Preparation and Characterization of Au/NiPc/Anti-p53/BSA Electrode for Application as a p53 Antigen Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Apparatus and Reagents
2.2. Film Fabrication Process
2.2.1. Purification of NiPc
2.2.2. Preparation of Au/NiPc Electrode
2.3. Construction of the Electrochemical Sensor
2.4. Detection of p53 Concentrations
2.5. Specificity Test of p53 by Au/NiPc/anti-p53(100 ng/mL)/BSA Electrode
3. Results and Discussion
3.1. Material Characterization
3.1.1. Ultraviolet-Visible and Near-Infrared (UV-Vis Near IR) Analysis
3.1.2. Fourier-Transform Infrared Spectroscopy Analysis
3.2. Optimal Conditions for Electrode Preparation
3.2.1. NiPc Concentration for the Film Coating
3.2.2. Optimal Conditions of BSA
3.3. Electrochemical Sensing
3.4. Specificity Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 23 November 2020).
- May, P.; May, E. Twenty years of p53 research: Structural and functional aspects of the p53 protein. Oncogene 1999, 18, 7621–7636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lane, D.P.; Crawford, L.V. T antigen is bound to a host protein in SY40-transformed cells. Nature 1979, 278, 261–263. [Google Scholar] [CrossRef] [PubMed]
- Takuro, K.; Tsukinoki, K.; Yoshinori, J.; Mikio, K.; Yoshihisa, W. Association between p53 Protein expression and chemosensitivity in pretreatment biopsy specimens of oral squamous cell carcinoma. Oral Med. Pathol. 2004, 9, 149–154. [Google Scholar] [CrossRef]
- Moulder, D.E.; Hatoum, D.; Tay, E.; Lin, Y.; McGowan, E.M. The roles of p53 in mitochondrial dynamics and cancer metabolism: The pendulum between survival and death in breast cancer? Cancers 2018, 10, 189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giaccia, A.J.; Kastan, M.B. The complexity of p53 modulation: Emerging patterns from divergent signals. Genes Dev. 1998, 12, 2973–2983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.L.; Zhou, J.; Chen, Z.R.; Chng, W.J. P53 mutations in colorectal cancer- Molecular pathogenesis and pharmacological reactivation. World J. Gastroenterol. 2015, 21, 84–93. [Google Scholar] [CrossRef]
- Chappell, W.H.; Lehmann, B.D.; Terrian, D.M.; Abrams, S.L.; Steelman, L.S.; McCubrey, J.A. p53 expression controls prostate cancer sensitivity to chemotherapy and the MDM2 inhibitor Nutlin-3. Cell Cycle 2012, 11, 4579–4588. [Google Scholar] [CrossRef] [Green Version]
- Hashmi, A.A.; Hussain, Z.F.; Hashmi, S.K.; Irfan, M.; Khan, E.Y.; Faridi, N.; Khan, A.; Edhi, M.M. Immunohistochemical over expression of p53 in head and neck Squamous cell carcinoma: Clinical and prognostic significance. BMC Res. Notes 2018, 11, 433–437. [Google Scholar] [CrossRef] [Green Version]
- Maritschnegg, E.; Heinzl, N.; Wilson, S.; Deycmar, S.; Niebuhr, M.; Klameth, L.; Holzer, B.; Koziel, K.; Concin, N.; Zeillinger, R. Polymer-Ligand-Based ELISA for Robust, High-Throughput, Quantitative Detection of p53 Aggregates. Anal. Chem. 2018, 90, 13273–13279. [Google Scholar] [CrossRef]
- Wang, H.; Li, M.; Zheng, Y.; Hu, T.; Chai, Y.; Yuan, R. An ultrasensitive photoelectrochemical biosensor based on [Ru(dcbpy.2dppz]2+/Rose Bengal dyes co-sensitized fullerene for DNA detection. Biosens. Bioelectron 2018, 120, 71–76. [Google Scholar] [CrossRef]
- Zhao, W.; Li, H.; Tang, Y.; Liu, M.; Wang, S.; Yu, R. Fluorometric determination of the p53 cancer gene using strand displacement amplification on gold nanoparticles. Microchim. Acta 2019, 186, 517. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Ma, Z. “Off-on” signal amplification strategy amperometric immunosensor for ultrasensitive detection of tumour marker. Biosens. Bioelectron. 2019, 132, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Li, Z.; Wang, G. A novel signal amplification strategy electrochemical immunosensor for ultra-sensitive determination of p53 protein. Bioelectrochemistry 2020, 137, 107647. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.; Xing, D.; Tan, S.; Chen, Q. Rapid and sensitive immunomagnetic-electrochemiluminescent detection of p53 antibodies in human serum. J. Immunol. Methods 2004, 288, 47–54. [Google Scholar] [CrossRef]
- Pedrero, M.; de Villena, F.J.M.; Muñoz-San Martín, C.; Campuzano, S.; Garranzo-Asensio, M.; Barderas, R.; Pingarrón, J.M. Disposable Amperometric Immunosensor for the Determination of Human P53 Protein in Cell Lysates Using Magnetic Micro-Carriers. Biosensors 2016, 6, 56. [Google Scholar] [CrossRef] [Green Version]
- Giannetto, M.; Bianchi, M.V.; Mattarozzi, M.; Careri, M. Competitive amperometric immunosensor for determination of p53 protein in urine with carbon nanotubes/gold nanoparticles screen-printed electrodes: A potential rapid and noninvasive screening tool for early diagnosis of urinary tract carcinoma. Anal. Chim. Acta 2017, 991, 133–141. [Google Scholar] [CrossRef]
- Xu, H.; Xiao, J.; Yan, L.; Zhu, L.; Liu, B. An electrochemical sensor for selective detection of dopamine based on nickel tetrasulfonated phthalocyanine functionalized nitrogen-doped graphene nanocomposites. J. Electroanal. Chem. 2016, 779, 92–98. [Google Scholar] [CrossRef]
- Haider, M.; Zhen, C.; Wu, T.; Liu, G.; Cheng, H.-M. Boosting efficiency and stability of perovskite solar cells with nickel phthalocyanine as a low-cost hole transporting layer material. J. Mater. Sci. Technol. 2018, 34, 1474–1480. [Google Scholar] [CrossRef]
- Ho, K.-C.; Tsou, Y.-H. Chemiresistor-type NO gas sensor based on nickel phthalocyanine thin films. Sens. Actuators B Chem. 2001, 77, 253–259. [Google Scholar] [CrossRef]
- Furini, L.N.; Martin, C.S.; Camacho, S.A.; Rubira, R.J.G.; Fernandes, J.D.; Silva, E.A.; Gomes, T.C.; Stunges, G.M.; Constantino, C.J.L.; Alessio, P. Electrochemical properties of nickel phthalocyanine: The effect of thin film morphology tuned by deposition techniques. Thin Solid Film. 2020, 699, 137897–137906. [Google Scholar] [CrossRef]
- Rice, W.R. A Consensus Combined P-Value Test and the Family-Wide Significance of Component Tests. Biometrics 1990, 46, 303–308. [Google Scholar] [CrossRef]
- Aktas Kamiloglu, A.; Aydemir, M.; Acar, İ.; Sarkı, G.; Koca, A.; Gumrukcuoglu, N.; Ocak, Ü.; Kantekin, H. Peripherally tetra 1,2,4-triazole substituted novel phthalocyanines: Synthesis, characterization, electrochemical and spectroelectrochemical properties. Karadeniz Chem. Sci. Technol. 2017, 01, 22–30. [Google Scholar]
- Wang, X.; Wu, W.; Ju, H.; Zou, T.; Qiao, Z.; Gong, H.; Wang, H. Experimental and theoretical studies of the structure and optical properties of nickel phthalocyanine nanowires. Mater. Res. Express 2016, 3, 125002. [Google Scholar] [CrossRef]
- Huang, P.; Li, Z.; Hu, H.; Cui, D. Synthesis and Characterization of Bovine Serum Albumin-Conjugated Copper Sulfide Nanocomposites. J. Nanomater. 2010, 2010, 641545. [Google Scholar] [CrossRef]
- IR Spectrum Table & Chart. Available online: https://www.sigmaaldrich.com/technical-documents/articles/biology/ir-spectrum-table.html (accessed on 28 November 2020).
- Verma, D.; Dash, R.; Katti, K.S.; Schulz, D.L.; Caruso, A.N. Role of coordinated metal ions on the orientation of phthalocyanine based coatings. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2008, 70, 1180–1186. [Google Scholar] [CrossRef] [PubMed]
- Seoudi, R.; El-Bahy, G.S.; El Sayed, Z.A. FTIR, TGA and DC electrical conductivity studies of phthalocyanine and its complexes. J. Mol. Struct. 2005, 753, 119–126. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Z.; Yue, W.; Tang, K.; Ruan, W.; Zhang, Q.; Liu, L. Label-free detection of p53 antibody using a microcantilever biosensor with piezoresistive readout. In Proceedings of the IEEE Sensors 2009 Conference, Christchurch, New Zealand, 25–28 October 2009; pp. 819–822. [Google Scholar] [CrossRef]
- Zhou, W.; Ma, Y.; Yang, H.; Ding, Y.; Luo, X. A label-free biosensor based on silver nanoparticles array for clinical detection of serum p53 in head and neck squamous cell carcinoma. Int. J. Nanomed. 2011, 6, 381–386. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Chen, A.; Du, D.; Lin, Y. Graphene-based immunosensor for electrochemical quantification of phosphorylated p53 (S15). Anal. Chim. Acta 2011, 699, 44–48. [Google Scholar] [CrossRef]
- Imran, H.; Manikandan, P.N.; Prabhu, D.; Dharuman, V.; Jeyakanthan, J.; Hahn, J.H. Ultra selective label free electrochemical detection of cancer prognostic p53-antibody at DNA functionalized graphene. Sens. Bio-Sens. Res. 2019, 23, 100261. [Google Scholar] [CrossRef]
- Chen, A.; Bao, Y.; Ge, X.; Shin, Y.; Du, D.; Lin, Y. Magnetic particle-based immunoassay of phosphorylated p53 using protein cage templated lead phosphate and carbon nanospheres for signal amplification. RSC Adv. 2012, 2, 11029–11034. [Google Scholar] [CrossRef]
- Ibáñez-Redín, G.; Joshi, N.; do Nascimento, G.F.; Wilson, D.; Melendez, M.E.; Carvalho, A.L.; Reis, R.M.; Gonçalves, D.; Oliveira, O.N., Jr. Determination of p53 biomarker using an electrochemical immunoassay based on layer-by-layer films with NiFe2O4 nanoparticles. Microchim. Acta 2020, 187, 619–629. [Google Scholar] [CrossRef] [PubMed]
- Baldacchini, C.; Montanarella, A.F.; Francioso, L.; Signore, M.A.; Cannistraro, S.; Bizzarri, A.R. A Reliable BioFET Immunosensor for Detection of p53 Tumour Suppressor in Physiological-Like Environment. Sensors 2020, 20, 6364. [Google Scholar] [CrossRef] [PubMed]
- Patil, N.N.; Wadhwan, V.; Chaudhary, M.; Nayyar, A.S. KAI-1 and p53 expression in oral squamous cell carcinomas: Markers of significance in future diagnostics and possibly therapeutics. J. Oral Maxillofac. Pathol. Jomfp 2016, 20, 384–389. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, J. Expression of mutant p53 in oral squamous cell carcinoma is correlated with the effectiveness of intra-arterial chemotherapy. Oncol. Lett. 2015, 10, 2883–2887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sen, E.; Gönüllü, U.; Akar, N. The detection of quantitative serum p53 protein in lung cancer. Tuberk Toraks 2005, 53, 231–237. [Google Scholar] [PubMed]
Wavelength (cm−1) | Assignment |
---|---|
BSA | |
1539 | Coupling of bending vibration of N-H and stretching vibration of C–N [25] |
1658 | C=O stretching vibration [25] |
3296 | N-H/O-H stretching vibration [26] |
NiPc | |
730 | C-H out-of-plane angular deformation [21] |
756 | Pc ring, C-N=C pyrrole stretching vibration [21] |
781 | C-H out-of-plane angular deformation benzene breathing [21] C-N out-of-plane angular deformation [25] |
877 | C-H out-of-plane angular deformation [21] |
916 | Metal (Ni) ligand vibration [27] |
1091 | in-plane C-H deformation [28] |
1122 | in-plane bending vibration in benzene ring [23] |
1166 | C-N bending vibration [28] |
1290 | C-N stretching vibration in pyrroles [23] |
1334 | pyrrole stretching vibration [21] |
1429 | C-C bonds stretching vibration in pyrroles [23] |
1533 | isoindol stretching vibration [21] |
1612 | benzene ring stretching vibration [27] |
Material | Method | Detection Range (μg/mL) | Preparation Time | Detection Time | Ref. |
---|---|---|---|---|---|
Silicon-on-insulator | Piezoresistive Readout | 0.02–20 | - | - | [29] |
Silver | LSPR a | > 5.9 × 10−5 | >1 day | - | [30] |
Graphene | Electrochemistry | 2 × 10−4–1 × 10−3 | ~5 h | - | [31] |
Graphene-gold | Electrochemistry | 1 × 10−7–1 × 10−4 | ~7 h | - | [32] |
Bi-SPCE b | Electrochemistry | 2 × 10−5–2 × 10−2 | ~3 h | - | [33] |
GCE/PEDOT:PSS/AuNPs/Ab1 c(ZIF-8/DAP/Ab2 d) | Electrochemistry | 1 × 10−3–1.2 × 10−1 | ~12 h | 5 min | [14] |
SPCE/PEI/NPs-Ab-BSA e | Electrochemistry | 1 × 10−6–1 × 10−2 | ~2 h | - | [34] |
Au/PEG/EDC/NHS-Ab/BSA f | Electrochemistry | 100–1×104 pM | ~12 h | - | [35] |
SPCE | Electrochemistry | 5 × 10−3–1.5 × 10−1 | ~3 h | - | [16] |
Au/NiPc/anti-p53/BSA g | Electrochemistry | 1 × 10−7–1 × 10−4 | ~5 h | 90–150 s | This work |
Au/NiPc/anti-p53/BSA h | Electrochemistry | 1 × 10−7–5 × 10−4 | ~5 h | 90–150 s | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-J.; Peng, Y.-R.; Lin, H.-Y.; Hsueh, T.-Y.; Lai, C.-S.; Hua, M.-Y. Preparation and Characterization of Au/NiPc/Anti-p53/BSA Electrode for Application as a p53 Antigen Sensor. Chemosensors 2021, 9, 17. https://doi.org/10.3390/chemosensors9010017
Chen Y-J, Peng Y-R, Lin H-Y, Hsueh T-Y, Lai C-S, Hua M-Y. Preparation and Characterization of Au/NiPc/Anti-p53/BSA Electrode for Application as a p53 Antigen Sensor. Chemosensors. 2021; 9(1):17. https://doi.org/10.3390/chemosensors9010017
Chicago/Turabian StyleChen, Yen-Jou, Yu-Ren Peng, Hung-Yu Lin, Tsung-Yu Hsueh, Chao-Sung Lai, and Mu-Yi Hua. 2021. "Preparation and Characterization of Au/NiPc/Anti-p53/BSA Electrode for Application as a p53 Antigen Sensor" Chemosensors 9, no. 1: 17. https://doi.org/10.3390/chemosensors9010017
APA StyleChen, Y. -J., Peng, Y. -R., Lin, H. -Y., Hsueh, T. -Y., Lai, C. -S., & Hua, M. -Y. (2021). Preparation and Characterization of Au/NiPc/Anti-p53/BSA Electrode for Application as a p53 Antigen Sensor. Chemosensors, 9(1), 17. https://doi.org/10.3390/chemosensors9010017