaléo, R.M. Developmental toxicity of iron oxide nanoparticles with different coatings in zebrafish larvae. J. Nanopart. Res. 2020, 22, 1–16. [Google Scholar] [CrossRef]
- Feng, Y.; Chang, Y.; Xu, K.; Zheng, R.; Wu, X.; Cheng, Y.; Zhang, H. Safety-by-Design of Metal Oxide Nanoparticles Based on the Regulation of their Energy Edges. Small 2020, 16, 1–10. [Google Scholar] [CrossRef]
- Mileyeva-Biebesheimer, O. An Investigation into Metal Oxide Nanoparticle Toxicity to Bacteria in Environmental Systems Using Fluorescence Based Assays; The University of Toledo: Toledo, OH, USA, 2011. [Google Scholar]
- Cao, M.; Cao, C.; Liu, M.; Wang, P.; Zhu, C. Selective fluorometry of cytochrome c using glutathione-capped CdTe quantum dots in weakly basic medium. Microchim. Acta 2009, 165, 341–346. [Google Scholar] [CrossRef]
- Alsudir, S.; Lai, E.P.C. Selective detection of ZnO nanoparticles in aqueous suspension by capillary electrophoresis analysis using dithiothreitol and L-cysteine adsorbates. Talanta 2017, 169, 115–122. [Google Scholar] [CrossRef]
- Togashi, D.M.; Ryder, A.G.; McMahon, D.; Dunne, P.; McManus, J. Fluorescence study of bovine serum albumin and Ti and Sn oxide nanoparticles interactions. In Proceedings of the Diagnostic Optical Spectroscopy in Biomedicine IV, Munich, Germany, 17–21 June 2007. [Google Scholar] [CrossRef]
- Cheng, Y.H.; Lai, C.M.; Lin, K.S.; Wang, S.S.S. Effects of metal oxide nanoparticles on the structure and activity of lysozyme. Colloids Surf. B Biointerfaces 2017, 151, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Abraham, S. Spectroscopic Studies of Interaction of Protein with Cerium Oxide Nanoparticles. Asian J. Chem. 2018, 30, 1269–1272. [Google Scholar] [CrossRef]
- Wang, L.; Huang, Z.; Liu, Y.; Wu, J.; Liu, J. Fluorescent DNA Probing Nanoscale MnO2: Adsorption, Dissolution by Thiol, and Nanozyme Activity. Langmuir 2018, 34, 3094–3101. [Google Scholar] [CrossRef]
- Liu, B.; Ma, L.; Huang, Z.; Hu, H.; Wu, P.; Liu, J. Janus DNA orthogonal adsorption of graphene oxide and metal oxide nanoparticles enabling stable sensing in serum. Mater. Horiz. 2018, 5, 65–69. [Google Scholar] [CrossRef]
- Liu, B.; Liu, J. Comprehensive Screen of Metal Oxide Nanoparticles for DNA Adsorption, Fluorescence Quenching, and Anion Discrimination. ACS Appl. Mater. Interfaces 2015, 7, 24833–24838. [Google Scholar] [CrossRef]
- Ruedas-Rama, M.J.; Walters, J.D.; Orte, A.; Hall, E.A.H. Fluorescent nanoparticles for intracellular sensing: A review. Anal. Chim. Acta 2012, 751, 1–23. [Google Scholar] [CrossRef]
- Wolfbeis, O.S. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev. 2015, 44, 4743–4768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basuki, J.S.; Duong, H.T.T.; Macmillan, A.; Erlich, R.B.; Esser, L.; Akerfeldt, M.C.; Whan, R.M.; Kavallaris, M.; Boyer, C.; Davis, T.P. Using fluorescence lifetime imaging microscopy to monitor theranostic nanoparticle uptake and intracellular doxorubicin release. ACS Nano 2013, 7, 10175–10189. [Google Scholar] [CrossRef] [PubMed]
- Boreham, A.; Brodwolf, R.; Walker, K.; Haag, R.; Alexiev, U. Time-resolved fluorescence spectroscopy and fluorescence lifetime imaging microscopy for characterization of Dendritic polymer nanoparticles and applications in Nanomedicine. Molecules 2017, 22, 17. [Google Scholar] [CrossRef] [Green Version]
- Dutta, R.K.; Pandey, A.C. Fluorescent Magnetic Gadolinium Oxide Nanoparticles for Biomedical Applications. Nanosci. Technol. 2015, 2, 1–6. [Google Scholar]
- Wei, H.; Cleary, Z.; Park, S.; Senevirathne, K.; Eilers, H. Fluorescence lifetime modification in Eu:Lu2O3 nanoparticles in the presence of silver nanoparticles. J. Alloys Compd. 2010, 500, 96–101. [Google Scholar] [CrossRef] [Green Version]
- Acikgoz, S.; Ulusu, Y.; Akin, S.; Sonmezoglu, S.; Gokce, I.; Inci, M.N. Photoinduced electron transfer mechanism between green fluorescent protein molecules and metal oxide nanoparticles. Ceram. Int. 2014, 40, 2943–2951. [Google Scholar] [CrossRef]
- Scalia, G.; Scheffold, F. Lifetime of fluorescent dye molecules in dense aqueous suspensions of polystyrene nanoparticles. Opt. Express 2015, 23, 29342. [Google Scholar] [CrossRef] [Green Version]
- Dryza, V.; Bieske, E.J. Does the triphenylamine-based D35 dye sensitizer form aggregates on metal-oxide surfaces? J. Photochem. Photobiol. A Chem. 2015, 302, 35–41. [Google Scholar] [CrossRef]
- Hahm, J.I. Zinc oxide nanomaterials for biomedical fluorescence detection. J. Nanosci. Nanotechnol. 2014, 14, 475–486. [Google Scholar] [CrossRef] [Green Version]
- Venkatesan, G.; Vijayaraghavan, R.; Chakravarthula, S.N.; Sathiyan, G. Fluorescent zinc oxide nanoparticles of Boswellia ovalifoliolata for selective detection of picric acid. Front. Res. Today 2019, 2, 2002. [Google Scholar] [CrossRef]
- Kokot, B.; Kokot, H.; Umek, P.; van Midden, K.P.; Pajk, S.; Gravas, M.; Eggeling, C.; Koklic, T.; Urbancic, I.; Strancar, J. Controlled Fluorescent Labelling of Metal Oxide Nanoparticles for Artefact-free Live Cell Microscopy. bioRxiv 2021. [Google Scholar] [CrossRef]
- Zhou, X.; Pu, H.; Sun, D.W. DNA functionalized metal and metal oxide nanoparticles: Principles and recent advances in food safety detection. Crit. Rev. Food Sci. Nutr. 2021, 61, 2277–2296. [Google Scholar] [CrossRef]
- Velu, R.; De Rosa, M.C. Lateral flow assays for Ochratoxin A using metal nanoparticles: Comparison of “adsorption-desorption” approach to linkage inversion assembled nano-aptasensors (LIANA). Analyst 2018, 143, 4566–4574. [Google Scholar] [CrossRef] [PubMed]
- Honda, R.J.; Keene, V.; Daniels, L.; Walker, S.L. Removal of TiO 2 Nanoparticles During Primary Water Treatment: Role of Coagulant Type, Dose, and Nanoparticle Concentration. Environ. Eng. Sci. 2014, 31, 127–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prikryl, J.; Foret, F. Fluorescence detector for capillary separations fabricated by 3D printing. Anal. Chem. 2014, 86, 11951–11956. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taylor, A.T.; Lai, E.P.C. Current State of Laser-Induced Fluorescence Spectroscopy for Designing Biochemical Sensors. Chemosensors 2021, 9, 275. https://doi.org/10.3390/chemosensors9100275
Taylor AT, Lai EPC. Current State of Laser-Induced Fluorescence Spectroscopy for Designing Biochemical Sensors. Chemosensors. 2021; 9(10):275. https://doi.org/10.3390/chemosensors9100275
Chicago/Turabian StyleTaylor, Adam Thomas, and Edward P. C. Lai. 2021. "Current State of Laser-Induced Fluorescence Spectroscopy for Designing Biochemical Sensors" Chemosensors 9, no. 10: 275. https://doi.org/10.3390/chemosensors9100275
APA StyleTaylor, A. T., & Lai, E. P. C. (2021). Current State of Laser-Induced Fluorescence Spectroscopy for Designing Biochemical Sensors. Chemosensors, 9(10), 275. https://doi.org/10.3390/chemosensors9100275