Silver Chloride/Ferricyanide-Based Quasi-Reference Electrode for Potentiometric Sensing Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Instruments and Devices
2.3. Electrodes
2.4. Auxiliary Solution
2.5. Potentiometric Measurements
- τ—potential stabilization (establishment) time, s;
- E1—steady-state value of potential, mV;
- ΔE/Δt—drift of the potential, mV/h;
- E2—potential value, mV, was obtained when 0.4 mL 0.1 M K4[Fe(CN)6] was added to 4 mL of auxiliary solution (the final concentration of K4[Fe(CN)6] in the cell is 9.1 mM, which models the upper value of antioxidant content in the sample).
- E3—potential value, mV, was established when electrode is returned to the initial solution.
2.6. Voltammetric and Scanning Electron Microscopy Measurements
2.7. Potentiometric Sensor System Assembly
2.8. Sampling and Sample Preparation
2.9. Statistical Analysis
3. Results and Discussion
3.1. Study of Redox Processes Occurring on Polarized AgSPE
- Figure 2b: 4Ag0(s) + [Fe(CN)6]4–(aq.) → Ag4[Fe(CN)6](s) + 4e– (first peak at 0.05 V < Е < 0.15 V) and [Fe(CN)6]4–(s) → [Fe(CN)6]3–(s) + e– (second peak at Е > 0.15 V), which is associated with a similar process for an indifferent Pt [Fe(CN)6]4–(aq.) → [Fe(CN)6]3–(aq.) + e–;
- Figure 2d: 3Ag0(s) + PO43–(aq.) → Ag3PO4(s) + 3e– at E > 0.2 V.
3.2. Selection of Surface Formation Conditions of QREmix
3.3. Comparison of QREmix and Ag/AgCl QRE
3.4. Electrode Surface Morphology
3.5. QREmix Characterization by Cyclic Voltammetry
3.6. Potentiometric Sensor System in the Determination of AOA of Solutions
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brainina, K.Z.; Alyoshina, L.V.; Gerasimova, E.L.; Kazakov, Y.E.; Ivanova, A.V.; Beykin, Y.B.; Belyaeva, S.V.; Usatova, T.I.; Khodos, M.Y. New electrochemical method of determining blood and blood fractions antioxidant activity. Electroanalysis 2009, 21, 618–624. [Google Scholar] [CrossRef]
- Brainina, K.Z.; Gerasimova, E.L.; Varzakova, D.P.; Balezin, S.L.; Portnov, I.G.; Makutina, V.A.; Tyrchaninova, E.V. Potentiometric method for evaluating the oxidant/antioxidant activity of seminal and follicular fluids and clinical significance of this parameter for human reproductive function. Open Chem. Biomed. Methods J. 2012, 5, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Brainina, K.Z.; Zaharov, A.S.; Vidrevich, M.B. Potentiometry for the determination of oxidant activity. Anal. Methods 2016, 8, 5667–5675. [Google Scholar] [CrossRef]
- Brainina, K.; Stozhko, N.; Bukharinova, M.; Khamzina, E.; Vidrevich, M. Potentiometric method of plant microsuspensions antioxidant activity determination. Food Chem. 2019, 278, 653–658. [Google Scholar] [CrossRef] [PubMed]
- Brainina, K.Z.; Varzakova, D.P.; Kazakov, Y.E.; Vidrevich, M.B. Noninvasive electrochemical antioxidant activity estimation: Saliva analysis. Biointerface Res. Appl. Chem. 2018, 8, 3381–3387. [Google Scholar]
- Brainina, K.Z.; Varzakova, D.P.; Gerasimova, E.L. A chronoamperometric method for determining total antioxidant activity. J. Anal. Chem. 2012, 67, 364–369. [Google Scholar] [CrossRef]
- Brainina, K.Z.; Tarasov, A.V.; Khodos, M.Y. Determination of the oxidant activity of chlorinated water by chronoamperometry. J. Anal. Chem. 2017, 72, 911–916. [Google Scholar] [CrossRef]
- Brainina, K.Z.; Gerasimova, E.L.; Varzakova, D.P.; Kazakov, Y.E.; Galperin, L.G. Noninvasive method of determining skin antioxidant/oxidant activity: Clinical and cosmetics applications. Anal. Bioanal. Electrochem. 2013, 5, 528–542. [Google Scholar]
- Brainina, K.Z.; Markina, M.G.; Stozhko, N.Y. Optimized potentiometric assay for non-invasive investigation of skin antioxidant activity. Electroanalysis 2018, 30, 2405–2412. [Google Scholar] [CrossRef]
- Brainina, K.; Tarasov, A.; Khamzina, E.; Kazakov, Y.; Stozhko, N. Disposable potentiometric sensory system for skin antioxidant activity evaluation. Sensors 2019, 19, 2586. [Google Scholar] [CrossRef] [Green Version]
- Brainina, K.; Tarasov, A.; Khamzina, E.; Stozhko, N.; Vidrevich, M. Contact hybrid potentiometric method for on-site and in situ estimation of the antioxidant activity of fruits and vegetables. Food Chem. 2020, 309, 125703. [Google Scholar] [CrossRef] [PubMed]
- Lounasvuori, M.M.; Rosillo-Lopez, M.; Salzmann, C.G.; Caruana, D.J.; Holt, K.B. The influence of acidic edge groups on the electrochemical performance of graphene nanoflakes. J. Electroanal. Chem. 2015, 753, 28–34. [Google Scholar] [CrossRef] [Green Version]
- Tucceri, R. The charge transport process at gold electrodes modified by thick nickel hydroxide films. A study employing rotating disc electrode voltammetry in the presence of the Fe(CN)63−/4− redox couple. J. Electroanal. Chem. 2016, 782, 125–132. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, Y.; Yan, K.; Zhang, J. Reversibility-dependent photovoltammetric behavior of electroactive compounds on a CdS-graphene hybrid film electrode. Chem. Eur. J. 2017, 23, 13294–13299. [Google Scholar] [CrossRef]
- Long, Y.-T.; Li, C.-Z.; Kraatz, H.-B.; Lee, J.S. AC impedance spectroscopy of native DNA and M-DNA. Biophys. J. 2003, 84, 3218–3225. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Zheng, W.; Wang, X.; Zhang, H.; Cui, X.; Wang, H. Ultrahigh capacitive performance from both Co(OH)2/graphene electrode and K3Fe(CN)6 electrolyte. Sci. Rep. 2013, 3, 2986. [Google Scholar] [CrossRef]
- Ragoisha, G.A.; Bondarenko, A.S. Potentiodynamic electrochemical impedance spectroscopy. Electrochim. Acta 2005, 50, 1553–1563. [Google Scholar] [CrossRef]
- Cardoso, A.R.; Moreira, F.T.C.; Fernandes, R.; Sales, M.G.F. Novel and simple electrochemical biosensor monitoring attomolar levels of miRNA-155 in breast cancer. Biosens. Bioelectron. 2016, 80, 621–630. [Google Scholar] [CrossRef]
- Nik Mansor, N.N.; Leong, T.T.; Safitri, E.; Futra, D.; Ahmad, N.S.; Nasuruddin, D.N.; Itnin, A.; Zaini, I.Z.; Arifin, K.T.; Heng, L.Y.; et al. An amperometric biosensor for the determination of bacterial sepsis biomarker, secretory phospholipase group 2-IIA using a tri-enzyme system. Sensors 2018, 18, 686. [Google Scholar] [CrossRef] [Green Version]
- Chu, Z.; Dai, H.; Liu, Y.; Lin, Y. Development of a semiconductor-based electrochemical sensor for interferon-γ detection. Int. J. Electrochem. Sci. 2017, 12, 9141–9149. [Google Scholar] [CrossRef]
- Le, T.H.; Pham, V.P.; La, T.H.; Phan, T.B.; Le, Q.H. Electrochemical aptasensor for detecting tetracycline in milk. Adv. Nat. Sci. Nanosci. Nanotechnol. 2016, 7, 015008. [Google Scholar] [CrossRef] [Green Version]
- Kazakov, Y.; Khodos, M.; Vidrevich, M.; Brainina, K. Potentiometry as a tool for monitoring of antioxidant activity and oxidative stress estimation in medicine. Crit. Rev. Anal. Chem. 2019, 49, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Kazakov, Y.; Tarasov, A.; Alyoshina, L.; Brainina, K. Interplay between antioxidant activity, health and disease. Biointerface Res. Appl. Chem. 2020, 10, 4893–4901. [Google Scholar] [CrossRef]
- Guth, U.; Gerlach, F.; Decker, M.; Oelßner, W.; Vonau, W. Solid-state reference electrodes for potentiometric sensors. J. Solid State Electrochem. 2009, 13, 27–39. [Google Scholar] [CrossRef]
- Shinwari, M.W.; Zhitomirsky, D.; Deen, I.A.; Selvaganapathy, P.R.; Deen, M.J.; Landheer, D. Microfabricated reference electrodes and their biosensing applications. Sensors 2010, 10, 1679–1715. [Google Scholar] [CrossRef]
- Spitzer, P.; Wunderli, S.; Maksymiuk, K.; Michalska, A.; Kisiel, A.; Galus, Z.; Tauber, G. Reference electrodes for aqueous solutions. In Handbook of Reference Electrodes; Inzelt, G., Lewenstam, A., Scholz, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Chapter 5; pp. 86–98. [Google Scholar] [CrossRef]
- Kahlert, H. Micro-reference electrodes. In Handbook of Reference Electrodes; Inzelt, G., Lewenstam, A., Scholz, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Chapter 11; pp. 289–303. [Google Scholar] [CrossRef]
- Michalska, A.; Kisiel, A.; Maksymiuk, K. Screen-printed disposable reference electrodes. In Handbook of Reference Electrodes; Inzelt, G., Lewenstam, A., Scholz, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Chapter 13; pp. 325–330. [Google Scholar] [CrossRef]
- Desmond, D.; Lane, B.; Alderman, J.; Glennon, J.D.; Diamond, D.; Arrigan, D.W.M. Evaluation of miniaturised solid state reference electrodes on a silicon based component. Sens. Actuators B 1997, 44, 389–396. [Google Scholar] [CrossRef]
- Sun, X.; Wang, M. Fabrication and characterization of planar reference electrode for on-chip electroanalysis. Electrochim. Acta 2006, 52, 427–433. [Google Scholar] [CrossRef]
- Almeida, F.L.; Fontes, M.B.A.; Jimenez, C.; Burdallo, I. Secondary Ag/AgCl pseudo-reference electrode on silicon substrate. ECS Trans. 2008, 14, 73–82. [Google Scholar] [CrossRef]
- Cranny, A.; Harris, N.; White, N. Screen printed potentiometric chloride sensors. Procedia Eng. 2014, 87, 220–223. [Google Scholar] [CrossRef] [Green Version]
- Lito, M.J.G.; Camões, M.F. Meeting the requirements of the silver/silver chloride reference electrode. J. Solut. Chem. 2009, 38, 1471–1482. [Google Scholar] [CrossRef]
- Polk, B.J.; Stelzenmuller, A.; Mijares, G.; MacCrehan, W.; Gaitan, M. Ag/AgCl microelectrodes with improved stability for microfluidics. Sens. Actuators B 2006, 114, 239–247. [Google Scholar] [CrossRef]
- Gernet, S.; Koudelka, M.; De Rooij, N.F. Fabrication and characterization of a planar electrochemical cell and its application as a glucose sensor. Sens. Actuators 1989, 18, 59–70. [Google Scholar] [CrossRef]
- Moussy, F.; Harrison, D.J. Prevention of the rapid degradation of subcutaneously implanted Ag/AgCl reference electrodes using polymer coatings. Anal. Chem. 1994, 66, 674–679. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.Y.; Hong, S.A.; Yang, S. A solid-state thin-film Ag/AgCl reference electrode coated with graphene oxide and its use in a pH sensor. Sensors 2015, 15, 6469–6482. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, H.; Hiratsuka, A.; Sasaki, S.; Karube, I. Problems associated with the thin-film Ag/AgCl reference electrode and a novel structure with improved durability. Sens. Actuators B 1998, 46, 104–113. [Google Scholar] [CrossRef]
- Rehm, D.; McEnroe, E.; Diamond, D. An all solid-state reference electrode based on a potassium chloride doped vinyl ester resin. Anal. Proc. 1995, 32, 319–322. [Google Scholar] [CrossRef]
- Cosofret, V.V.; Erdosy, M.; Johnson, T.A.; Buck, R.P.; Ash, R.B.; Neuman, M.R. Microfabricated sensor arrays sensitive to pH and K+ for ionic distribution measurements in the beating heart. Anal. Chem. 1995, 67, 1647–1653. [Google Scholar] [CrossRef]
- Huang, I.-Y.; Huang, R.-S.; Lo, L.-H. Improvement of integrated Ag/AgCl thin-film electrodes by KCl-gel coating for ISFET applications. Sens. Actuators B 2003, 94, 53–64. [Google Scholar] [CrossRef]
- Mamińska, R.; Dybko, A.; Wróblewski, W. All-solid-state miniaturised planar reference electrodes based on ionic liquids. Sens. Actuators B 2006, 115, 552–557. [Google Scholar] [CrossRef]
- Nolan, M.A.; Tan, S.H.; Kounaves, S.P. Fabrication and characterization of a solid state reference electrode for electroanalysis of natural waters with ultramicroelectrodes. Anal. Chem. 1997, 69, 1244–1247. [Google Scholar] [CrossRef]
- Kwon, N.-H.; Lee, K.-S.; Won, M.-S.; Shim, Y.-B. An all-solid-state reference electrode based on the layer-by-layer polymer coating. Analyst 2007, 132, 906–912. [Google Scholar] [CrossRef] [PubMed]
- Koudelka, M. Performance characteristics of a planar “clark-type” oxygen sensor. Sens. Actuators 1986, 9, 249–258. [Google Scholar] [CrossRef]
- Arquint, P.; van den Berg, A.; van der Schoot, B.H.; de Rooij, N.F.; Bühler, H.; Morf, W.E.; Dürselen, L.F.J. Integrated blood-gas sensor for pO2, pCO2 and pH. Sens. Actuators B 1993, 13, 340–344. [Google Scholar] [CrossRef]
- Kinlen, P.J.; Heider, J.E.; Hubbard, D.E. A solid-state pH sensor based on a Nafion-coated iridium oxide indicator electrode and a polymer-based silver chloride reference electrode. Sens. Actuators B 1994, 22, 13–25. [Google Scholar] [CrossRef]
- Simonis, A.; Lüth, H.; Wang, J.; Schöning, M.J. New concepts of miniaturised reference electrodes in silicon technology for potentiometric sensor systems. Sens. Actuators B 2004, 103, 429–435. [Google Scholar] [CrossRef]
- Liao, W.-Y.; Chou, T.-C. Fabrication of a planar-form screen-printed solid electrolyte modified Ag/AgCl reference electrode for application in a potentiometric biosensor. Anal. Chem. 2006, 78, 4219–4223. [Google Scholar] [CrossRef]
- Tymecki, Ł.; Zwierkowska, E.; Koncki, R. Screen-printed reference electrodes for potentiometric measurements. Anal. Chim. Acta 2004, 526, 3–11. [Google Scholar] [CrossRef]
- Kisiel, A.; Marcisz, H.; Michalska, A.; Maksymiuk, K. All-solid-state reference electrodes based on conducting polymers. Analyst 2005, 130, 1655–1662. [Google Scholar] [CrossRef]
- Kisiel, A.; Michalska, A.; Maksymiuk, K. Plastic reference electrodes and plastic potentiometric cells with dispersion cast poly(3,4-ethylenedioxythiophene) and poly(vinyl chloride) based membranes. Bioelectrochemistry 2007, 71, 75–80. [Google Scholar] [CrossRef]
- Kisiel, A.; Michalska, A.; Maksymiuk, K.; Hall, E.A.H. All-solid-state reference electrodes with poly(n-butyl acrylate) based membranes. Electroanalysis 2008, 20, 318–323. [Google Scholar] [CrossRef]
- Rius-Ruiz, F.X.; Kisiel, A.; Michalska, A.; Maksymiuk, K.; Riu, J.; Rius, F.X. Solid-state reference electrodes based on carbon nanotubes and polyacrylate membranes. Anal. Bioanal. Chem. 2011, 399, 3613–3622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rius-Ruiz, F.X.; Bejarano-Nosas, D.; Blondeau, P.; Riu, J.; Rius, F.X. Disposable planar reference electrode based on carbon nanotubes and polyacrylate membrane. Anal. Chem. 2011, 83, 5783–5788. [Google Scholar] [CrossRef] [PubMed]
- Swain, G.M. Solid electrode materials: Pretreatment and activation. In Handbook of Electrochemistry; Zoski, C.G., Ed.; Elsevier Science: Amsterdam, The Netherlands, 2007; Chapter 5; p. 146. [Google Scholar] [CrossRef]
- Kahlert, H. Reference electrodes. In Electroanalytical Methods, 2nd ed.; Scholz, F., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; Chapter III; p. 299. [Google Scholar] [CrossRef]
- Brainina, K.Z.; Tarasov, A.V.; Kazakov, Y.E.; Vidrevich, M.B. Platinum electrode regeneration and quality control method for chronopotentiometric and chronoamperometric determination of antioxidant activity of biological fluids. J. Electroanal. Chem. 2018, 808, 14–20. [Google Scholar] [CrossRef]
- Solubility products of the hardly soluble in water compounds. In Chemist Handbook, 2nd ed.; Nikolskiy, B.P. (Ed.) Chemistry: Moscow, Russia, 1965; Volume 3, pp. 229–234. (In Russian) [Google Scholar]
- Solubility product constants. In CRC Handbook of Chemistry and Physics, 89th ed.; Lide, D.R. (Ed.) CRC Press/Taylor and Francis: Boca Raton, FL, USA, 2009; pp. 8-118–8-120. [Google Scholar]
- Brewer, P.J.; Leese, R.J.; Brown, R.J.C. An improved approach for fabricating Ag/AgCl reference electrodes. Electrochim. Acta 2012, 71, 252–257. [Google Scholar] [CrossRef]
Ion Concentration, M 1 | Sparingly Soluble Compound, its Solubility Product [59,60] 2 | Equilibrium Concentration of Silver Ions, M |
---|---|---|
Cl–, 1 | AgCl, 1.8 × 10−10 | 1.8 × 10−10 |
[Fe(CN)6]4–, 1 × 10−4 | Ag4[Fe(CN)6], 1.5 × 10−41 | 6.2 × 10−10 |
[Fe(CN)6]3–, 1 × 10−2 | Ag3[Fe(CN)6], 9.8 × 10−26 | 2.1 × 10−8 |
PO43–, 6.6 × 10−2 | Ag3PO4, 8.9 × 10−17 | 1.1 × 10−5 |
Mode | Mixing | Potential, V | Modification Time, s |
---|---|---|---|
Open circuit | no/yes | – | 600; 1800; 3600; 5400; 7200 |
Potentiostatic | yes | 0.1; 0.15; 0.2; 0.25; 0.3; 0.325; 0.35; 0.4 | 15; 30; 60; 120 |
Potentiodynamic 1 | yes | 0.05–0.15; 0.15–0.2; 0.2–0.35 | 120 |
Modification Conditions | τ, s | ΔE/Δt, mV/h | E1, mV | E2, mV | E3, mV | |
---|---|---|---|---|---|---|
Mode | Conditions | |||||
OC 1 | 7200 s | 695 ± 413 | 2.0 ± 0.6 | 66 ± 1 | 63 ± 1 | 61 ± 2 |
PsM 2 | 0.3 V, 120 s | 310 ± 155 | 0.5 ± 0.3 | 38 ± 1 | 36 ± 1 | 40 ± 1 |
0.325 V, 120 s | 235 ±74 | 0.4 ± 0.2 | 45 ± 1 | 45 ± 1 | 44 ± 1 | |
0.35 V, 120 s | 375 ±176 | 0.6 ± 0.4 | 54 ± 0 | 57 ± 1 | 54 ± 0 |
Type | AgCl Layer Formation Conditions | Source |
---|---|---|
1 | Ag oxidation in 50 mM FeCl3 for 50 s | [34,37] |
2 | Ag oxidation in 0.1 M KCl at 0.5 V for 120 s | [43,44] |
3 | Ag oxidation in 0.1 M HCl at 0.145 V (potential 50 mV more positive than open circuit potential) for 120 s | [61] |
4 | Ag oxidation in 1 M KCl at 0.325 V for 120 s | [This work] |
Sample | QREmix | EVL–1M3.1 | F 2 | t 3 | ||
---|---|---|---|---|---|---|
mmol-eq/L | Sr 1 | mmol-eq/L | Sr 1 | |||
Apple juice Dobryi | 2.05 ± 0.07 | 0.03 | 1.95 ± 0.03 | 0.02 | 4.00 | 2.08 |
Apple juice Rich | 3.20 ± 0.06 | 0.02 | 3.12 ± 0.04 | 0.01 | 1.78 | 1.96 |
Apple juice J7 | 3.56 ± 0.06 | 0.02 | 3.48 ± 0.03 | 0.01 | 4.00 | 2.19 |
Apple fresh Smit | 5.30 ± 0.14 | 0.03 | 5.02 ± 0.17 | 0.03 | 1.44 | 2.19 |
Apple fresh Fuji | 6.22 ± 0.18 | 0.03 | 6.07 ± 0.09 | 0.01 | 3.70 | 1.30 |
Saliva | 1.00 ±0.07 | 0.07 | 0.84 ± 0.03 | 0.03 | 6.25 | 0.48 |
Blood serum | 1.27 ± 0.03 | 0.03 | 1.07 ± 0.03 | 0.03 | 1.00 | 1.76 |
Semen (ejaculate) | 1.50 ± 0.14 | 0.09 | 1.35 ± 0.07 | 0.05 | 4.00 | 0.90 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brainina, K.Z.; Tarasov, A.V.; Vidrevich, M.B. Silver Chloride/Ferricyanide-Based Quasi-Reference Electrode for Potentiometric Sensing Applications. Chemosensors 2020, 8, 15. https://doi.org/10.3390/chemosensors8010015
Brainina KZ, Tarasov AV, Vidrevich MB. Silver Chloride/Ferricyanide-Based Quasi-Reference Electrode for Potentiometric Sensing Applications. Chemosensors. 2020; 8(1):15. https://doi.org/10.3390/chemosensors8010015
Chicago/Turabian StyleBrainina, Khiena Z., Aleksey V. Tarasov, and Marina B. Vidrevich. 2020. "Silver Chloride/Ferricyanide-Based Quasi-Reference Electrode for Potentiometric Sensing Applications" Chemosensors 8, no. 1: 15. https://doi.org/10.3390/chemosensors8010015
APA StyleBrainina, K. Z., Tarasov, A. V., & Vidrevich, M. B. (2020). Silver Chloride/Ferricyanide-Based Quasi-Reference Electrode for Potentiometric Sensing Applications. Chemosensors, 8(1), 15. https://doi.org/10.3390/chemosensors8010015