Electrochemical Detection with Preconcentration: Nitroenergetic Contaminants
Abstract
:1. Introduction
2. Experimental Section
2.1. Reagents
2.2. Prototype Sampling/Analysis Systems
2.3. Electrochemical Measurements
2.4. HPLC
3. Results and Discussion
3.1. Calibration
3.2. Ground Water Samples
3.3. Blind Sample Analysis
3.4. Advanced Prototype in Field Trials
Site # | Spike | [HPLC] | EC ID * | [EC] | St. Dev | |
---|---|---|---|---|---|---|
Target | [Target] | |||||
1 | N/A | - | ||||
1 | TNT | 50 | 243 | TNT | 280 | 122 |
1 | DNT | 50 | 153 | TNT/DNT | 265 | 65 |
2 | N/A | - | ||||
2 | TNT | 50 | 259 | TNT | 329 | 131 |
2 | DNT | 50 | 270 | DNT | 259 | 77 |
3 | N/A | - | ||||
3 | TNT | 50 | 253 | TNT | 298 | 121 |
3 | DNT | 50 | 225 | TNT/DNT | 307 | 51 |
4 | N/A | - | ||||
4 | TNT | 50 | 244 | TNT | 272 | 99 |
4 | DNT | 50 | 272 | DNT | 320 | 32 |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- US Environmental Protection Agency. Nitroaromatics, Nitramines, and Nitrate Esters by High Performance Liquid Chromatography (HPLC); Method 8330B; US Environmental Protection Agency: Washington, DC, USA, 2006. [Google Scholar]
- Strategic Environmental Research and Development Program (SERDP); Olsen, K.; Wang, J. Detection and Measurement of Explosives in Groundwater Using in situ Electrochemical Sensors; Strategic Environmental Research and Development Program (SERDP): Alexandria, VA, USA, 2002. [Google Scholar]
- Black and Veatch Special Projects Corp.; US Environmental Protection Agency. Explosives in Water Field Screening Technologies UMDA and SUBASE Bangor; Black and Veatch Special Projects Corp., US Environmental Protection Agency: Tacoma, WA, USA, 1996. [Google Scholar]
- US Army Corps of Engineers; Jenkins, T.F.; Thorne, P.G.; Walsh, M.E. Field Screening Method for TNT and RDX in Groundwater; US Army Corps of Engineers: Hanover, NH, USA, 1994. [Google Scholar]
- Charles, P.T.; Adams, A.A.; Howell, P.B.; Trammell, S.A.; Deschamps, J.R.; Kusterbeck, A.W. Fluorescence-based Sensing of 2,4,6-Trinitrotoluene (TNT) using a multi-channeled poly(methyl methacrylate) (PMMA) Microimmunosensor. Sensors 2010, 10, 876–889. [Google Scholar] [CrossRef]
- Ciumasu, I.M.; Kramer, P.M.; Weber, C.M.; Kolb, G.; Tiemann, D.; Windisch, S.; Frese, I.; Kettrup, A.A. A new, versatile field immunosensor for environmental pollutants—Development and proof of principle with TNT, diuron, and atrazine. Biosens. Bioelectron. 2005, 21, 354–364. [Google Scholar] [CrossRef]
- Nagatomo, K.; Kawaguchi, T.; Miura, N.; Toko, K.; Matsumoto, K. Development of a sensitive surface plasmon resonance immunosensor for detection of 2,4-dinitrotoluene with a novel oligo (ethylene glycol)-based sensor surface. Talanta 2009, 79, 1142–1148. [Google Scholar] [CrossRef]
- Wang, J. Electrochemical sensing of explosives. Electroanal 2007, 19, 415–423. [Google Scholar] [CrossRef]
- Cennamo, N.; D’Agostino, G.; Galatus, R.; Bibbo, L.; Pesavento, M.; Zeni, L. Sensors based on surface plasmon resonance in a plastic optical fiber for the detection of trinitrotoluene. Sens. Actuators B Chem. 2013, 188, 221–226. [Google Scholar] [CrossRef]
- Choodum, A.; Kanatharana, P.; Wongniramaikul, W.; Daeid, N.N. Using the iPhone as a device for a rapid quantitative analysis of trinitrotoluene in soil. Talanta 2013, 115, 143–149. [Google Scholar] [CrossRef]
- Gopalakrishnan, D.; Dichtel, W.R. Direct Detection of RDX Vapor Using a Conjugated Polymer Network. J. Am. Chem. Soc. 2013, 135, 8357–8362. [Google Scholar] [CrossRef]
- Ly, S.Y.; Kim, D.H.; Kim, M.H. Square-wave cathodic stripping voltammetric analysis of RDX using mercury-film plated glassy carbon electrode. Talanta 2002, 58, 919–926. [Google Scholar] [CrossRef]
- Trammell, S.A.; Melde, B.J.; Zabetakis, D.; Deschamps, J.R.; Dinderman, M.A.; Johnson, B.J.; Kusterbeck, A.W. Electrochemical detection of TNT with in-line pre-concentration using imprinted diethylbenzene-bridged periodic mesoporous organosilicas. Sens. Actuators B 2011, 155, 737–744. [Google Scholar] [CrossRef]
- Wang, J.; Bhada, R.K.; Lu, J.M.; MacDonald, D. Remote electrochemical sensor for monitoring TNT in natural waters. Anal. Chim. Acta 1998, 361, 85–91. [Google Scholar] [CrossRef]
- Wang, J.; Lu, F.; MacDonald, D.; Lu, J.M.; Ozsoz, M.E.S.; Rogers, K.R. Screen-printed voltammetric sensor for TNT. Talanta 1998, 46, 1405–1412. [Google Scholar] [CrossRef]
- Hilmi, A.; Luong, J.H.T. Electrochemical detectors prepared by electroless deposition for microfabricated electrophoresis chips. Anal. Chem. 2000, 72, 4677–4682. [Google Scholar] [CrossRef]
- Hilmi, A.; Luong, J.H.T. In-line coupling capillary electrochromatography with amperometric detection for analysis of explosive compounds. Electrophoresis 2000, 21, 1395–1404. [Google Scholar] [CrossRef]
- Sekhar, P.K.; Brosha, E.L.; Mukundan, R.; Linker, K.L.; Brusseau, C.; Garzon, F.H. Trace detection and discrimination of explosives using electrochemical potentiometric gas sensors. J. Hazard. Mater. 2011, 190, 125–132. [Google Scholar] [CrossRef]
- Johnson, B.J.; Melde, B.J.; Charles, P.T.; Cardona, D.C.; Dinderman, M.A.; Malanoski, A.P.; Qadri, S.B. Imprinted Nanoporous Organosilicas for Selective Adsorption of Nitroenergetic Targets. Langmuir 2008, 24, 9024–9029. [Google Scholar] [CrossRef]
- Melde, B.J.; Johnson, B.J.; Dinderman, M.A.; Deschamps, J.R. Macroporous periodic mesoporous organosilicas with diethylbenzene bridging groups. Microporous Mesoporous Mater. 2010, 130, 180–188. [Google Scholar] [CrossRef]
- Johnson, B.J.; Leska, I.A.; Medina, A.; Dyson, N.F.; Nasir, M.; Melde, B.J.; Taft, J.R.; Charles, P.T. Toward in situ monitoring of water contamination by nitroenergetic compounds. Sensors 2012, 12, 14953–14967. [Google Scholar] [CrossRef]
- Johnson, B.J.; Melde, B.J.; Charles, P.T.; Dinderman, M.A.; Malanoski, A.P.; Leska, I.A.; Qadri, S.A. Macroporous silica for concentration of nitroenergetic targets. Talanta 2010, 81, 1454–1460. [Google Scholar] [CrossRef]
- Johnson, B.J.; Melde, B.J.; Leska, I.A.; Charles, P.T.; Hewitt, A.D. Solid-phase extraction using hierarchical organosilicates for enhanced detection of nitroenergetic targets. J. Environ. Monit. 2011, 13, 1404–1409. [Google Scholar] [CrossRef]
- Armenta, S.; Alcala, M.; Blanco, M. A review of recent, unconventional applications of ion mobility spectrometry (IMS). Anal. Chim. Acta 2011, 703, 114–123. [Google Scholar] [CrossRef]
- Buxton, T.L.; Harrington, P.D. Trace explosive detection in aqueous samples by solid-phase extraction ion mobility spectrometry (SPE-IMS). Appl. Spectrosc. 2003, 57, 223–232. [Google Scholar] [CrossRef]
- Fetterolf, D.D.; Clark, T.D. Detection of trace explosive evidence by ion mobility spectrometry. J. Forensic Sci. 1993, 38, 28–39. [Google Scholar]
- Garofolo, F.; Migliozzi, V.; Roio, B. Application of ion mobility spectrometry to the identification of trace levels of explosives in the presence of complex matrices. Rapid Commun. Mass Spectrom. 1994, 8, 527–532. [Google Scholar] [CrossRef]
- Tscharntke, T.; Hochberg, M.E.; Rand, T.A.; Resh, V.H.; Krauss, J. Author sequence and credit for contributions in multiauthored publications. PLoS Biol. 2007, 5, e18. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Johnson, B.J.; Nasir, M.; Siefert, R.L.; Leska, I.A.; Erickson, J.S.; Charles, P.T.; Melde, B.J.; Taft, J.R. Electrochemical Detection with Preconcentration: Nitroenergetic Contaminants. Chemosensors 2014, 2, 131-144. https://doi.org/10.3390/chemosensors2020131
Johnson BJ, Nasir M, Siefert RL, Leska IA, Erickson JS, Charles PT, Melde BJ, Taft JR. Electrochemical Detection with Preconcentration: Nitroenergetic Contaminants. Chemosensors. 2014; 2(2):131-144. https://doi.org/10.3390/chemosensors2020131
Chicago/Turabian StyleJohnson, Brandy J., Mansoor Nasir, Ronald L. Siefert, Iwona A. Leska, Jeffrey S. Erickson, Paul T. Charles, Brian J. Melde, and Jenna R. Taft. 2014. "Electrochemical Detection with Preconcentration: Nitroenergetic Contaminants" Chemosensors 2, no. 2: 131-144. https://doi.org/10.3390/chemosensors2020131
APA StyleJohnson, B. J., Nasir, M., Siefert, R. L., Leska, I. A., Erickson, J. S., Charles, P. T., Melde, B. J., & Taft, J. R. (2014). Electrochemical Detection with Preconcentration: Nitroenergetic Contaminants. Chemosensors, 2(2), 131-144. https://doi.org/10.3390/chemosensors2020131