Recent Advances in Agricultural Sensors: Towards Precision and Sustainable Farming
Abstract
1. Introduction
2. Classification of Agricultural Sensors
2.1. Humidity Sensors
2.1.1. Capacitive Sensors
2.1.2. Resistive Sensors

2.2. Light Sensors

2.3. Gas Sensors

2.4. Others
3. Novel Agricultural Sensing Technology
3.1. Microneedle-Based Sensing Technology

3.2. Nanosensor Technology
3.2.1. FRET-Based Nanosensors

3.2.2. Electrochemical Nanosensors
3.2.3. Biomimetic Nanosensors
3.3. Wireless Sensor Networks
4. Applications of Agricultural Sensors
4.1. Agricultural Drought Detection
4.2. Soil Testing
4.2.1. Soil Temperature Testing
4.2.2. Soil PH Value Testing

4.3. Quality Testing of Agricultural Products
5. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adesipo, A.; Fadeyi, O.; Kuca, K.; Krejcar, O.; Maresova, P.; Selamat, A.; Adenola, M. Smart and Climate-Smart Agricultural Trends as Core Aspects of Smart Village Functions. Sensors 2020, 20, 5977. [Google Scholar] [CrossRef] [PubMed]
- Hou, P.F.; Yuan, W.S.; Li, G.H.; Petropoulos, E.; Xue, L.X.; Feng, Y.F.; Xue, L.H.; Yang, L.Z.; Ding, Y.F. Deep fertilization with controlled-release fertilizer for higher cereal yield and N utilization in paddies: The optimal fertilization depth. Agron. J. 2021, 113, 5027–5039. [Google Scholar] [CrossRef]
- Li, H.B.; Chen, L.W.; Zhang, Z.Y. A Study on the Utilization Rate and Influencing Factors of Small Agricultural Machinery: Evidence from 10 Hilly and Mountainous Provinces in China. Agriculture 2023, 13, 51. [Google Scholar] [CrossRef]
- Ahmed, B.; Shabbir, H.; Naqvi, S.R.; Peng, L. Smart Agriculture: Current State, Opportunities, and Challenges. IEEE Access 2024, 12, 144456–144478. [Google Scholar] [CrossRef]
- Wang, J.J.; Ahmad, W.; Hassan, M.M.; Zareef, M.; Viswadevarayalu, A.; Arslan, M.; Li, H.H.; Chen, Q.S. Landing microextraction sediment phase onto surface enhanced Raman scattering to enhance sensitivity and selectivity for chromium speciation in food and environmental samples. Food Chem. 2020, 323, 126812. [Google Scholar] [CrossRef]
- Reddy Maddikunta, P.K.; Hakak, S.; Alazab, M.; Bhattacharya, S.; Gadekallu, T.R.; Khan, W.Z.; Pham, Q.-V. Unmanned Aerial Vehicles in Smart Agriculture: Applications, Requirements, and Challenges. IEEE Sens. J. 2021, 21, 17608–17619. [Google Scholar] [CrossRef]
- Rasool, G.; Guo, X.P.; Wang, Z.C.; Chen, S.; Hamoud, Y.A.; Javed, Q. Response of Fertigation Under Buried Straw Layer on Growth, Yield, and Water-fertilizer Productivity of Chinese Cabbage Under Greenhouse Conditions. Commun. Soil Sci. Plant Anal. 2019, 50, 1030–1043. [Google Scholar] [CrossRef]
- Shaikh, F.K.; Karim, S.; Zeadally, S.; Nebhen, J. Recent Trends in Internet-of-Things-Enabled Sensor Technologies for Smart Agriculture. IEEE Internet Things J. 2022, 9, 23583–23598. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, R.; Wu, J.; Zhu, N. Scale measurement and economic effect evaluation of smart agriculture in China. Socio-Econ. Plan. Sci. 2025, 99, 102195. [Google Scholar] [CrossRef]
- Han, F.K.; Huang, X.Y.; Aheto, J.H.; Zhang, D.J.; Feng, F. Detection of Beef Adulterated with Pork Using a Low-Cost Electronic Nose Based on Colorimetric Sensors. Foods 2020, 9, 193. [Google Scholar] [CrossRef]
- Baek, S.; Lee, J.J.; Shin, J.; Kim, J.H.; Hong, S.; Kim, S. Resistive Water Level Sensors Based on AgNWs/ PEDOT:PSS-g-PEGME Hybrid Film for Agricultural Monitoring Systems. ACS omega 2022, 7, 15459–15466. [Google Scholar] [CrossRef] [PubMed]
- Gorissen, L.; Konrad, K.; Turnhout, E. Sensors and sensing practices: Shaping farming system strategies toward agricultural sustainability. Agric. Hum. Values 2025, 42, 1477–1495. [Google Scholar] [CrossRef]
- Rollo, A.; Cameron, J.; Dias, J.D.F.; Cichocki, R.; Synkiewicz-Musialska, B.; Ren, J.; Zhang, S.; Kettle, J. Hybrid Agricultural Monitoring System with Detachable, Biodegradable, and Printed pH Sensors with a Recyclable Wireless Sensor Network for Sustainable Sensor Systems. Acs Appl. Electron. Mater. 2025, 7, 2731–2740. [Google Scholar] [CrossRef]
- Mao, H.P.; Du, X.X.; Yan, Y.T.; Zhang, X.D.; Ma, G.X.; Wang, Y.F.; Liu, Y.; Wang, B.; Yang, X.Y.; Shi, Q. Highly sensitive detection of daminozide using terahertz metamaterial sensors. Int. J. Agric. Biol. Eng. 2022, 15, 180–188. [Google Scholar] [CrossRef]
- Bayrakdar, M.E. Enhancing sensor network sustainability with fuzzy logic based node placement approach for agricultural monitoring. Comput. Electron. Agric. 2020, 174, 105461. [Google Scholar] [CrossRef]
- Bogue, R. Sensors key to advances in precision agriculture. Sens. Rev. 2017, 37, 1–6. [Google Scholar] [CrossRef]
- Hamouda, Y.E.M.; Msallam, M.M. Smart heterogeneous precision agriculture using wireless sensor network based on extended Kalman filter. Neural Comput. Appl. 2019, 31, 5653–5669. [Google Scholar] [CrossRef]
- Lu, X.; Jayakumar, K.; Wen, Y.; Hojjati-Najafabadi, A.; Duan, X.; Xu, J. Recent advances in metal-organic framework (MOF)-based agricultural sensors for metal ions: A review. Microchim. Acta 2024, 191, 58. [Google Scholar] [CrossRef]
- Sun, N.; Fan, B.; Ding, Y.; Liu, Y.; Bi, Y.; Seglah, P.A.; Gao, C. Analysis of the Development Status and Prospect of China’s Agricultural Sensor Market under Smart Agriculture. Sensors 2023, 23, 3307. [Google Scholar] [CrossRef]
- Zhang, J. Digital Development Strategy of Agricultural Planting and Breeding Enterprises Based on Intelligent Sensors. Wirel. Commun. Mob. Comput. 2022, 2022, 6495191. [Google Scholar] [CrossRef]
- Park, J.E.; Yonet-Tanyeri, N.; Vander Ende, E.; Henry, A.-I.; White, B.E.P.; Mrksich, M.; Van Duyne, R.P. Plasmonic Microneedle Arrays for in Situ Sensing with Surface Enhanced Raman Spectroscopy (SERS). Nano Lett. 2019, 19, 6862–6868. [Google Scholar] [CrossRef]
- Choi, S.; Leong, V.; Alagappan, G.; Krivitsky, L. Enhancing Optical Readout from Diamond AFM Tips for Quantum Nanosensing. ACS Photonics 2018, 5, 4244–4248. [Google Scholar] [CrossRef]
- Li, Z.; Zhong, A. Resource Allocation in Wireless Powered Virtualized Sensor Networks. IEEE Access 2020, 8, 40327–40336. [Google Scholar] [CrossRef]
- Silveira, J.A.G.; Sousa, R.H.V. Looking for a systemic concept and physiological diagnosis of a plant stress state. Theor. Exp. Plant Physiol. 2024, 36, 523–533. [Google Scholar] [CrossRef]
- Jiang, N.; Cai, D.; He, L.; Zhong, N.; Wen, H.; Zhang, X.; Wu, Z. A Facile Approach To Remediate the Microenvironment of Saline-Alkali Soil. ACS Sustain. Chem. Eng. 2015, 3, 374–380. [Google Scholar] [CrossRef]
- Song, Y.; Lv, C.; Liu, J. Quality and safety traceability system of agricultural products based on Multi-agent. J. Intell. Fuzzy Syst. 2018, 35, 2731–2740. [Google Scholar] [CrossRef]
- Gebbers, R.; Adamchuk, V.I. Precision Agriculture and Food Security. Science 2010, 327, 828–831. [Google Scholar] [CrossRef]
- Maraveas, C.; Bartzanas, T. Sensors for Structural Health Monitoring of Agricultural Structures. Sensors 2021, 21, 314. [Google Scholar] [CrossRef] [PubMed]
- Aung, Y.K.K.; Timoshenkov, S.P.; Simonov, B.M.; Riabyshenkov, A.C. Analysis of the Suspension Elements for the Sensitive Element of a Micromechanical Accelerometer. In Proceedings of the 2021 International Seminar on Electron Devices Design and Production (SED), Prague, Czech Republic, 27–28 April 2021. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, Z.; Liu, L.; Ren, W.; Liu, W.; Gou, Y.; Ren, X. Research on the Output Characteristics of Energy Conversion Elements under External Excitation. Micromachines 2023, 14, 549. [Google Scholar] [CrossRef]
- Chen, Y.; Fulginiti, I.; Mendl, C.B. Reducing mid-circuit measurements via probabilistic circuits. In Proceedings of the 2024 IEEE International Conference on Quantum Computing and Engineering (QCE), Montreal, QC, Canada, 15–20 September 2024. [Google Scholar] [CrossRef]
- Blank, T.A.; Eksperiandova, L.P.; Belikov, K.N. Recent trends of ceramic humidity sensors development: A review. Sens. Actuators B Chem. 2016, 228, 416–442. [Google Scholar] [CrossRef]
- Tulliani, J.-M.; Inserra, B.; Ziegler, D. Carbon-Based Materials for Humidity Sensing: A Short Review. Micromachines 2019, 10, 232. [Google Scholar] [CrossRef]
- Molina-Lopez, F.; Briand, D.; de Rooij, N.F. All additive inkjet printed humidity sensors on plastic substrate. Sens. Actuators B Chem. 2012, 166, 212–222. [Google Scholar] [CrossRef]
- Yang, M.Y.; Huang, M.L.; Li, Y.Z.; Feng, Z.S.; Huang, Y.; Chen, H.J.; Xu, Z.Q.; Liu, H.G.; Wang, Y. Printing assembly of flexible devices with oxidation stable MXene for high performance humidity sensing applications. Sens. Actuators B Chem. 2022, 364, 131867. [Google Scholar] [CrossRef]
- Qian, J.T.; Tan, R.Q.; Feng, M.X.; Shen, W.F.; Lv, D.W.; Song, W.J. Humidity Sensing Using Polymers: A Critical Review of Current Technologies and Emerging Trends. Chemosensors 2024, 12, 230. [Google Scholar] [CrossRef]
- Niu, H.; Yue, W.; Li, Y.; Yin, F.; Gao, S.; Zhang, C.; Kan, H.; Yao, Z.; Jiang, C.; Wang, C. Ultrafast-response/recovery capacitive humidity sensor based on arc-shaped hollow structure with nanocone arrays for human physiological signals monitoring. Sens. Actuators B Chem. 2021, 334, 129637. [Google Scholar] [CrossRef]
- Yu, H.; Liang, J.-G.; Wang, C.; Liu, C.-C.; Bai, B.; Meng, F.-Y.; Zou, D.-Q.; Ali, L.; Jing, C.-Q.; Zhao, M.; et al. Target properties optimization on capacitive-type humidity sensor: Ingredients hybrid and integrated passive devices fabrication. Sens. Actuators B Chem. 2021, 340, 129883. [Google Scholar] [CrossRef]
- Zampetti, E.; Pantalei, S.; Pecora, A.; Valletta, A.; Maiolo, L.; Minotti, A.; Macagnano, A.; Fortunato, G.; Bearzotti, A. Design and optimization of an ultra thin flexible capacitive humidity sensor. Sens. Actuators B Chem. 2009, 143, 302–307. [Google Scholar] [CrossRef]
- Lu, Y.Z.; Xu, W.X.; Leng, J.Y.; Liu, X.Y.; Xu, H.Y.; Ding, H.N.; Zhou, J.F.; Cui, L.F. Review and Research Prospects on Additive Manufacturing Technology for Agricultural Manufacturing. Agriculture 2024, 14, 1207. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A. Using additive manufacturing applications for design and development of food and agricultural equipments. Int. J. Mater. Prod. Technol. 2019, 58, 225–238. [Google Scholar] [CrossRef]
- Romero-Ocana, I.; Fernandez Delgado, N.; Molina, S.I. Biomass waste from rice and wheat straw for developing composites by stereolithography additive manufacturing. Ind. Crops Prod. 2022, 189, 115832. [Google Scholar] [CrossRef]
- Buvailo, A.; Xing, Y.; Hines, J.; Borguet, E. Thin polymer film based rapid surface acoustic wave humidity sensors. Sens. Actuators B Chem. 2011, 156, 444–449. [Google Scholar] [CrossRef]
- Harito, C.; Utari, L.; Putra, B.R.; Yuliarto, B.; Purwanto, S.; Zaidi, S.Z.J.; Bavykin, D.V.; Marken, F.; Walsh, F.C. Review—The Development of Wearable Polymer-Based Sensors: Perspectives. J. Electrochem. Soc. 2020, 167, 037566. [Google Scholar] [CrossRef]
- Li, Y.F.; Chen, A.N.; Su, J.; Li, Y.J.; Zhang, Y.; Li, Z.Q.; Zhou, S.X.; He, J.H.; Cao, Z.W.B.; Shi, Y.S.; et al. An overview on ceramic multi-material additive manufacturing: Progress and challenges. Int. J. Extrem. Manuf. 2025, 7, 042005. [Google Scholar] [CrossRef]
- Zhang, Z.P.; Zhang, Y.; Jayan, H.; Gao, S.P.; Zhou, R.Y.; Yosri, N.; Zou, X.B.; Guo, Z.M. Recent and emerging trends of metal-organic frameworks (MOFs)-based sensors for detecting food contaminants: A critical and comprehensive review. Food Chem. 2024, 448, 139051. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Y.W.; Li, Y.H.; Li, Y.X.; Li, Z.H.; Zhang, W.; Zou, X.B.; Shi, J.Y.; Huang, X.W.; Liu, C.; et al. Rapid detection of cadmium ions in meat by a multi-walled carbon nanotubes enhanced metal-organic framework modified electrochemical sensor. Food Chem. 2021, 357, 129762. [Google Scholar] [CrossRef]
- Li, H.; Lu, Q.; Shi, J.; Zhang, X.; Sun, P.; Yan, X.; Lu, G. Enzyme-Engineered Metal-Organic Frameworks for the Construction of Organophosphorus Pesticide Biosensor. Adv. Funct. Mater. 2024, 34, 2309383. [Google Scholar] [CrossRef]
- Prasetya, N.; Okur, S. Investigation of the free-base Zr-porphyrin MOFs as relative humidity sensors for an indoor setting. Sens. Actuators A-Phys. 2024, 377, 115713. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, G.T.; Chen, J.B.; Xie, Y.; Jiang, H.; Sun, L.N. Upconversion Luminescent Humidity Sensors Based on Lanthanide-Doped MOFs. Chemosensors 2022, 10, 66. [Google Scholar] [CrossRef]
- Butova, V.V.; Pankin, I.A.; Burachevskaya, O.A.; Vetlitsyna-Novikova, K.S.; Soldatov, A.V. New fast synthesis of MOF-801 for water and hydrogen storage: Modulator effect and recycling options. Inorganica Chim. Acta 2021, 514, 120025. [Google Scholar] [CrossRef]
- Wu, K.; Fei, T.; Zhang, T. Humidity Sensors Based on Metal-Organic Frameworks. Nanomaterials 2022, 12, 4208. [Google Scholar] [CrossRef]
- Shi, B.Q.; Zhang, X.A.; Li, W.T.; Liang, N.N.; Hu, X.T.; Xiao, J.B.; Wang, D.Y.; Zou, X.B.; Shi, J.Y. An intrinsic dual-emitting fluorescence sensing toward tetracycline with self-calibration model based on luminescent lanthanide-functionalized metal-organic frameworks. Food Chem. 2023, 400, 133995. [Google Scholar] [CrossRef]
- Gan, Z.Y.; Zhang, W.; Arslan, M.; Hu, X.T.; Zhang, X.A.; Li, Z.H.; Shi, J.Y.; Zou, X.B. Ratiometric Fluorescent Metal-Organic Framework Biosensor for Ultrasensitive Detection of Acrylamide. J. Agric. Food Chem. 2022, 70, 10065–10074. [Google Scholar] [CrossRef]
- Haque, M.A.; Syed, A.; Akhtar, F.H.; Shevate, R.; Singh, S.; Peinemann, K.-V.; Baran, D.; Wu, T. Giant Humidity Effect on Hybrid Halide Perovskite Microstripes: Reversibility and Sensing Mechanism. ACS Appl. Mater. Interfaces 2019, 11, 29821–29829. [Google Scholar] [CrossRef]
- Mahlknecht, J.; Wuzella, G.; Lammer, H.; Khalifa, M. A smart functional surfactant activated conductive polymer coated on paper with ultra-sensitive humidity sensing characteristics. Mater. Adv. 2022, 3, 1804–1815. [Google Scholar] [CrossRef]
- Zajt, T.; Jasinski, G.; Chachulski, B. Electrical properties of polymer humidity sensor based on polyethyleneimine. In Optoelectronic and Electronic Sensors V; SPIE: Bellingham, WA, USA, 2002. [Google Scholar]
- Fischer, S.A.; Gunlycke, D. Analysis of Correlated Dynamics in the Grotthuss Mechanism of Proton Diffusion. J. Phys. Chem. B 2019, 123, 5536–5544. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.K.; Zhao, L.; Luo, X.; Guo, J.X.; Liu, X.J. Perceptual Soft End-Effectors for Future Unmanned Agriculture. Sensors 2023, 23, 7905. [Google Scholar] [CrossRef]
- Al-Ghamdi, S.A. Facile synthesis of cerium doped Co-Mn-FeO nano ferrites as highly sensitive and fast response humidity sensors at room temperature. J. King Saud Univ. Sci. 2024, 36, 103537. [Google Scholar] [CrossRef]
- Al-Hamry, A.; Lu, T.Q.; Chen, H.R.; Adiraju, A.; Nasraoui, S.; Brahem, A.; Bajuk-Bogdanovic, D.; Weheabby, S.; Pasti, I.A.; Kanoun, O. Ultra-Sensitive and Fast Humidity Sensors Based on Direct Laser-Scribed Graphene Oxide/Carbon Nanotubes Composites. Nanomaterials 2023, 13, 1473. [Google Scholar] [CrossRef] [PubMed]
- Mihailov, S.J.; Ding, H.M.; Szabo, K.; Hnatovsky, C.; Walker, R.B.; Lu, P.; De Silva, M. High Sensitivity Fiber Bragg Grating Humidity Sensors Made With Through-the-Coating Femtosecond Laser Writing and Polyimide Coating Thickening. Ieee Sens. Lett. 2024, 8, 1–4. [Google Scholar] [CrossRef]
- Zhang, M.; Jia, H.G.; Wang, S.Y.; Zhang, Z.Y. Designing High Performance Carbon/ZnSn(OH)6-Based Humidity Sensors. Sensors 2024, 24, 3532. [Google Scholar] [CrossRef] [PubMed]
- Moorthy, S.G.; Bouvet, M. Effects of Visible Light on Gas Sensors: From Inorganic Resistors to Molecular Material-Based Heterojunctions. Sensors 2024, 24, 1571. [Google Scholar] [CrossRef]
- Xie, D.B.; Chen, L.; Liu, L.C.; Chen, L.Q.; Wang, H. Actuators and Sensors for Application in Agricultural Robots: A Review. Machines 2022, 10, 913. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Sarkar, S.; Tsuda, T.; Chae, S.; Knapp, A.; Nitschke, M.; Das, A.; Wiessner, S.; König, T.A.F.; Fery, A. Plasmonic Photoresistor Based on Interconnected Metal-Semiconductor Grating. Adv. Funct. Mater. 2023, 33, 2210172. [Google Scholar] [CrossRef]
- Pennel, Z.; McGeehan, M.; Ong, K.G. An Optoelectronics-Based Compressive Force Sensor with Scalable Sensitivity. Sensors 2023, 23, 6513. [Google Scholar] [CrossRef]
- Kaya, C. Intelligent Environmental Control in Plant Factories: Integrating Sensors, Automation, and AI for Optimal Crop Production. Food Energy Secur. 2025, 14, e70026. [Google Scholar] [CrossRef]
- Hong, S.M.; Kim, H.O.; Kim, C.G. A Study on the Possibility of Measuring Sludge Sedimentation Using Contrast Detection Characteristics of CdS Photoresistors. Energies 2021, 14, 7817. [Google Scholar] [CrossRef]
- Liu, J.; Xu, Y.Z.; Yi, F.T. Fabrication and photosensitivity of ZnO/CdS/silica nanopillars based photoresistor. J. Mater. Sci.-Mater. Electron. 2021, 32, 11326–11333. [Google Scholar] [CrossRef]
- Rokni, E.; Simon, J.C. The effect of crystal composition and environment on the color Doppler ultrasound twinkling artifact. Phys. Med. Biol. 2023, 68, 035021. [Google Scholar] [CrossRef]
- Seddon, J.P.; Natrella, M.; Lin, X.L.; Graham, C.; Renaud, C.C.; Seeds, A.J. Photodiodes for Terahertz Applications. IEEE J. Sel. Top. Quantum Electron. 2022, 28, 1–12. [Google Scholar] [CrossRef]
- Goll, B.; Schneider-Hornstein, K.; Zimmermann, H. Ultra-Low Capacitance Spot PIN Photodiodes. IEEE Photonics J. 2023, 15, 1–6. [Google Scholar] [CrossRef]
- Chen, Q.T.; Zhang, X.P.; Sharawi, M.S.; Kashyap, R. Advances in High-Speed, High-Power Photodiodes: From Fundamentals to Applications. Appl. Sci. 2024, 14, 3410. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, T.; He, P.H.; Ding, Y.H.; Chen, Q.S. Rapid measurement of fatty acid content during flour storage using a color-sensitive gas sensor array: Comparing the effects of swarm intelligence optimization algorithms on sensor features. Food Chem. 2021, 338, 127828. [Google Scholar] [CrossRef]
- Li, Y.H.; Li, Y.X.; Shi, J.Y.; Li, Z.H.; Wang, X.; Hu, X.T.; Gong, Y.Y.; Zou, X.B. A Novel Gas Sensor for Detecting Pork Freshness Based on PANI/AgNWs/Silk. Foods 2022, 11, 2372. [Google Scholar] [CrossRef]
- Yin, L.M.; Jayan, H.; Cai, J.R.; El-Seedi, H.R.; Guo, Z.M.; Zou, X.B. Spoilage Monitoring and Early Warning for Apples in Storage Using Gas Sensors and Chemometrics. Foods 2023, 12, 2968. [Google Scholar] [CrossRef]
- Santhanam, K.S.V.; Ahamed, N.N.N. Greenhouse Gas Sensors Fabricated with New Materials for Climatic Usage: A Review. Chemengineering 2018, 2, 38. [Google Scholar] [CrossRef]
- Teh, A.S.; Bien, D.C.S.; Lee, H.W.; Chen, S.K.; Lee, M.W. In-Situ Grown Multi-Walled Carbon Nanotube on Interdigitated Electrodes for Carbon Dioxide Sensing. J. Eng. Sci. Technol. 2019, 14, 241–248. [Google Scholar]
- Honeycutt, W.T.; Ley, M.T.; Materer, N.F. Precision and Limits of Detection for Selected Commercially Available, Low-Cost Carbon Dioxide and Methane Gas Sensors. Sensors 2019, 19, 3157. [Google Scholar] [CrossRef] [PubMed]
- Chachuli, S.A.M.; Ying, W.H.; Shamsudin, N.H.; Coban, O. Real-time Monitoring of Carbon Dioxide with IoT ThingSpeak using TiO2 Thick Film Gas Sensor. J. Eng. Technol. Sci. 2024, 56, 602. [Google Scholar] [CrossRef]
- Jo, S.; Kim, J.; Kim, Y.; Kwon, O.S. Detection of Carbon Dioxide Using Cucurbit[6]uril-Functionalized Gold Nanorod Gas Sensor Based on Localized Surface Plasmon Resonance. Appl. Sci. Converg. Technol. 2021, 30, 186–190. [Google Scholar] [CrossRef]
- Wang, X.K.; Zhang, T. An Overview: A Design Strategy for Dioxide Carbon QCM Gas Sensor Based on MOFs or COFs. Adv. Sens. Res. 2025, 4, 2400170. [Google Scholar] [CrossRef]
- Bumjun, P.; Kim, S.; Kwak, C.H.; Shanmugam, K.R.; Kyu, H.Y.; Cho, Y.; Suk, H.Y. Visual colorimetric detection of ammonia under gaseous and aqueous state: Approach on cesium lead bromide perovskite-loaded porous electrospun nanofibers. J. Ind. Eng. Chem. 2021, 97, 515–522. [Google Scholar] [CrossRef]
- Fobelets, K.; Panteli, C.; Sydoruk, O.; Li, C. Ammonia sensing using arrays of silicon nanowires and graphene. J. Semicond. 2018, 39, 063001. [Google Scholar] [CrossRef]
- Moshayedi, A.J.; Khan, A.S.; Hu, J.D.; Nawaz, A.; Zhu, J.X. E-Nose-Driven Advancements in Ammonia Gas Detection: A Comprehensive Review from Traditional to Cutting-Edge Systems in Indoor to Outdoor Agriculture. Sustainability 2023, 15, 11601. [Google Scholar] [CrossRef]
- Wang, L.; Yao, X.Q.; Zhang, Y.; Luo, G.Q.; Wang, B.; Yu, X.H. Progress and perspectives of self-powered gas sensors. Next Mater. 2024, 2, 100092. [Google Scholar] [CrossRef]
- Chiang, C.-L.; Huang, Y.-Y.; Liu, T.-Y.; Chen, Y.-Y.; Soppera, O.; Chen, L.-Y.; Meng, H.-F.; Zan, H.-W. Two-Minute Onsite Detection of Agricultural Water Nitrogen Pollution with an Ammonia Gas Sensing System. ACS EST Water 2025, 5, 2965–2974. [Google Scholar] [CrossRef]
- Garcia, P.; Stockler, A.H.; Feilberg, A.; Kamp, J.N. Investigation of non-target gas interferences on a multi-gas cavity ring-down spectrometer. Atmos. Environ.-X 2024, 22, 100258. [Google Scholar] [CrossRef]
- Molleman, B.; Alessi, E.; Krol, D.; Morton, P.A.; Daly, K. Application of metal oxide semiconductor for detection of ammonia emissions from agricultural sources. Sens. BIO-Sens. Res. 2022, 38, 100541. [Google Scholar] [CrossRef]
- Kenarsari, A.E.; Vitton, S.J.; Beard, J.E. Tactile Pressure Sensors to Measure Ground Pressure from Tractor Tire Loads. Geotech. Test. J. 2018, 41, 1166–1174. [Google Scholar] [CrossRef]
- Long, C.; Xie, X.; Fu, J.; Wang, Q.; Guo, H.; Zeng, W.; Wei, N.; Wang, S.; Xiong, Y. Supercapacitive brophene-graphene aerogel as elastic-electrochemical dielectric layer for sensitive pressure sensors. J. Colloid Interface Sci. 2021, 601, 355–364. [Google Scholar] [CrossRef]
- Wei, Y.; Cai, L.; Fang, H.; Chen, H. Fruit recognition and classification based on tactile information of flexible hand. Sens. Actuators A-Phys. 2024, 370, 115224. [Google Scholar] [CrossRef]
- Musa, P.; Sugeru, H.; Wibowo, E.P. Wireless Sensor Networks for Precision Agriculture: A Review of NPK Sensor Implementations. Sensors 2024, 24, 51. [Google Scholar] [CrossRef]
- Nifong, R.L.; Taylor, J.M. Vegetation and Residence Time Interact to Influence Metabolism and Net Nutrient Uptake in Experimental Agricultural Drainage Systems. Water 2021, 13, 1416. [Google Scholar] [CrossRef]
- Riedel, V.; Hinck, S.; Peiter, E.; Ruckelshausen, A. Handling of Ion-Selective Field-Effect Transistors (ISFETs) on Automatic Measurements in Agricultural Applications Under Real-Field Conditions. Electronics 2024, 13, 4958. [Google Scholar] [CrossRef]
- Zuidhof, M.J. Precision livestock feeding: Matching nutrient supply with nutrient requirements of individual animals. J. Appl. Poult. Res. 2020, 29, 11–14. [Google Scholar] [CrossRef]
- Abdullah, H.; Phairatana, T.; Jeerapan, I. Tackling the challenges of developing microneedle-based electrochemical sensors. Microchim. Acta 2022, 189, 440. [Google Scholar] [CrossRef] [PubMed]
- Dervisevic, M.; Dervisevic, E.; Esser, L.; Easton, C.D.; Cadarso, V.J.; Voelcker, N.H. Wearable microneedle array-based sensor for transdermal monitoring of pH levels in interstitial fluid. Biosens. Bioelectron. 2023, 222, 114955. [Google Scholar] [CrossRef] [PubMed]
- Gowers, S.A.N.; Freeman, D.M.E.; Rawson, T.M.; Rogers, M.L.; Wilson, R.C.; Holmes, A.H.; Cass, A.E.; O’Hare, D. Development of a Minimally Invasive Microneedle-Based Sensor for Continuous Monitoring of β-Lactam Antibiotic Concentrations in Vivo. ACS Sens. 2019, 4, 1072–1080. [Google Scholar] [CrossRef]
- Miller, P.R.; Narayan, R.J.; Polsky, R. Microneedle-based sensors for medical diagnosis. J. Mater. Chem. B 2016, 4, 1379–1383. [Google Scholar] [CrossRef]
- Ju, J.; Li, L.; Regmi, S.; Zhang, X.; Tang, S. Microneedle-Based Glucose Sensor Platform: From Vitro to Wearable Point-of-Care Testing Systems. Biosensors 2022, 12, 606. [Google Scholar] [CrossRef]
- Omar, R.; Zheng, Y.; Haick, H. Protocol to fabricate wearable stretchable microneedle-based sensors. STAR Protoc. 2023, 4, 102751. [Google Scholar] [CrossRef]
- Sun, H.; Zheng, Y.; Shi, G.; Haick, H.; Zhang, M. Wearable Clinic: From Microneedle-Based Sensors to Next-Generation Healthcare Platforms. Small 2023, 19, 2207539. [Google Scholar] [CrossRef] [PubMed]
- Tasca, F.; Tortolini, C.; Bollella, P.; Antiochia, R. Microneedle-based electrochemical devices for transdermal biosensing: A review. Curr. Opin. Electrochem. 2019, 16, 42–49. [Google Scholar] [CrossRef]
- Teymourian, H.; Tehrani, F.; Mahato, K.; Wang, J. Lab under the Skin: Microneedle Based Wearable Devices. Adv. Healthc. Mater. 2021, 10, 2002255. [Google Scholar] [CrossRef]
- Kumari, S.; Talreja, N.; Chauhan, D.; Ashfaq, M. Microneedle (MN)-based sensing technology: An innovative solution for agriculture. Mater. Adv. 2024, 5, 8745–8754. [Google Scholar] [CrossRef]
- Chinnadayyala, S.R.; Park, K.D.; Cho, S. Review-In Vivo and In Vitro Microneedle Based Enzymatic and Non-Enzymatic Continuous Glucose Monitoring Biosensors. Ecs J. Solid State Sci. Technol. 2018, 7, Q3159–Q3171. [Google Scholar] [CrossRef]
- Haider, K.; Dalton, C. Recent Developments in Microneedle Biosensors for Biomedical and Agricultural Applications. Micromachines 2025, 16, 929. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.L.; Wu, X.; Wang, P.P.; Luo, X.L.; Lv, S.P. Advances in microneedles for transdermal diagnostics and sensing applications. Microchim. Acta 2024, 191, 406. [Google Scholar] [CrossRef]
- Li, J.; Wei, M.; Gao, B.B. A Review of Recent Advances in Microneedle-Based Sensing within the Dermal ISF That Could Transform Medical Testing. Acs Sens. 2024, 9, 1149–1161. [Google Scholar] [CrossRef]
- Ben Halima, H.; Lakard, B.; Jaffrezic-Renault, N. Microneedle-Based Sensors for Wearable Diagnostics. Chemosensors 2025, 13, 68. [Google Scholar] [CrossRef]
- Tortolini, C.; Cass, A.E.G.; Pofi, R.; Lenzi, A.; Antiochia, R. Microneedle-based nanoporous gold electrochemical sensor for real-time catecholamine detection. Microchim. Acta 2022, 189, 180. [Google Scholar] [CrossRef] [PubMed]
- Valdes-Ramirez, G.; Li, Y.-C.; Kim, J.; Jia, W.; Bandodkar, A.J.; Nunez-Flores, R.; Miller, P.R.; Wu, S.-Y.; Narayan, R.; Windmiller, J.R.; et al. Microneedle-based self-powered glucose sensor. Electrochem. Commun. 2014, 47, 58–62. [Google Scholar] [CrossRef]
- Wang, F.; Zhu, Y.; Qian, L.; Yin, Y.H.; Yuan, Z.Y.; Dai, Y.T.; Zhang, T.; Yang, D.Y.; Qiu, F.X. Lamellar Ti 3 C 2 MXene composite decorated with platinum-doped MoS 2 nanosheets as electrochemical sensing functional platform for highly sensitive analysis of organophosphorus pesticides. Food Chem. 2024, 459, 140379. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, Y.Z.; Zhou, R.Y.; He, Y.; Wu, Y.T.; Yi, Y.H.; Zhu, G.B. Highly sensitive electrochemical detection of paraoxon ethyl in water and fruit samples based on defect-engineered graphene nanoribbons modified electrode. J. Food Meas. Charact. 2022, 16, 2596–2603. [Google Scholar] [CrossRef]
- Wang, L.; Haruna, S.A.; Ahmad, W.; Wu, J.Z.; Chen, Q.S.; Ouyang, Q. Tunable multiplexed fluorescence biosensing platform for simultaneous and selective detection of paraquat and carbendazim pesticides. Food Chem. 2022, 388, 132950. [Google Scholar] [CrossRef]
- Floare-Avram, C.V.; Molnar, C.; Covaciu, F.-D. Integrated UHPLC-PDA and GC-ECD approaches for detecting pesticide residues in frozen fruits and vegetables: Unveiling contaminants and assessing health risks. J. Food Compos. Anal. 2025, 145, 107715. [Google Scholar] [CrossRef]
- Luo, L.; Chen, D.; Yan, X.; Kang, C.; Tian, W.; Liu, Q.; Yang, X.; Chen, T.; Long, Y. Dynamic visual monitoring of triazole pesticide residues and penetration behavior in fruits and vegetables by surface-enhanced Raman spectroscopy combined with chemometrics. Microchem. J. 2025, 214, 114057. [Google Scholar] [CrossRef]
- Yi, X.; Yuan, Z.; Yu, X.; Zheng, L.; Wang, C. Novel Microneedle Patch-Based Surface-Enhanced Raman Spectroscopy Sensor for the Detection of Pesticide Residues. ACS Appl. Mater. Interfaces 2023, 15, 4873–4882. [Google Scholar] [CrossRef]
- Hassan, M.M.; Xu, Y.; He, P.H.; Zareef, M.; Li, H.H.; Chen, Q.S. Simultaneous determination of benzimidazole fungicides in food using signal optimized label-free HAu/Ag NS-SERS sensor. Food Chem. 2022, 397, 133755. [Google Scholar] [CrossRef]
- Hassan, M.M.; Li, H.H.; Ahmad, W.; Zareef, M.; Wang, J.J.; Xie, S.C.; Wang, P.Y.; Ouyang, Q.; Wang, S.Y.; Chen, Q.S. Au@Ag nanostructure based SERS substrate for simultaneous determination of pesticides residue in tea via solid phase extraction coupled multivariate calibration. Lwt-Food Sci. Technol. 2019, 105, 290–297. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Sun, Y.; Shi, J.Y.; Zhang, W.; Zhang, X.A.; Huang, X.W.; Zou, X.B.; Li, Z.H.; Wei, R.C. Facile synthesis of Au@Ag core-shell nanorod with bimetallic synergistic effect for SERS detection of thiabendazole in fruit juice. Food Chem. 2022, 370, 131276. [Google Scholar] [CrossRef] [PubMed]
- Kwak, S.-Y.; Wong, M.H.; Lew, T.T.S.; Bisker, G.; Lee, M.A.; Kaplan, A.; Dong, J.; Liu, A.T.; Koman, V.B.; Sinclair, R.; et al. Nanosensor Technology Applied to Living Plant Systems. Annu. Rev. Anal. Chem. 2017, 10, 113–140. [Google Scholar] [CrossRef]
- Shaw, D.S.; Honeychurch, K.C. Nanosensor Applications in Plant Science. Biosensors 2022, 12, 675. [Google Scholar] [CrossRef]
- Li, Y.T.; Sun, J.; Wu, X.H.; Lu, B.; Wu, M.M.; Dai, C.X. Grade Identification of Tieguanyin Tea Using Fluorescence Hyperspectra and Different Statistical Algorithms. J. Food Sci. 2019, 84, 2234–2241. [Google Scholar] [CrossRef]
- Marimuthu, M.; Arumugam, S.S.; Sabarinathan, D.; Li, H.H.; Chen, Q.S. Metal organic framework based fluorescence sensor for detection of antibiotics. Trends Food Sci. Technol. 2021, 116, 1002–1028. [Google Scholar] [CrossRef]
- Gu, H.Y.; Lv, R.Q.; Huang, X.Y.; Chen, Q.S.; Dong, Y.N. Rapid quantitative assessment of lipid oxidation in a rapeseed oil-in-water (o/w) emulsion by three-dimensional fluorescence spectroscopy. J. Food Compos. Anal. 2022, 114, 104762. [Google Scholar] [CrossRef]
- Sun, J.; Zhou, X.; Mao, H.P.; Wu, X.H.; Zhang, X.D.; Gao, H.Y. Identification of pesticide residue level in lettuce based on hyperspectra and chlorophyll fluorescence spectra. Int. J. Agric. Biol. Eng. 2016, 9, 231–239. [Google Scholar] [CrossRef]
- Zhang, C.; Han, Y.F.; Ling, L.; Deng, N.N.; Chen, B.; Liu, Y. Development of Quantum Dots-Labeled Antibody Fluorescence Immunoassays for the Detection of Morphine. J. Agric. Food Chem. 2017, 65, 1290–1295. [Google Scholar] [CrossRef] [PubMed]
- Ambrin, G.; Ahmad, M.; Alqarawi, A.A.; Hashem, A.; Abd Allah, E.F.; Ahmad, A. Conversion of Cytochrome P450 2D6 of Human Into a FRET-Based Tool for Real-Time Monitoring of Ajmalicine in Living Cells. Front. Bioeng. Biotechnol. 2019, 7, 375. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.Z.; Nie, C.; Wei, Y.L.; Zheng, Z.; Xu, Z.L.; Xiang, P. FRET-based innovative assays for precise detection of the residual heavy metals in food and agriculture-related matrices. Coord. Chem. Rev. 2022, 469, 214676. [Google Scholar] [CrossRef]
- Wang, Y.L.; Xu, J.L.; Qiu, Y.L.; Li, P.; Liu, B.B.; Yang, L.F.; Barnych, B.; Hammock, B.D.; Zhang, C.Z. Highly Specific Monoclonal Antibody and Sensitive Quantum Dot Beads-Based Fluorescence Immunochromatographic Test Strip for Tebuconazole Assay in Agricultural Products. J. Agric. Food Chem. 2019, 67, 9096–9103. [Google Scholar] [CrossRef]
- Kausar, H.; Ambrin, G.; Okla, M.K.; Alamri, S.A.; Soufan, W.H.; Ibrahim, E.I.; Abdel-Maksoud, M.A.; Ahmad, A. FRET-Based Genetically Encoded Nanosensor for Real-Time Monitoring of the Flux of α-Tocopherol in Living Cells. ACS omega 2021, 6, 9020–9027. [Google Scholar] [CrossRef]
- Naz, R.; Okla, M.K.; Fatima, U.; Mohsin, M.; Soufan, W.H.; Alaraidh, I.A.; Abdel-Maksoud, M.A.; Ahmad, A. Designing and Development of FRET-Based Nanosensor for Real Time Analysis of N-Acetyl-5-Neuraminic Acid in Living Cells. Front. Nutr. 2021, 8, 621273. [Google Scholar] [CrossRef]
- Lakavath, K.; Kafley, C.; Sajeevan, A.; Jana, S.; Marty, J.L.; Kotagiri, Y.G. Progress on Electrochemical Biomimetic Nanosensors for the Detection and Monitoring of Mycotoxins and Pesticides. Toxins 2024, 16, 244. [Google Scholar] [CrossRef]
- Bagal-Kestwal, D.; Kestwal, R.M.; Chiang, B.H. Invertase-nanogold clusters decorated plant membranes for fluorescence-based sucrose sensor. J. Nanobiotechnology 2015, 13, 30. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Wang, Y.; Marty, J.L.; Yang, X. Aptamer-based colorimetric biosensing of Ochratoxin A using unmodified gold nanoparticles indicator. Biosens Bioelectron 2011, 26, 2724–2727. [Google Scholar] [CrossRef]
- Qin, C.C.; Guo, W.L.; Liu, Y.; Liu, Z.C.; Qiu, J.; Peng, J.B. A Novel Electrochemical Sensor Based on Graphene Oxide Decorated with Silver Nanoparticles-Molecular Imprinted Polymers for Determination of Sunset Yellow in Soft Drinks. Food Anal. Methods 2017, 10, 2293–2301. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, C.; Liu, F.H.; Zou, X.B.; Xu, Y.W.; Xu, X.C. A smart-phone-based electrochemical platform with programmable solid-state-microwave flow digestion for determination of heavy metals in liquid food. Food Chem. 2020, 303, 125378. [Google Scholar] [CrossRef] [PubMed]
- Hung, M.-W.; Lee, C.-J.; Lin, Y.-H.; Chao, L.-C.; Huang, K.-C.; Tsai, H.-Y.; Thanachayanont, C. Custom-Designed Portable Potentiostat and Indirect Cyclic Voltammetry Index Analysis for Rapid Pesticide Detection Using Molecularly Imprinted Polymer Sensors. Sensors 2025, 25, 2999. [Google Scholar] [CrossRef] [PubMed]
- Vidal, C.L.A.; Govan, J.E. Machine Learning Techniques for Improving Nanosensors in Agroenvironmental Applications. Agronomy 2024, 14, 341. [Google Scholar] [CrossRef]
- Xue, B.; Su, X.; Li, L.; Lew, T.T.S.; Wu, C. Wearable electrochemical bioelectronics for agriculture. J. Mater. Chem. A 2024, 12, 22396–22416. [Google Scholar] [CrossRef]
- Zhu, L.; Dong, X.X.; Gao, C.B.; Gai, Z.Q.; He, Y.X.; Qian, Z.J.; Liu, Y.J.; Lei, H.T.; Sun, Y.M.; Xu, Z.L. Development of a highly sensitive and selective electrochemical immunosensor for controlling of rhodamine B abuse in food samples. Food Control 2022, 133, 108662. [Google Scholar] [CrossRef]
- Guan, G.; Lin, Z.; Qian, J.; Wang, F.; Qu, L.; Zou, B. Research Progress on the Application of Nanoenzyme Electrochemical Sensors for Detecting Zearalenone in Food. Nanomaterials 2025, 15, 712. [Google Scholar] [CrossRef]
- Ejigu, A.; Tefera, M.; Guadie, A. Electrochemical detection of pesticides: A comprehensive review on voltammetric determination of malathion, 2,4-D, carbaryl, and glyphosate. Electrochem. Commun. 2024, 169, 107839. [Google Scholar] [CrossRef]
- Ma, Y.; Du, H.; Zheng, S.; Zhou, Z.; Zhang, H.; Ma, Y.; Passerini, S.; Wu, Y. High-Entropy Approach vs. Traditional Doping Strategy for Layered Oxide Cathodes in Alkali-Metal-Ion Batteries: A Comparative Study. Energy Storage Materials 2025, 79, 104295. [Google Scholar] [CrossRef]
- Nasirizadeh, N.; Shekari, Z.; Nazari, A.; Tabatabaee, M. Fabrication of a novel electrochemical sensor for determination of hydrogen peroxide in different fruit juice samples. J. Food Drug Anal. 2016, 24, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Evtugyn, G.; Porfireva, A.; Sitdikov, R.; Evtugyn, V.; Stoikov, I.; Antipin, I.; Hianik, T. Electrochemical Aptasensor for the Determination of Ochratoxin A at the Au Electrode Modified with Ag Nanoparticles Decorated with Macrocyclic Ligand. Electroanalysis 2013, 25, 1847–1854. [Google Scholar] [CrossRef]
- Yang, X.W.; Qian, J.; Jiang, L.; Yan, Y.T.; Wang, K.; Liu, Q.; Wang, K. Ultrasensitive electrochemical aptasensor for ochratoxin A based on two-level cascaded signal amplification strategy. Bioelectrochemistry 2014, 96, 7–13. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, G.; Xu, J.; Wen, Y.; Lu, B.; Zhang, J.; Ding, W. Novel highly selective fluorescent sensor based on electrosynthesized poly(9-fluorenecarboxylic acid) for efficient and practical detection of iron(III) and its agricultural application. Sens. Actuators B Chem. 2016, 230, 123–129. [Google Scholar] [CrossRef]
- Roy, E.; Patra, S.; Madhuri, R.; Sharma, P.K. Simultaneous determination of heavy metals in biological samples by a multiple-template imprinting technique: An electrochemical study. RSC Adv. 2014, 4, 56690–56700. [Google Scholar] [CrossRef]
- Carvalho, F.P. Pesticides, environment, and food safety. Food Energy Secur. 2017, 6, 48–60. [Google Scholar] [CrossRef]
- Chawla, P.; Kaushik, R.; Shiva Swaraj, V.J.; Kumar, N. Organophosphorus pesticides residues in food and their colorimetric detection. Environ. Nanotechnol. Monit. Manag. 2018, 10, 292–307. [Google Scholar] [CrossRef]
- Sharma, P.; Pandey, V.; Sharma, M.M.M.; Patra, A.; Singh, B.; Mehta, S.; Husen, A. A Review on Biosensors and Nanosensors Application in Agroecosystems. Nanoscale Res. Lett. 2021, 16, 136. [Google Scholar] [CrossRef]
- Bin, Z.; Feng, L.; Yan, Y. Biomimetic metalloporphyrin oxidase modified carbon nanotubes for highly sensitive and stable quantification of anti-oxidants tert-butylhydroquinone in plant oil. Food Chem. 2022, 388, 132898. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.W.; Zhu, A.F.; Adade, S.; Ali, S.; Chen, Q.M.; Wei, J.; Chen, X.M.; Jiao, T.H.; Chen, Q.S. Ag@Au core-shell nanoparticle-based surface-enhanced Raman scattering coupled with chemometrics for rapid determination of chloramphenicol residue in fish. Food Chem. 2024, 438, 138026. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.W.; Zou, X.M.; Song, S.H.; Chen, G.H. Quantum Dots Applied to Methodology on Detection of Pesticide and Veterinary Drug Residues. J. Agric. Food Chem. 2018, 66, 1307–1319. [Google Scholar] [CrossRef] [PubMed]
- Behera, D.J.; Pattanaik, K.P.; Kulabhusan, P.; Naik, S.; Mahanty, A.; Mohapatra, S.D.; Adak, T. Microfluidic paper-based devices for efficient and sensitive pesticide detection: A review. J. Food Compos. Anal. 2025, 142, 107498. [Google Scholar] [CrossRef]
- Li, C.; Zhang, W.; Xu, X.; Zhou, L. Applications and Challenges of Fluorescent Probes for the Detection of Pesticide Residues in Food. J. Agric. Food Chem. 2025, 73, 4982–4997. [Google Scholar] [CrossRef]
- Fu, L.; Zhu, J.; Zhou, Q. Improved Detection of Veterinary Drug Residues: Advancing Analytical Techniques to Ensure Food Safety. Curr. Pharm. Anal. 2023, 19, 745–758. [Google Scholar] [CrossRef]
- Toldra, F.; Reig, M. Methods for rapid detection of chemical and veterinary drug residues in animal foods. Trends Food Sci. Technol. 2006, 17, 482–489. [Google Scholar] [CrossRef]
- Shao, Y.X.; Chen, G.H.; Fang, R.; Zhang, L.; Yi, L.X.; Meng, H.L. Analysis of Six β-Lactam Residues in Milk and Egg by Micellar Electrokinetic Chromatography with Large-Volume Sample Stacking and Polarity Switching. J. Agric. Food Chem. 2016, 64, 3456–3461. [Google Scholar] [CrossRef]
- Li, H.H.; Chen, Q.S.; Ouyang, Q.; Zhao, J.W. Fabricating a Novel Raman Spectroscopy-Based Aptasensor for Rapidly Sensing Salmonella typhimurium. Food Anal. Methods 2017, 10, 3032–3041. [Google Scholar] [CrossRef]
- Alenyorege, E.A.; Ma, H.L.; Ayim, I.; Zhou, C.S. Ultrasound decontamination of pesticides and microorganisms in fruits and vegetables: A review. J. Food Saf. Food Qual.-Arch. Fur Leb. 2018, 69, 80–91. [Google Scholar] [CrossRef]
- Bonah, E.; Huan, X.Y.; Yi, R.; Aheto, J.H.; Osae, R.; Golly, M. Electronic nose classification and differentiation of bacterial foodborne pathogens based on support vector machine optimized with particle swarm optimization algorithm. J. Food Process Eng. 2019, 42. [Google Scholar] [CrossRef]
- Hu, W.; Wang, S.; Du, Q.; Yang, S.; Wei, X.; Li, X.; Lin, H. Dual-signal enhanced lateral flow immunoassay with nanobody-functionalized magnetofluorescent nanoprobes for multiplexed detection of foodborne pathogens. Anal. Chim. Acta 2025, 1369, 344360. [Google Scholar] [CrossRef]
- Azam, K.; Akhtar, S.; Gong, Y.Y.; Routledge, M.N.; Ismail, A.; Oliveira, C.A.F.; Iqbal, S.Z.; Ali, H. Evaluation of the impact of activated carbon-based filtration system on the concentration of aflatoxins and selected heavy metals in roasted coffee. Food Control 2021, 121, 107583. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, C.T.; Bao, Q.H.; Zheng, J.; Deng, D.; Duan, Y.Q.; Shen, L.Q. The physicochemical characterization, equilibrium, and kinetics of heavy metal ions adsorption from aqueous solution by arrowhead plant (Sagittaria trifolia L.) stalk. J. Food Biochem. 2018, 42, e12448. [Google Scholar] [CrossRef]
- El Sikaily, A.; Ghoniem, D.G.; Ramadan, O.; El-Nahrery, E.M.; Shahat, A.; Hassan, R.Y.A. Highly selective detection of heavy metal ions in food and water using a 5-BHAHS@NC/MnO2-based electrochemical sensor. Biochem. Eng. J. 2025, 216, 109660. [Google Scholar] [CrossRef]
- Yadav, S.K. Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South Afr. J. Bot. 2010, 76, 167–179. [Google Scholar] [CrossRef]
- Munawar, A.; Ong, Y.R.; Schirhagl, R.; Tahir, M.A.; Khan, W.S.; Bajwa, S.Z. Nanosensors for diagnosis with optical, electric and mechanical transducers. Rsc Adv. 2019, 9, 6793–6803. [Google Scholar] [CrossRef]
- Rolfe, P. Micro- and Nanosensors for Medical and Biological Measurement. Sens. Mater. 2012, 24, 275–302. [Google Scholar] [CrossRef]
- Xiu, Y.; Yin, H.X.; Zhang, L.L.; Wang, K.; Zhang, Y. Recent Advances in Nanosensors for Motion Detection. Acs Appl. Electron. Mater. 2024, 6, 621–640. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, X.; Ma, L.; Gao, J.; Jiang, Y. Acetylcholinesterase/chitosan-transition metal carbides nanocomposites-based biosensor for the organophosphate pesticides detection. Biochem. Eng. J. 2017, 128, 243–249. [Google Scholar] [CrossRef]
- Lahcen, A.A.; Surya, S.G.; Beduk, T.; Vijjapu, M.T.; Lamaoui, A.; Durmus, C.; Timur, S.; Shekhah, O.; Mani, V.; Amine, A.; et al. Metal-Organic Frameworks Meet Molecularly Imprinted Polymers: Insights and Prospects for Sensor Applications. ACS Appl. Mater. Interfaces 2022, 14, 49399–49424. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Gao, L.; Wang, J.X.; Pan, J.M.; Yan, Y.S.; Zhang, X.F. A precise and efficient detection of Seta-Cyfluthrin via fluorescent molecularly imprinted polymers with ally fluorescein as functional monomer in agricultural products. Food Chem. 2017, 217, 620–627. [Google Scholar] [CrossRef]
- Zhang, C.; Cui, H.Y.; Han, Y.F.; Yu, F.F.; Shi, X.M. Development of a biomimetic enzyme-linked immunosorbent assay based on molecularly imprinted polymers on paper for the detection of carbaryl. Food Chem. 2018, 240, 893–897. [Google Scholar] [CrossRef]
- Zhang, C.; Shi, X.M.; Yu, F.F.; Quan, Y. Preparation of dummy molecularly imprinted polymers based on dextran-modified magnetic nanoparticles Fe3O4 for the selective detection of acrylamide in potato chips. Food Chem. 2020, 317, 126431. [Google Scholar] [CrossRef]
- Mehmandoust, M.; Erk, N.; Naser, M.; Soylak, M. Molecularly imprinted polymer film loaded on the metal–organic framework with improved performance using stabilized gold-doped graphite carbon nitride nanosheets for the single-step detection of Fenamiphos. Food Chem. 2023, 404, 134627. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yang, Y.; Min, J.; Song, Y.; Tu, J.; Mukasa, D.; Ye, C.; Xu, C.; Heflin, N.; McCune, J.S.; et al. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat. Biomed. Eng. 2022, 6, 1225–1235. [Google Scholar] [CrossRef]
- Cabaccan, C.N.; Cruz, F.R.G.; Agulto, I.C. Wireless Sensor Network for Agricultural Environment using Raspberry Pi based Sensor Nodes. In Proceedings of the 2017 IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (IEEE Hnicem), Manila, Philippines,, 1–3 December 2017; IEEE: New York, NY, USA. [Google Scholar]
- Zhu, J.; Sun, N. Research on Integration of WSN and RFID Technology for Agricultural Product Inspection. In Proceedings of the 2012 International Conference on Industrial Control and Electronics Engineering (ICICEE), Xi’an, China, 23–25 August 2012; IEEE: New York, NY, USA. [Google Scholar]
- Shi, B.; Sreeram, V.; Zhao, D.A.; Duan, S.L.; Jiang, J.M. A wireless sensor network-based monitoring system for freshwater fishpond aquaculture. Biosyst. Eng. 2018, 172, 57–66. [Google Scholar] [CrossRef]
- Nurlan, Z.; Zhukabayeva, T.; Othman, M.; Adamova, A.; Zhakiyev, N. Wireless Sensor Network as a Mesh: Vision and Challenges. IEEE Access 2022, 10, 46–67. [Google Scholar] [CrossRef]
- Jin, H. Low-Power Intelligent Wireless Sensor Network for Precision Agriculture Oriented Agricultural Greenhouse Management System. IEEE Access 2025, 13, 34865–34876. [Google Scholar] [CrossRef]
- Romanov, V.; Galelyuka, I.; Antonova, H.; Kovyrova, O.; Hrusha, V.; Voronenko, O. Application of Wireless Sensor Networks for Digital Agriculture. In Proceedings of the 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems—Technology and Applications (IDAACS), Metz, France, 18–21 September 2019; IEEE: New York, NY, USA; Volume 1. [Google Scholar]
- Song, J.; Zhu, Y. Environment Monitoring System for Precise Agriculture Based on Wireless Sensor Network. Appl. Mech. Mater. 2014, 475, 127–131. [Google Scholar] [CrossRef]
- Zhu, X.Y.; Chikangaise, P.; Shi, W.D.; Chen, W.H.; Yuan, S.Q. Review of intelligent sprinkler irrigation technologies for remote autonomous system. Int. J. Agric. Biol. Eng. 2018, 11, 23–30. [Google Scholar] [CrossRef]
- Wang, B.; Chen, T. Understanding the continuous usage in wireless sensor networks of wisdom agriculture. Int. J. Mob. Commun. 2019, 17, 422–440. [Google Scholar] [CrossRef]
- Afshar, M.H.; Al-Yaari, A.; Yilmaz, M.T. Comparative Evaluation of Microwave L-Band VOD and Optical NDVI for Agriculture Drought Detection over Central Europe. Remote Sens. 2021, 13, 1251. [Google Scholar] [CrossRef]
- Baik, J.; Zohaib, M.; Kim, U.; Aadil, M.; Choi, M. Agricultural drought assessment based on multiple soil moisture products. J. Arid. Environ. 2019, 167, 43–55. [Google Scholar] [CrossRef]
- Qin, Q.; Wu, Z.; Zhang, T.; Sagan, V.; Zhang, Z.; Zhang, Y.; Zhang, C.; Ren, H.; Sun, Y.; Xu, W.; et al. Optical and Thermal Remote Sensing for Monitoring Agricultural Drought. Remote Sens. 2021, 13, 5092. [Google Scholar] [CrossRef]
- Salvia, M.M.; Sanchez, N.; Piles, M.; Ruscica, R.; Gonzalez-Zamora, A.; Roitberg, E.; Martinez-Fernandez, J. The Added-Value of Remotely-Sensed Soil Moisture Data for Agricultural Drought Detection in Argentina. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 6487–6500. [Google Scholar] [CrossRef]
- Memon, M.M.; Liu, Q.; Manthar, A.; Wang, T.; Zhang, W.L. Surface Acoustic Wave Humidity Sensor: A Review. Micromachines 2023, 14, 945. [Google Scholar] [CrossRef] [PubMed]
- Mustaffa, S.N.; Rashid, A.R.A.; Jin, T.S.; Menon, P.S.; Ab Razak, M.Z.; Markom, A.M.; Haris, H.; Saad, I.; Muhammad, A.R. Metal Oxide Coated Optical Fiber for Humidity Sensing Application: A Review. IEEE Access 2023, 11, 126568–126600. [Google Scholar] [CrossRef]
- Yu, J.J.; Wang, D.; Tipparaju, V.V.; Tsow, F.; Xian, X.J. Mitigation of Humidity Interference in Colorimetric Sensing of Gases. ACS Sens. 2021, 6, 303–320. [Google Scholar] [CrossRef] [PubMed]
- Scheberl, L.; Scharenbroch, B.C.; Werner, L.P.; Prater, J.R.; Fite, K.L. Evaluation of soil pH and soil moisture with different field sensors: Case study urban soil. Urban For. Urban Green. 2019, 38, 267–279. [Google Scholar] [CrossRef]
- Kaplowitz, M.D.; Machemer, P.; Pruetz, R. Planners’ experiences in managing growth using transferable development rights (TDR) in the United States. Land Use Policy 2008, 25, 378–387. [Google Scholar] [CrossRef]
- Wang, Z.; Hua, S.; Timlin, D.; Kojima, Y.; Lu, S.; Sun, W.; Fleisher, D.; Horton, R.; Reddy, V.R.; Tully, K. Time Domain Reflectometry Waveform Interpretation With Convolutional Neural Networks. Water Resour. Res. 2023, 59, e2022WR033895. [Google Scholar] [CrossRef]
- Dobriyal, P.; Qureshi, A.; Badola, R.; Hussain, S.A. A review of the methods available for estimating soil moisture and its implications for water resource management. J. Hydrol. 2012, 458, 110–117. [Google Scholar] [CrossRef]
- Kapilaratne, R.G.C.J.; Lu, M. Automated general temperature correction method for dielectric soil moisture sensors. J. Hydrol. 2017, 551, 203–216. [Google Scholar] [CrossRef]
- Palaparthy, V.S.; Singh, D.N.; Baghini, M.S. Compensation of temperature effects for in-situ soil moisture measurement by DPHP sensors. Comput. Electron. Agric. 2017, 141, 73–80. [Google Scholar] [CrossRef]
- Banon, S.; Ochoa, J.; Banon, D.; Ortuno, M.F.; Sanchez-Blanco, M.J. Assessment of the Combined Effect of Temperature and Salinity on the Outputs of Soil Dielectric Sensors in Coconut Fiber. Sustainability 2020, 12, 6577. [Google Scholar] [CrossRef]
- Awais, M.; Li, W.; Hussain, S.; Cheema, M.J.M.; Li, W.G.; Song, R.; Liu, C.C. Comparative Evaluation of Land Surface Temperature Images from Unmanned Aerial Vehicle and Satellite Observation for Agricultural Areas Using In Situ Data. Agriculture 2022, 12, 184. [Google Scholar] [CrossRef]
- Chavanne, X.; Frangi, J.-P. A Sensor to Monitor Soil Moisture, Salinity, and Temperature Profiles for Wireless Networks. J. Sens. Actuator Netw. 2024, 13, 32. [Google Scholar] [CrossRef]
- Dehingia, B.; Lahkar, R.; Dey, B.; Kalita, H. Tunable Sensitivity in Graphene-Based Soil Moisture Sensors via Controlled Vapor Phase Reduction Method. IEEE Sens. Lett. 2024, 8, 1502604. [Google Scholar] [CrossRef]
- Garg, P.; Khaparde, P.; Patle, K.S.; Bhaliya, C.; Kumar, A.; Joshi, M.V.; Palaparthy, V.S. Environmental and Soil Parameters for Germination of Leaf Spot Disease in the Groundnut Plant Using IoT-Enabled Sensor System. IEEE Sens. Lett. 2023, 7, 1–4. [Google Scholar] [CrossRef]
- Kelley, B.; Ali, N.; Dong, Y. Methods to correct temperature-induced changes of soil moisture sensors to improve accuracy. Methodsx 2025, 14, 103100. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, D.; Wang, C.; Li, X.; Gao, H.; Yu, D. Research on highly sensitive Fabry-Perot cavity sensing technology in frozen soil. Optoelectron. Lett. 2023, 19, 205–209. [Google Scholar] [CrossRef]
- Muehlbauer, L.K.K.; Zavattoni, G.; Virtanen, R.; Grube, M.; Weber, B.; Clark, A.T. Arduinos in the wild: A novel, low-cost sensor network for high-resolution microclimate monitoring in remote ecosystems. Ecol. Solut. Evid. 2023, 4, e12255. [Google Scholar] [CrossRef]
- Liopa-Tsakalidi, A.; Kalorizou, H.; Gana, V.; Thomopoulos, V.; Giannaros, A. Integrating sensor technology in organic table olive cultivation: A case study. Smart Agric. Technol. 2025, 11, 101037. [Google Scholar] [CrossRef]
- Triyono, S.; Telaumbanua, M.; Mulyani, Y.; Yulianti, T.; Amin, M.; Haryanto, A. Desain of soil temperature and Moisture Sensors for Chili Pepper (Capsicum annuum L.) Cultivation Controlling System. Agritech 2018, 38, 388–395. [Google Scholar] [CrossRef]
- Eldeeb, M.A.; Dhamu, V.N.; Paul, A.; Muthukumar, S.; Prasad, S. Espial: Electrochemical Soil pH Sensor for In Situ Real-Time Monitoring. Micromachines 2023, 14, 2188. [Google Scholar] [CrossRef] [PubMed]
- Mamilla, S.; Zahid Yousuf, S.; Mohan Avulapati, M.; Ahmad-Al-Mallahi, N.V.L.; Narasimha Murty, N.V.L. A Low-Cost, Reusable All-Solid-State TiN-Based EGFET Soil pH Sensor. IEEE Sens. J. 2025, 25, 4184–4191. [Google Scholar] [CrossRef]
- Merl, T.; Rasmussen, M.R.; Koch, L.R.; Sondergaard, J.V.; Bust, F.F.; Koren, K. Measuring soil pH at in situ like conditions using optical pH sensors (pH-optodes). SOIL Biol. Biochem. 2022, 175, 108862. [Google Scholar] [CrossRef]
- Nair, N.; Akshaya, A.V.; Joseph, J. An In-Situ Soil pH Sensor With Solid Electrodes. IEEE Sens. Lett. 2022, 6, 1–4. [Google Scholar] [CrossRef]
- Sakabe, K.; Kan, T.; Onoe, H. Entirely Biodegradable Wireless pH Sensor with Split-Ring Resonators for Soil pH Monitoring. Adv. Mater. Technol. 2024, 9, 2400038. [Google Scholar] [CrossRef]
- Rabak, A.; Uppuluri, K.; Franco, F.F.; Kumar, N.; Georgiev, V.P.; Gauchotte-Lindsay, C.; Smith, C.; Hogg, R.A.; Manjakkal, L. Sensor system for precision agriculture smart watering can. Results Eng. 2023, 19, 101297. [Google Scholar] [CrossRef]
- Qin, C.; Wang, X.L.; Du, L.; Yang, L.P.; Jiao, Y.N.; Jiang, D.F.; Zhang, X.X.; Zhang, T.L.; Gao, X.B. Heavy metals in meat products from Shandong, China and risk assessment. Food Addit. Contam. Part B-Surveill. 2024, 17, 56–65. [Google Scholar] [CrossRef]
- Lee, H.C.; Chen, C.M.; Wei, J.T.; Chiu, H.Y. Analysis of veterinary drug residue monitoring results for commercial livestock products in Taiwan between 2011 and 2015. J. Food Drug Anal. 2018, 26, 565–571. [Google Scholar] [CrossRef]
- Misiuk, M.; Zakhodym, M.; Borkovska, V.; Balla, I. The Monitoring of the Livestock Product Market for the Formation of Food Security. Econ. Ecol. Socium 2023, 7, 72–82. [Google Scholar] [CrossRef]
- Wisniewski, P.; Trymers, M.; Chajecka-Wierzchowska, W.; Tkacz, K.; Zadernowska, A.; Modzelewska-Kapitula, M. Antimicrobial Resistance in the Context of Animal Production and Meat Products in Poland-A Critical Review and Future Perspective. Pathogens 2024, 13, 1123. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Hu, Y.G.; Buttar, N.A.; Mahmood, A. X-ray computed tomography for quality inspection of agricultural products: A review. Food Sci. Nutr. 2019, 7, 3146–3160. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.H.; Yu, P.P.; Huang, Y.R.; Zhang, G.; Lu, C.L.; Jiang, X.P. Application Status and Prospect of Impedance Spectroscopy in Agricultural Product Quality Detection. Agriculture 2022, 12, 1525. [Google Scholar] [CrossRef]
- Wang, F.; Suo, C.; Xiong, L. Impact of agricultural digital transformation on the quality of exported agricultural products. J. China Agric. Univ. 2025, 30, 274–286. [Google Scholar]
- Wang, M.; Zhou, Y.; Li, X. Detection Strategies for Volatile Fragrance Released from Agricultural Products: Progress and Prospects. Adv. Sens. Res. 2024, 3, 2400044. [Google Scholar] [CrossRef]
- Dai, H.; Huang, G.; Wang, J.; Zeng, H.; Zhou, F. Regional VOCs Gathering Situation Intelligent Sensing Method Based on Spatial-Temporal Feature Selection. Atmosphere 2022, 13, 483. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, Z.; Wang, F.; Liang, W.; Shi, G.; Wang, W.; Chen, D.; Liang, D.; Feng, Y.; Russell, A.G. Implications for ozone control by understanding the survivor bias in observed ozone-volatile organic compounds system. NPJ Clim. Atmos. Sci. 2022, 5, 39. [Google Scholar] [CrossRef]
- You, G.; Jin, Z.; Lu, S.; Ren, J.; Zhang, Y.; Hu, K.; Xie, S. Emission factors and source profiles of volatile organic compounds from the automobile manufacturing industry. Sci. Total Environ. 2024, 927, 172183. [Google Scholar] [CrossRef]
- Hu, K.; Cai, Y.; Wang, Z.; Zhang, Z.; Xian, J.; Zhang, C. A Review on Metal Oxide Semiconductor-Based Chemo-Resistive Ethylene Sensors for Agricultural Applications. Chemosensors 2024, 12, 13. [Google Scholar] [CrossRef]



| Sensor Type | Core Detection Parameter | Sensitivity Level | Cost Range | Application Scenarios | Reference |
|---|---|---|---|---|---|
| Capacitive Humidity Sensor | Air relative humidity | High (±2% RH) | High | High-end greenhouses | [37,38] |
| Resistive Humidity Sensor | Air/soil humidity | Low (±5% RH) | Low | Large-scale vegetable greenhouses | [59] |
| Photoresistor | Light intensity | Medium (±100 lx) | Low | Greenhouse light supplementation | [66] |
| Photodiode | Photosynthetic active radiation | High (±50 μmol/m2·s) | Medium | Harsh environments | [71] |
| Infrared CO2 Sensor | CO2 concentration | Medium (±50 ppm) | Medium | Greenhouse photosynthesis regulation | [83] |
| Electrochemical NH3 Sensor | NH3 concentration | High (0–100 ppm, ±1 ppm) | Medium–High | Livestock houses | [87] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, J.; Wu, S. Recent Advances in Agricultural Sensors: Towards Precision and Sustainable Farming. Chemosensors 2025, 13, 399. https://doi.org/10.3390/chemosensors13110399
Lin J, Wu S. Recent Advances in Agricultural Sensors: Towards Precision and Sustainable Farming. Chemosensors. 2025; 13(11):399. https://doi.org/10.3390/chemosensors13110399
Chicago/Turabian StyleLin, Jiaqi, and Shuping Wu. 2025. "Recent Advances in Agricultural Sensors: Towards Precision and Sustainable Farming" Chemosensors 13, no. 11: 399. https://doi.org/10.3390/chemosensors13110399
APA StyleLin, J., & Wu, S. (2025). Recent Advances in Agricultural Sensors: Towards Precision and Sustainable Farming. Chemosensors, 13(11), 399. https://doi.org/10.3390/chemosensors13110399
