Challenges in Electrochemical Aptasensors and Current Sensing Architectures Using Flat Gold Surfaces
Abstract
:1. Introduction
2. Aptamer Selection for Electrochemical Biosensing Devices
3. Immobilization of Aptamers onto Semiconductors
4. Nano- and Microelectrodes
5. Aptasensor Electrochemistry Architectures
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Newman, J.D.; Turner, A.P. Home Blood Glucose Biosensors: A Commercial Perspective. Biosens. Bioelectron. 2005, 20, 2435–2453. [Google Scholar] [CrossRef] [PubMed]
- Clark, L.C., Jr.; Lyons, C. Electrode Systems for Continuous Monitoring in Cardiovascular Surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29–45. [Google Scholar] [CrossRef]
- Tuerk, C.; Gold, L. Systematic Evolution of Ligands by Exponential Enrichment: Rna Ligands to Bacteriophage T4 DNA Polymerase. Science 1990, 249, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Stoltenburg, R.; Reinemann, C.; Strehlitz, B. Selex—A (R)Evolutionary Method to Generate High-Affinity Nucleic Acid Ligands. Biomol. Eng. 2007, 24, 381–403. [Google Scholar] [CrossRef] [PubMed]
- Rozenblum, G.T.; Lopez, V.G.; Vitullo, A.D.; Radrizzani, M. Aptamers: Current Challenges and Future Prospects. Expert Opin. Drug Discov. 2016, 11, 127–135. [Google Scholar] [CrossRef]
- Nimjee, S.M.; Rusconi, C.P.; Sullenger, B.A. Aptamers: An Emerging Class of Therapeutics. Annu. Rev. Med. 2005, 56, 555–583. [Google Scholar] [CrossRef]
- Schoukroun-Barnes, L.R.; Macazo, F.C.; Gutierrez, B.; Lottermoser, J.; Liu, J.; White, R.J. Reagentless, Structure-Switching, Electrochemical Aptamer-Based Sensors. Annu. Rev. Anal. Chem. (Palo Alto Calif.) 2016, 9, 163–181. [Google Scholar] [CrossRef]
- Kim, Y.S.; Raston, N.H.; Gu, M.B. Aptamer-Based Nanobiosensors. Biosens. Bioelectron. 2016, 76, 2–19. [Google Scholar]
- Hianik, T.; Wang, J. Electrochemical Aptasensors–Recent Achievements and Perspectives. Electroanalysis 2009, 21, 1223–1235. [Google Scholar] [CrossRef]
- Dufva, M. Fabrication of High Quality Microarrays. Biomol. Eng. 2005, 22, 173–184. [Google Scholar] [CrossRef]
- Hughes, T.R.; Mao, M.; Jones, A.R.; Burchard, J.; Marton, M.J.; Shannon, K.W.; Lefkowitz, S.M.; Ziman, M.; Schelter, J.M.; Meyer, M.R.; et al. Expression Profiling Using Microarrays Fabricated by an Ink-Jet Oligonucleotide Synthesizer. Nat. Biotechnol. 2001, 19, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Maurer, K.; Cooper, J.; Caraballo, M.; Crye, J.; Suciu, D.; Ghindilis, A.; Leonetti, J.A.; Wang, W.; Rossi, F.M.; Stover, A.G.; et al. Electrochemically Generated Acid and Its Containment to 100 Micron Reaction Areas for the Production of DNA Microarrays. PLoS ONE 2006, 1, E34. [Google Scholar] [CrossRef] [PubMed]
- Herne, T.M.; Tarlov, M.J. Characterization of DNA Probes Immobilized on Gold Surfaces. J. Am. Chem. Soc. 1997, 119, 8916–8920. [Google Scholar] [CrossRef]
- Koo, K.M.; Sina, A.A.I.; Carrascosa, L.G.; Shiddiky, M.J.A.; Trau, M. DNA–Bare Gold Affinity Interactions: Mechanism and Applications in Biosensing. Anal. Methods 2015, 7, 7042–7054. [Google Scholar] [CrossRef]
- Nelson, E.M.; Rothberg, L.J. Kinetics and Mechanism of Single-Stranded DNA Adsorption onto Citrate-Stabilized Gold Nanoparticles in Colloidal Solution. Langmuir 2011, 27, 1770–1777. [Google Scholar] [CrossRef] [PubMed]
- Levicky, R.; Herne, T.M.; Tarlov, M.J.; Satija, S.K. Using Self-Assembly to Control the Structure of DNA Monolayers on Gold: A Neutron Reflectivity Study. J. Am. Chem. Soc. 1998, 120, 9787–9792. [Google Scholar] [CrossRef]
- Jiang, H.; Materon, E.M.; Sotomayor Mdel, P.; Liu, J. Fast Assembly of Non-Thiolated DNA on Gold Surface at Lower PH. J. Colloid. Interface Sci. 2013, 411, 92–97. [Google Scholar] [CrossRef]
- Tao, N.J.; Derose, J.A.; Lindsay, S.M. Self-Assembly of Molecular Superstructures Studied by In Situ Scanning Tunneling Microscopy: DNA Bases on Gold (111). J. Phys. Chem. 1993, 97, 910–919. [Google Scholar] [CrossRef]
- Steel, A.B.; Levicky, R.L.; Herne, T.M.; Tarlov, M.J. Immobilization of Nucleic Acids at Solid Surfaces: Effect of Oligonucleotide Length on Layer Assembly. Biophys. J. 2002, 79, 975–981. [Google Scholar] [CrossRef]
- Demers, L.M.; Ostblom, M.; Zhang, H.; Jang, N.H.; Liedberg, B.; Mirkin, C.A. Thermal Desorption Behavior and Binding Properties of DNA Bases and Nucleosides on Gold. J. Am. Chem. Soc. 2002, 124, 11248–11249. [Google Scholar] [CrossRef]
- Kimura-Suda, H.; Petrovykh, D.Y.; Tarlov, M.J.; Whitman, L.J. Base-Dependent Competitive Adsorption of Single-Stranded DNA on Gold. J. Am. Chem. Soc. 2003, 125, 9014–9015. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Jin, R.; Mirkin, C.A.; Letsinger, R.L. Multiple Thiol-Anchor Capped DNA-Gold Nanoparticle Conjugates. Nucleic. Acids. Res. 2002, 30, 1558–1562. [Google Scholar] [CrossRef] [PubMed]
- Nuzzo, R.G.; Fusco, F.A.; Allara, D.L. Spontaneously Organized Molecular Assemblies. 3. Preparation and Properties of Solution Adsorbed Monolayers of Organic Disulfides on Gold Surfaces. J. Am. Chem. Soc. 1987, 109, 2358–2368. [Google Scholar] [CrossRef]
- Schlenoff, J.B.; Li, M.; Ly, H. Stability and Self-Exchange in Alkanethiol Monolayers. J. Am. Chem. Soc. 1995, 117, 12528–12536. [Google Scholar] [CrossRef]
- Schoenfisch, M.H.; Pemberton, J.E. Air Stability of Alkanethiol Self-Assembled Monolayers on Silver and Gold Surfaces. J Am. Chem. Soc. 1998, 120, 4502–4513. [Google Scholar] [CrossRef]
- Petrovykh, D.Y.; Kimura-Suda, H.; Whitman, L.J.; Tarlov, M.J. Quantitative Analysis and Characterization of DNA Immobilized on Gold. J. Am. Chem. Soc. 2003, 125, 5219–5226. [Google Scholar] [CrossRef]
- Yang, Z.; Gonzalez-Cortes, A.; Jourquin, G.; Viré, J.-C.; Kauffmann, J.-M.; Delplancke, J.-L. Analytical Application of Self Assembled Monolayers on Gold Electrodes: Critical Importance of Surface Pretreatment. Biosens. Bioelectron. 1995, 10, 789–795. [Google Scholar] [CrossRef]
- Arrigan, D.W.M. Nanoelectrodes, Nanoelectrode Arrays and Their Applications. Analyst 2004, 129, 1157–1165. [Google Scholar] [CrossRef]
- Dawson, K.; O’riordan, A. Electroanalysis at the Nanoscale. Annu. Rev. Anal. Chem. (Palo Alto Calif.) 2014, 7, 163–181. [Google Scholar] [CrossRef]
- Galvin, P.; Padmanathan, N.; Razeeb, K.M.; Rohan, J.F.; Nagle, L.C.; Wahl, A.; Moore, E.; Messina, W.; Twomey, K.; Ogurtsov, V. Nanoenabling Electrochemical Sensors for Life Sciences Applications. J. Mater. Res. 2017, 32, 2883–2904. [Google Scholar] [CrossRef]
- Fan, C.; Plaxco, K.W.; Heeger, A.J. Electrochemical Interrogation of Conformational Changes as a Reagentless Method for the Sequence-Specific Detection of DNA. Proc. Natl. Acad. Sci. USA 2003, 100, 9134–9137. [Google Scholar] [CrossRef] [PubMed]
- Takenaka, S.; Uto, Y.; Kondo, H.; Ihara, T.; Takagi, M. Electrochemically Active DNA Probes: Detection of Target DNA Sequences at Femtomole Level by High-Performance Liquid Chromatography with Electrochemical Detection. Anal. Biochem. 1994, 218, 436–443. [Google Scholar] [CrossRef] [PubMed]
- Erdem, A.; Kerman, K.; Meric, B.; Ozsoz, M. Methylene Blue as a Novel Electrochemical Hybridization Indicator. Electroanalysis 2001, 13, 219–223. [Google Scholar] [CrossRef]
- Bonnet, R.; Farre, C.; Valera, L.; Vossier, L.; Leon, F.; Dagland, T.; Pouzet, A.; Jaffrezic-Renault, N.; Fareh, J.; Fournier-Wirth, C.; et al. Highly Labeled Methylene Blue-Ds DNA Silica Nanoparticles for Signal Enhancement of Immunoassays: Application to the Sensitive Detection of Bacteria in Human Platelet Concentrates. Analyst 2018, 143, 2293–2303. [Google Scholar] [CrossRef]
- Liu, J.; Wagan, S.; Davila Morris, M.; Taylor, J.; White, R.J. Achieving Reproducible Performance of Electrochemical, Folding Aptamer-Based Sensors on Microelectrodes: Challenges and Prospects. Anal. Chem. 2014, 86, 11417–11424. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Lubin, A.A.; Heeger, A.J.; Plaxco, K.W. Label-Free Electronic Detection of Thrombin in Blood Serum by Using an Aptamer-Based Sensor. Angew. Chem. Int. Ed. Engl. 2005, 44, 5456–5459. [Google Scholar] [CrossRef]
- Radi, A.E.; Acero Sanchez, J.L.; Baldrich, E.; O’sullivan, C.K. Reagentless, Reusable, Ultrasensitive Electrochemical Molecular Beacon Aptasensor. J. Am. Chem. Soc. 2006, 128, 117–124. [Google Scholar] [CrossRef]
- Shen, B.; Wang, Q.; Zhu, D.; Luo, J.; Cheng, G.; He, P.; Fang, Y. G-Quadruplex-Based Dnazymes Aptasensor for the Amplified Electrochemical Detection of Thrombin. Electroanalysis 2010, 22, 2985–2990. [Google Scholar] [CrossRef]
- Degefa, T.H.; Hwang, S.; Kwon, D.; Park, J.H.; Kwak, J. Aptamer-Based Electrochemical Detection of Protein Using Enzymatic Silver Deposition. Electrochim. Acta 2009, 54, 6788–6791. [Google Scholar] [CrossRef]
- Baker, B.R.; Lai, R.Y.; Wood, M.S.; Doctor, E.H.; Heeger, A.J.; Plaxco, K.W. An Electronic, Aptamer-Based Small-Molecule Sensor for the Rapid, Label-Free Detection of Cocaine In Adulterated Samples and Biological Fluids. J. Am. Chem. Soc. 2006, 128, 3138–3139. [Google Scholar] [CrossRef]
- Zuo, X.; Song, S.; Zhang, J.; Pan, D.; Wang, L.; Fan, C. A Target-Responsive Electrochemical Aptamer Switch (TREAS) for Reagentless Detection of Nanomolar Atp. J. Am. Chem. Soc. 2007, 129, 1042–1043. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.S.; Chen, C.R.; Shen, G.L.; Yu, R.Q. Reversible Electronic Nanoswitch Based on DNA G-Quadruplex Conformation: A Platform for Single-Step, Reagentless Potassium Detection. Biomaterials 2008, 29, 2689–2696. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Guo, M.; Nie, Z.; Xiao, X.; Yao, S. Aptamer-Based Electrochemical Sensor for Label-Free Recognition and Detection of Cancer Cells. Electroanalysis 2009, 21, 1321–1326. [Google Scholar] [CrossRef]
- Pandey, A.K.; Rajput, Y.S.; Sharma, R.; Singh, D. Immobilized Aptamer on Gold Electrode Senses Trace Amount of Aflatoxin M1. Appl. Nanosci. 2017, 7, 893–903. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Chandra, P.; Song, K.M.; Ban, C.; Shim, Y.B. Label-Free Detection Of Kanamycin Based on the Aptamer-Functionalized Conducting Polymer/Gold Nanocomposite. Biosens. Bioelectron. 2012, 36, 29–34. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Q.; Revzin, A. An Aptasensor for Electrochemical Detection of Tumor Necrosis Factor in Human Blood. Analyst 2013, 138, 4321–4326. [Google Scholar] [CrossRef]
- Ferguson, B.S.; Hoggarth, D.A.; Maliniak, D.; Ploense, K.; White, R.J.; Woodward, N.; Hsieh, K.; Bonham, A.J.; Eisenstein, M.; Kippin, T.E.; et al. Real-Time, Aptamer-Based Tracking of Circulating Therapeutic Agents in Living Animals. Sci. Transl. Med. 2013, 5, 213ra165. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.; Lu, J.; Chen, Z.; Yu, Y.; Mo, M. A Repeatable Assembling and Disassembling Electrochemical Aptamer Cytosensor for Ultrasensitive and Highly Selective Detection of Human Liver Cancer Cells. Anal. Chim. Acta 2015, 885, 166–173. [Google Scholar] [CrossRef]
- Yu, Z.-G.; Sutlief, A.L.; Lai, R.Y. Towards The Development Of A Sensitive and Selective Electrochemical Aptamer-Based Ampicillin Sensor. Sens. Actuators B Chem. 2018, 258, 722–729. [Google Scholar] [CrossRef]
- Jarczewska, M.; Rebis, J.; Gorski, L.; Malinowska, E. Development of DNA Aptamer-Based Sensor for Electrochemical Detection of C-Reactive Protein. Talanta 2018, 189, 45–54. [Google Scholar] [CrossRef]
- Mazzaracchio, V.; Neagu, D.; Porchetta, A.; Marcoccio, E.; Pomponi, A.; Faggioni, G.; D’amore, N.; Notargiacomo, A.; Pea, M.; Moscone, D.; et al. A Label-Free Impedimetric Aptasensor for the Detection of Bacillus Anthracis Spore Simulant. Biosens. Bioelectron. 2019, 126, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Park, S.Y.; Jang, H.; Kim, G.H.; Lee, Y.; Park, C.; Mohammadniaei, M.; Lee, M.H.; Min, J. Fabrication of Electrochemical Biosensor Consisted of Multi-Functional DNA Structure/Porous Au Nanoparticle for Avian Influenza Virus (H5N1) in Chicken Serum. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 99, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Idili, A.; Gerson, J.; Parolo, C.; Kippin, T.; Plaxco, K.W. An Electrochemical Aptamer-Based Sensor for the Rapid and Convenient Measurement of L-Tryptophan. Anal. Bioanal. Chem. 2019, 411, 4629–4635. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Kinghorn, A.B.; Voliotis, M.; Prague, J.K.; Veldhuis, J.D.; Tsaneva-Atanasova, K.; Mcardle, C.A.; Li, R.H.W.; Cass, A.E.G.; Dhillo, W.S.; et al. Measuring Luteinising Hormone Pulsatility with A Robotic Aptamer-Enabled Electrochemical Reader. Nat. Commun. 2019, 10, 852. [Google Scholar] [CrossRef]
- Bock, L.C.; Griffin, L.C.; Latham, J.A.; Vermaas, E.H.; Toole, J.J. Selection Of Single-Stranded DNA Molecules that Bind and Inhibit Human Thrombin. Nature 1992, 355, 564–566. [Google Scholar] [CrossRef]
- Liu, Q.; Hu, Q.; Li, L.; Kong, J.; Zhang, X. Click Chemistry-Based Aptasensor for Highly Sensitive Electrochemical Detection of Thrombin. Anal. Methods 2017, 9, 3825–3830. [Google Scholar] [CrossRef]
- Stojanovic, M.N.; De Prada, P.; Landry, D.W. Aptamer-Based Folding Fluorescent Sensor for Cocaine. J. Am. Chem. Soc. 2001, 123, 4928–4931. [Google Scholar] [CrossRef]
- White, R.J.; Phares, N.; Lubin, A.A.; Xiao, Y.; Plaxco, K.W. Optimization of Electrochemical Aptamer-Based Sensors via Optimization of Probe Packing Density and Surface Chemistry. Langmuir 2008, 24, 10513–10518. [Google Scholar] [CrossRef] [Green Version]
- Lai, R.Y.; Seferos, D.S.; Heeger, A.J.; Bazan, G.C.; Plaxco, K.W. Comparison of the Signaling and Stability of Electrochemical DNA Sensors Fabricated from 6- Or 11-Carbon Self-Assembled Monolayers. Langmuir 2006, 22, 10796–10800. [Google Scholar] [CrossRef]
- Huizenga, D.E.; Szostak, J.W. A DNA Aptamer that Binds Adenosine and Atp. Biochemistry 1995, 34, 656–665. [Google Scholar] [CrossRef]
- Lu, Y.; Li, X.; Zhang, L.; Yu, P.; Su, L.; Mao, L. Aptamer-Based Electrochemical Sensors with Aptamer-Complementary DNA Oligonucleotides as Probe. Anal. Chem. 2008, 80, 1883–1890. [Google Scholar] [CrossRef]
- Jiang, Y.; Ma, W.; Ji, W.; Wei, H.; Mao, L. Aptamer Superstructure-Based Electrochemical Biosensor for Sensitive Detection of Atp in Rat Brain With In Vivo Microdialysis. Analyst 2019, 144, 1711–1717. [Google Scholar] [CrossRef] [PubMed]
- Munzar, J.D.; Ng, A.; Juncker, D. Comprehensive Profiling of the Ligand Binding Landscapes of Duplexed Aptamer Families Reveals Widespread Induced Fit. Nat. Commun. 2018, 9, 343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiorcea-Paquim, A.-M.; Oliveira-Brett, M.A. Guanine Quadruplex Electrochemical Aptasensors. Chemosensors 2016, 4, 13. [Google Scholar] [CrossRef] [Green Version]
- Shangguan, D.; Tang, Z.; Mallikaratchy, P.; Xiao, Z.; Tan, W. Optimization and Modifications of Aptamers Selected from Live Cancer Cell Lines. Chembiochem 2007, 8, 603–606. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.; Kim, E.; Kwak, J. Electrochemical Detection of DNA Hybridization Using Biometallization. Anal. Chem. 2005, 77, 579–584. [Google Scholar] [CrossRef]
- Chen, W.; Yan, C.; Cheng, L.; Yao, L.; Xue, F.; Xu, J. An Ultrasensitive Signal-On Electrochemical Aptasensor for Ochratoxin a Determination Based on DNA Controlled Layer-By-Layer Assembly of Dual Gold Nanoparticle Conjugates. Biosens. Bioelectron. 2018, 117, 845–851. [Google Scholar] [CrossRef]
- Li, H.; Arroyo-Curras, N.; Kang, D.; Ricci, F.; Plaxco, K.W. Dual-Reporter Drift Correction to Enhance the Performance of Electrochemical Aptamer-Based Sensors in Whole Blood. J. Am. Chem. Soc. 2016, 138, 15809–15812. [Google Scholar] [CrossRef] [Green Version]
- Schoukroun-Barnes, L.R.; Glaser, E.P.; White, R.J. Heterogeneous Electrochemical Aptamer-Based Sensor Surfaces for Controlled Sensor Response. Langmuir 2015, 31, 6563–6569. [Google Scholar] [CrossRef] [Green Version]
- Evtugyn, G.; Hianik, T. Electrochemical Immuno- and Aptasensors for Mycotoxin Determination. Chemosensors 2019, 7, 10. [Google Scholar] [CrossRef] [Green Version]
- Mehlhorn, A.; Rahimi, P.; Joseph, Y. Aptamer-Based Biosensors for Antibiotic Detection: A Review. Biosensors 2018, 8, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Target | Label | Transducer | Detection Mode | Architecture | Reference |
---|---|---|---|---|---|
Human α Thrombin | MB | Au, 1.6 mm | Off | Standard | [36] |
Human Thrombin | Fc | Au | On | Standard | [37] |
Human Thrombin | Hemin | Au, 2 mm | On | GQ-Hemin | [38] |
Human Thrombin | Biometallization | [39] | |||
Cocaine | MB | Au 1 mm | On | Standard | [40] |
ATP | Fc | Au, 2 mm | On | Strand Displacement | [41] |
Potassium | Fc | Au, 1 mm | Off | Cation Modulated | [42] |
CCRF-CEM acute leukemia cells | Free K3Fe(CN)6 | Au, 2 mm | Off | Electrotransfer resistance | [43] |
Aflatoxin M1 | Free K3Fe(CN)6 | Au, 4 mm | Off | Electrotransfer resistance | [44] |
Kanamycin | Kanamycin | Au | Off | Electrodeposition | [45] |
TNF-α | MB | Au, 5 mm | Off | Standard | [46] |
Doxorubicin | MB | Au | On | Continuous real-time | [47] |
ATP (a), Tobramycin (b) | MB | Au, 25 μm | ON (a), Off (b) | Electrodeposition | [35] |
HepG2 | HRP—Hemin | Au. 3 mm | On | GQ-Hemin | [48] |
Ampicillin | MB | Au, 2 mm | On | Strand Displacement | [49] |
c-reactive protein | MB | Au, | Off | Standard | [50] |
B. anthracis spores | Free K3Fe(CN)6 | Au | Electrotransfer resistance | [51] | |
Hemagglutinin | Hemin | Au | On | GQ-Hemin | [52] |
L-tryptophan | MB | Au, 3 mm | Off | Standard | [53] |
luteinising hormone | MB | Au, 1 mm | Off | Standard | [54] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rozenblum, G.T.; Pollitzer, I.G.; Radrizzani, M. Challenges in Electrochemical Aptasensors and Current Sensing Architectures Using Flat Gold Surfaces. Chemosensors 2019, 7, 57. https://doi.org/10.3390/chemosensors7040057
Rozenblum GT, Pollitzer IG, Radrizzani M. Challenges in Electrochemical Aptasensors and Current Sensing Architectures Using Flat Gold Surfaces. Chemosensors. 2019; 7(4):57. https://doi.org/10.3390/chemosensors7040057
Chicago/Turabian StyleRozenblum, Guido T., Ivan G. Pollitzer, and Martin Radrizzani. 2019. "Challenges in Electrochemical Aptasensors and Current Sensing Architectures Using Flat Gold Surfaces" Chemosensors 7, no. 4: 57. https://doi.org/10.3390/chemosensors7040057
APA StyleRozenblum, G. T., Pollitzer, I. G., & Radrizzani, M. (2019). Challenges in Electrochemical Aptasensors and Current Sensing Architectures Using Flat Gold Surfaces. Chemosensors, 7(4), 57. https://doi.org/10.3390/chemosensors7040057