Investigating Consumer Preferences for Novel Grape Varieties Through Hedonic Sensory Analysis and Non-Destructive Near-Infrared Spectroscopy
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. NIR Analysis and Primary Methods
2.3. Statistical Analysis
2.4. Sensory Analysis
3. Results
3.1. Primary Analyses
3.2. Modeling
3.3. Sensory Analysis Outcome
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trapp, O.; Avia, K.; Borrelli, C.; Eibach, R.; Merdinoglu, D.; Töpfer, R. More sustainability in Europe’s vineyards—Using resistant grapevine varieties to reduce the input of pesticides. Plants People Planet 2025, 1–8. [Google Scholar] [CrossRef]
- Eibach, R.; Töpfer, R. Chaper 1 Traditional grapevine breeding techniques. In Grapevine Breeding Programs for the Wine Industry; Reynolds, A.G., Ed.; Elsevier Science: Burlington, ON, Canada, 2015; Volume 286, pp. 3–22. [Google Scholar]
- European Commission. Farm to Fork Strategy. 2020. Available online: https://food.ec.europa.eu/system/files/2020-05/f2f_action-plan_2020_strategy-info_en.pdf (accessed on 21 April 2025).
- Eurostat. The Use of Plant Protection Products in the European Union. Data 1992–2003, Euopean Union. 2007. Available online: https://ec.europa.eu/eurostat/documents/3217494/5611788/KS-76-06-669-EN.PDF.pdf/36c156f1-9fa9-4243-9bd3-f4c7c3c8286a?t=1414769021000 (accessed on 21 April 2025).
- Chapman, J.; Elbourne, A.; Khanh Truong, V.; Newman, L.; Gangadoo, S.; Rajapaksha Pathirannahalage, P.; Cheeseman, S.; Cozzolino, D. Sensomics—From conventional to functional NIR spectroscopy- Shining light over the aroma and taste of foods. Trends Food Sci. Technol. 2019, 91, 274–281. [Google Scholar] [CrossRef]
- Siesler, H.W. Near-Infrared Spectra, Interpretation. In Encyclopedia of Spectroscopy and Spectrometry, 3rd ed.; Lindon, J.C., Tranter, G.E., Koppenaal, D.W., Eds.; Academic Press: San Diego, CA, USA, 2017; pp. 30–39. [Google Scholar] [CrossRef]
- Cozzolino, D.; Roumeliotis, S.; Eglinton, J. Exploring the use of near infrared (NIR) reflectance spectroscopy to predict starch pasting properties in whole grain barley. Food Biophys. 2013, 8, 256–261. [Google Scholar] [CrossRef]
- Rolle, L.; Siret, R.; Segade, S.R.; Maury, C.; Gerbi, V.; Jourjon, F. Instrumental texture analysis parameters as markers of table-grape and winegrape quality: A review. Am. J. Enol. Vitic. 2012, 63, 11–28. [Google Scholar] [CrossRef]
- Huang, Y.; Kangas, L.J.; Rasco, B.A. Applications of artificial neural networks (ANNs) in food science. Crit. Rev. Food Sci. Nutr. 2007, 47, 113–126. [Google Scholar] [CrossRef]
- Lin, Y.; Ma, J.; Wang, Q.; Sun, D.W. Applications of machine learning techniques for enhancing non destructive food quality and safety detection. Crit. Rev. Food Sci. Nutr. 2023, 63, 1649–1669. [Google Scholar] [CrossRef]
- Basile, T.; Mallardi, D.; Cardone, M.F. Spectroscopy, a Tool for the Non-Destructive Sensory Analysis of Plant-Based Foods and Beverages: A Comprehensive Review. Chemosensors 2023, 11, 579. [Google Scholar] [CrossRef]
- Valnuvaut Project, Ursi Grape Description. Available online: https://www.valnuvaut.it/wp-content/uploads/2022/09/URSI-RS.pdf (accessed on 21 April 2025).
- Basile, T.; Forleo, L.R.; Mallardi, D.; Ferrulli, F.; Cardone, M.F.; Coletta, A.; Perniola, R. Are my kids going to eat it? Sensory analysis mediated by spectroscopic data to predict adolescent food choices. BIO Web Conf. 2023, 68, 04005. [Google Scholar] [CrossRef]
- Italian Institute of Services for the Agricultural Food Market (ISMEA) Report Based on Data Collected by the Italian National Institute of Statistics (Istat). Available online: https://www.uvadatavola.com/wp-content/uploads/2024/11/Tendenze_FRUTTA_Uvedatavola_211024__1_.pdf?_gl=1*uamx3x*_up*MQ..*_ga*MTU1Mzk5MDc5MS4xNzMyMjAwNDM1*_ga_0N9PWV8751*MTczMjIwMDQzNC4xLjEuMTczMjIwMDcyMi4wLjAuMA (accessed on 21 April 2025).
- Basile, T.; Marsico, A.D.; Perniola, R. NIR Analysis of Intact Grape Berries: Chemical and Physical Properties Prediction Using Multivariate Analysis. Foods 2021, 10, 113. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, X.; Huang, M.; Zhu, Q. An uncertainty sampling strategy based model updating method for soluble solid content and firmness prediction of apples from different years. Chemom. Intell. Lab. Syst. 2021, 217, 104426. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing, R Version 4.4.2; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 1 January 2025).
- Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- Luedeling, E. Package “chillR”, Version 0.72.2; Title Statistical Methods for Phenology Analysis in Temperate Fruit Trees; 6 January 2021. Available online: https://cran.r-project.org/web/packages/chillR/chillR.pdf (accessed on 1 January 2025).
- Wei, T.; Simko, V. R Package ‘Corrplot’, Visualization of a Correlation Matrix (Version 0.95); 2024. Available online: https://github.com/taiyun/corrplot (accessed on 1 January 2025).
- Wickham, H.; Chang, W.; Henry, L.; Pedersen, T.L.; Takahashi, K.; Wilke, C.; Woo, K.; Yutani, H.; Dunnington, D. Package “ggplot2”, Version 3.3.3; Title Create Elegant Data Visualisations Using the Grammar of Graphics; 30 December 2020. Available online: https://cran.r-project.org/web/packages/ggplot2/ggplot2.pdf (accessed on 1 January 2025).
- Falbel, D.; Allaire, J.J.; Chollet, F.; Tang, Y.; Van Der Bijl, W.; Studer, M.; Keydana, S. Package “keras”, Version 2.4.0; Title R Interface to “Keras”; 29 March 2021. Available online: https://cran.r-project.org/web/packages/keras/keras.pdf (accessed on 1 January 2025).
- Kucheryavskiy, S. mdatools—R package for chemometrics. Chemom. Intell. Lab. Syst. 2020, 198, 103937. [Google Scholar] [CrossRef]
- Hamner, B.; Frasco, M.; Le Dell, E. Package “Metrics’, Version 0.1.4; Title Evaluation Metrics for Machine Learning; 9 July 2018. Available online: https://cran.r-project.org/web/packages/Metrics/Metrics.pdf (accessed on 1 January 2025).
- Stevens, A.; Ramirez-Lopez, L. An Introduction to the Prospectr Package: R Package Vignette R Package Version 0.2.1. 2020. Available online: https://cran.r-project.org/web/packages/prospectr/vignettes/prospectr.html (accessed on 1 January 2025).
- Liaw, A.; Wiener, M. Classification and Regression by random Forest. R News 2002, 2, 18–22. [Google Scholar]
- Chalmers, P.; Sigal, M.; Oguzhan, O. Package “SimDesign”, Version 2.3; Title Structure for Organizing Monte Carlo Simulation Designs, 7 April 2021. Available online: https://cran.csiro.au/web/packages/SimDesign/SimDesign.pdf (accessed on 1 January 2025).
- Peryam, D.R.; Girardot, N.F. Advanced taste method. J. Food Eng. 1952, 24, 58–61. [Google Scholar]
- Everitt, M. Chapter 8—Consumer-Targeted Sensory Quality. In Global Issues in Food Science and Technology; Barbosa-Cánovas, G., Mortimer, A., Lineback, D., Spiess, W., Buckle, K., Colonna, P., Eds.; Academic Press: San Diego, CA, USA, 2009; pp. 117–128. [Google Scholar] [CrossRef]
- OIV Standard on Minimum Maturity Requirements for Table Grapes. RESOLUTION VITI 1/2008. Available online: https://www.oiv.int/node/3475#:~:text=Grapes%20with%20a%20Brix%20degree%20equal%20to%20or,the%20sugar%2Facid%20ratio%20are%20possible%20for%20particular%20varieties (accessed on 16 May 2025).
- Lin, M.; Sun, L.; Liu, X.; Fan, X.; Zhang, Y.; Jiang, J.; Liu, C. Genome-Wide Association Study of Grape Texture Based on Puncture. Int. J. Mol. Sci. 2024, 25, 13065. [Google Scholar] [CrossRef]
- Crespan, M.; Migliaro, D.; Vezzulli, S.; Zenoni, S.; Tornielli, G.B.; Giacosa, S.; Paissoni, M.A.; Segade, S.R.; Rolle, L. A major QTL is associated with berry grape texture characteristics. OENO One 2021, 55, 183–206. [Google Scholar] [CrossRef]
- Giacosa, S.; Zeppa, G.; Baiano, A.; Torchio, F.; Segade, S.R.; Gerbi, V.; Rolle, L. Assessment of sensory firmness and crunchiness of table grapes by acoustic and mechanical properties. Aust. J. Grape Wine Res. 2015, 21, 213–225. [Google Scholar] [CrossRef]
- Gorry, P.A. General least-squares smoothing and differentiation by the convolution (Savitzky-Golay) method. Anal. Chem. 1990, 62, 570–573. [Google Scholar] [CrossRef]
- May, R.J.; Maier, H.R.; Dandy, G.C.; Fernando, T.M.K.G. Non-linear variable selection for artificial neural networks using partial mutual information. Environ. Model. Softw. 2008, 23, 1312–1326. [Google Scholar] [CrossRef]
- Martelo-Vidal, M.J.; Vazquez, M. Application of artificial neural networks coupled to UV–VIS–NIR spectroscopy for the rapid quantification of wine compounds in aqueous mixtures. CyTA J. Food 2014, 13, 32–39. [Google Scholar] [CrossRef]
- Basile, T.; Marsico, A.D.; Perniola, R. Use of Artificial Neural Networks and NIR Spectroscopy for Non-Destructive Grape Texture Prediction. Foods 2022, 11, 281. [Google Scholar] [CrossRef] [PubMed]
- Boeriu, C.G.; Stolle-Smits, T.; van Dijk, C. Characterisation of cell wall pectins by near infrared spectroscopy. J. Near Infrared Spectrosc. 1998, 6, A299–A301. [Google Scholar] [CrossRef]
- Gestal, M.; Gómez-Carracedo, M.P.; Andrade, J.M.; Dorado, J.; Fernández, E.; Prada, D.; Pazos, A. Classification of apple beverages using artificial neural networks with previous variable selection. Anal. Chim. Acta 2004, 524, 225–234. [Google Scholar] [CrossRef]
- Alves de Oliveira, G.; de Castilhos, F.; Renard, C.M.-G.C.; Bureau, S. Comparison of NIR and MIR spectroscopic methods for determination of individual sugars, organic acids and carotenoids in passion fruit. Food Res. Int. 2014, 60, 154–162. [Google Scholar] [CrossRef]
- Basile, T.; Marsico, A.D.; Cardone, M.F.; Antonacci, D.; Perniola, R. FT-NIR Analysis of Intact Table Grape Berries to Understand Consumer Preference Driving Factors. Foods 2020, 9, 98. [Google Scholar] [CrossRef]
Parameter | European Researchers’ Night | LUV—Table Grape Fair | CREA-VE Open Day |
---|---|---|---|
TSS (°Brix) | 19.1 ± 0.7a | 21.2 ± 1.0b | 21.5 ± 0.8b |
TA (g/L tartaric acid equivalents) | 4.8 ± 0.6 | 5.0 ± 0.5 | 4.9 ± 0.4 |
Hardness (N) | 8.21 ± 0.54b | 8.10 ± 0.82b | 7.46 ± 1.11a |
Weight (g) | 4.303 ± 0.343 | 4.382 ± 0.491 | 4.182 ± 0.468 |
Diameter (mm) | 18.3 ± 0.9a | 18.6 ± 0.9a | 19.7 ± 0.8b |
Layer | Number of Neurons | Activation Function |
---|---|---|
Input | n + 1 | ReLU |
First hidden | (n + 1)/2 | ReLU |
Second hidden | (n + 1)/4 | ReLU |
Output | 1 | Linear |
Parameter | R2 | RMSE | Bias | RPD | Loss | MAE |
---|---|---|---|---|---|---|
TSS | 0.80 | 0.6 | 0.06 | 2.29 | 0.113 | 0.182 |
TA | 0.68 | 0.5 | −0.18 | 1.68 | 0.056 | 0.133 |
Hardness | 0.66 | 0.5 | 0.02 | 1.54 | 0.001 | 0.033 |
Parameter | European Researchers’ Night | LUV—Table Grape Fair | CREA-VE Open Day |
---|---|---|---|
TSS (°Brix) ‡ | 20.0 ± 1.1a | 20.9 ± 1.2b | 20.1 ± 1.0a |
TA (g/L tartaric acid equivalents) ‡ | 5.3 ± 0.8 | 5.3 ± 0.6 | 5.2 ± 0.8 |
Hardness (N) ‡ | 7.19 ± 0.95b | 6.84 ± 0.99a | 7.28 ± 6.74b |
Weight (g) † | 4.239 ± 0.216a | 4.404 ± 0.204b | 4.412 ± 0.173b |
Diameter (mm) † | 16.2 ± 0.9a | 17.4 ± 0.9c | 16.9 ± 1.1b |
Parameter | Score | Min | Max |
---|---|---|---|
European Researchers’ Night | 8 ± 1 | 3 | 9 |
LUV—Table Grape Fair | 7 ± 1 | 2 | 9 |
CREA-VE Open day | 8 ± 2 | 3 | 9 |
Reference | |||
---|---|---|---|
Prediction | 7 | 8 | 9 |
7 | 3 | 7 | 8 |
8 | 5 | 21 | 10 |
9 | 1 | 9 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basile, T.; Forleo, L.R.; Perniola, R. Investigating Consumer Preferences for Novel Grape Varieties Through Hedonic Sensory Analysis and Non-Destructive Near-Infrared Spectroscopy. Chemosensors 2025, 13, 238. https://doi.org/10.3390/chemosensors13070238
Basile T, Forleo LR, Perniola R. Investigating Consumer Preferences for Novel Grape Varieties Through Hedonic Sensory Analysis and Non-Destructive Near-Infrared Spectroscopy. Chemosensors. 2025; 13(7):238. https://doi.org/10.3390/chemosensors13070238
Chicago/Turabian StyleBasile, Teodora, Lucia Rosaria Forleo, and Rocco Perniola. 2025. "Investigating Consumer Preferences for Novel Grape Varieties Through Hedonic Sensory Analysis and Non-Destructive Near-Infrared Spectroscopy" Chemosensors 13, no. 7: 238. https://doi.org/10.3390/chemosensors13070238
APA StyleBasile, T., Forleo, L. R., & Perniola, R. (2025). Investigating Consumer Preferences for Novel Grape Varieties Through Hedonic Sensory Analysis and Non-Destructive Near-Infrared Spectroscopy. Chemosensors, 13(7), 238. https://doi.org/10.3390/chemosensors13070238