Water-Soluble Photoluminescent Ag Nanoclusters Stabilized by Amphiphilic Copolymers as Nanoprobe for Hypochlorite Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of Luminescent Ultrasmall Ag NCs and Phase Transfer
2.3. Detection of ClO−
2.4. Evaluation of Cytotoxicity of the As-Prepared DSPE-PEG-SDS@Ag NCs
2.5. Cellular Imaging
2.6. Instrumentation
3. Results
3.1. Characterizations of the DSPE-PEG-SDS@Ag NCs
3.2. Response of the DSPE-PEG-SDS@Ag NCs to ClO−
3.3. Cellular Imaging Using the DSPE-PEG-SDS@Ag NCs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mutze, S.; Hebling, U.; Stremmel, W.; Wang, J.; Arnhold, J.; Pantopoulos, K.; Mueller, S. Myeloperoxidase-derived hypochlorous acid antagonizes the oxidative stress-mediated activation of iron regulatory protein 1. J. Biol. Chem. 2003, 278, 40542–40549. [Google Scholar] [CrossRef]
- Yang, Y.T.; Whiteman, M.; Gieseg, S.P. HOCl causes necrotic cell death in human monocyte derived macrophages through calcium dependent calpain activation. Biochim. Biophys. Acta 2012, 1823, 420–429. [Google Scholar] [CrossRef]
- Zhang, R.; Song, B.; Yuan, J. Bioanalytical methods for hypochlorous acid detection: Recent advances and challenges. Trends Anal. Chem. 2018, 99, 1–33. [Google Scholar] [CrossRef]
- Yang, J.; Chen, Z.; Yang, Y.; Zheng, B.; Zhu, Y.; Wu, F.; Xiong, H. Visualization of endogenous hypochlorite in drug-induced liver injury mice via a bioluminescent probe combined with firefly luciferase mRNA-loaded lipid nanoparticles. Anal. Chem. 2024, 96, 6978–6985. [Google Scholar] [CrossRef]
- Davies, M.J. Myeloperoxidase-derived oxidation mechanisms of biological damage and its prevention. J. Clin. Biochem. Nutr. 2010, 48, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Jeitner, T.M.; Kalogiannis, M.; Krasnikov, B.F.; Gomolin, I.; Peltier, M.R.; Moran, G.R. Linking inflammation and parkinson disease: Hypochlorous acid generates parkinsonian poisons. Toxicol. Sci. 2016, 151, 388–402. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Tan, H.S.; Wang, A.J.; Li, S.S.; Feng, J.J. Fluorescent metal nanoclusters: From luminescence mechanism to applications in enzyme activity assays. Biosens. Bioelectron. 2024, 257, 116323. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Wu, Z.; Yao, Q.; Xie, J. Luminescent metal nanoclusters: Biosensing strategies and bioimaging applications. Aggregate 2021, 2, 114–132. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.; Li, M.; Ma, K.; Wang, D.; Su, L.; Zhang, X.; Tang, B.Z. Nanolab in a cell: Crystallization-induced in situ self-assembly for cancer theranostic amplification. J. Am. Chem. Soc. 2022, 144, 14388–14395. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Zhu, L.; Yang, W.; Xu, W. Nucleic acid-templated silver nanoclusters: A review of structures, properties, and biosensing applications. Coordin. Chem. Rev. 2023, 491, 215247. [Google Scholar] [CrossRef]
- Shu, T.; Su, L.; Wang, J.; Lu, X.; Liang, F.; Li, C.; Zhang, X. Value of the debris of reduction sculpture: Thiol etching of Au nanoclusters for preparing water-soluble and aggregation-induced emission-active Au(I) Complexes as phosphorescent copper ion sensor. Anal. Chem. 2016, 88, 6071–6077. [Google Scholar] [CrossRef]
- Zhang, C.; Gao, X.; Chen, W.; He, M.; Yu, Y.; Gao, G.; Sun, T. Advance of gold nanoclusters for bioimaging. iScience 2022, 25, 105022. [Google Scholar] [CrossRef]
- Kang, X.; Zhu, M. Tailoring the photoluminescence of atomically precise nanoclusters. Chem. Soc. Rev. 2019, 48, 2422–2457. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Song, X.; Chai, O.J.H.; Yao, Q.; Yang, H.; Xie, J. Photoluminescent characterization of metal nanoclusters: Basic parameters, methods, and applications. Adv. Mater. 2024, 36, e2401002. [Google Scholar] [CrossRef]
- Wu, Z.; Jin, R. On the ligand’s role in the fluorescence of gold nanoclusters. Nano Lett. 2010, 10, 2568–2573. [Google Scholar] [CrossRef]
- Deng, G.; Malola, S.; Yuan, P.; Liu, X.; Teo, B.K.; Hakkinen, H.; Zheng, N. Enhanced surface ligands reactivity of metal clusters by bulky ligands for controlling optical and chiral properties. Angew. Chem. Int. Ed. 2021, 60, 12897–12903. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Xin, J.; Li, J.; Li, H.; Kang, X.; Pei, Y.; Zhu, M. Fluorescence or phosphorescence? The metallic composition of the nanocluster kernel does matter. Angew. Chem. Int. Ed. 2022, 61, e202205947. [Google Scholar] [CrossRef] [PubMed]
- Pniakowska, A.; Kumaranchira Ramankutty, K.; Obstarczyk, P.; Peric Bakulic, M.; Sanader Marsic, Z.; Bonacic-Koutecky, V.; Burgi, T.; Olesiak-Banska, J. Gold-doping effect on two-photon absorption and luminescence of atomically precise silver ligated nanoclusters. Angew. Chem. Int. Ed. 2022, 61, e202209645. [Google Scholar] [CrossRef] [PubMed]
- Ishii, W.; Okayasu, Y.; Kobayashi, Y.; Tanaka, R.; Katao, S.; Nishikawa, Y.; Kawai, T.; Nakashima, T. Excited state engineering in Ag29 nanocluster through peripheral modification with silver(I) complexes for bright near-infrared photoluminescence. J. Am. Chem. Soc. 2023, 145, 11236–11244. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Cheng, S.; You, Y.; Zhang, S.; Xian, Y. Sensitive monitoring and bioimaging intracellular highly reactive oxygen species based on gold nanoclusters@nanoscale metal-organic frameworks. Anal. Chim. Acta. 2019, 1092, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yi, S.; Lei, Z.; Xiao, Y. Amphiphilic polymer-encapsulated Au nanoclusters with enhanced emission and stability for highly selective detection of hypochlorous acid. RSC Adv. 2021, 11, 14678–14685. [Google Scholar] [CrossRef] [PubMed]
- Jia, M.; Mi, W.; Guo, S.; Yang, Q.Z.; Jin, Y.; Shao, N. Peptide-capped functionalized Ag/Au bimetal nanoclusters with enhanced red fluorescence for lysosome-targeted imaging of hypochlorite in living cells. Talanta 2020, 216, 120926. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Tian, M.; Cao, C.; Shu, T.; Wang, J.; Wen, Y.; Su, L.; Zhang, X. Strongly phosphorescent and water-soluble gold(I)-silver(I)-cysteine nanoplatelets via versatile small biomolecule cysteine-assisted synthesis for intracellular hypochlorite detection. Biosens. Bioelectron. 2021, 193, 113571. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; He, Y.; Ge, Y.; Song, G.; Zhou, J. Smartphone-assisted visual ratio-fluorescence detection of hypochlorite based on copper nanoclusters. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 255, 119740. [Google Scholar] [CrossRef] [PubMed]
- Kastantin, M.; Missirlis, D.; Black, M.; Ananthanarayanan, B.; Peters, D.; Tirrell, M. Thermodynamic and kinetic stability of dspe-peg 2000 micelles in the presence of bovine serum albumin. J. Phys. Chem. B 2010, 114, 12632–12640. [Google Scholar] [CrossRef] [PubMed]
- Kastantin, M.; Ananthanarayanan, B.; Karmali, P.; Ruoslahti, E.; Tirrell, M. Effect of the lipid chain melting transition on the stability of DSPE-PEG(2000) micelles. Langmuir 2009, 25, 7279–7286. [Google Scholar] [CrossRef]
- Chen, Z.; Walsh, A.G.; Wei, X.; Zhu, M.; Zhang, P. Site-specific electronic properties of [Ag25SR18]− nanoclusters by X-ray spectroscopy. Small 2021, 17, e2005162. [Google Scholar] [CrossRef]
- Zhang, M.; Lv, Q.; Yue, N.; Wang, H. Study of fluorescence quenching mechanism between quercetin and tyrosine-H2O2-enzyme catalyzed product. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2009, 72, 572–576. [Google Scholar] [CrossRef]
- Zhang, Y.; Demokritou, P.; Ryan, D.K.; Bello, D. Comprehensive assessment of short-lived ROS and H2O2 in laser printer emissions: Assessing the relative contribution of metal oxides and organic constituents. Environ. Sci. Technol. 2019, 53, 7574–7583. [Google Scholar] [CrossRef]
- Abdul-Baki, A.A. A selected literature review of hypochlorite chemistry and definition of terms. J. Seed Technol. 1979, 1, 43–56. [Google Scholar]
- Rhee, S.G. H2O2-a necessary evil for cell signaling. Science 2006, 312, 1882–1883. [Google Scholar] [CrossRef]
- Li, H.; Wu, Y.; Xu, Z.; Wang, Y. In situ anchoring Cu nanoclusters on Cu-MOF: A new strategy for a combination of catalysis and fluorescence toward the detection of H2O2 and 2,4-DNP. Chem. Eng. J. 2024, 479, 147508. [Google Scholar] [CrossRef]
- Mi, W.; Tang, S.; Jin, Y.; Shao, N. Au/Ag bimetallic nanoclusters stabilized by glutathione and lysozyme for ratiometric sensing of H2O2 and hydroxyl radicals. ACS. Appl. Nano Mater. 2021, 4, 1586–1595. [Google Scholar] [CrossRef]
- Yue, G.; Li, S.; Liu, W.; Ding, F.; Zou, P.; Wang, X.; Zhao, Q.; Rao, H. Ratiometric fluorescence based on silver clusters and N, Fe doped carbon dots for determination of H2O2 and UA: N, Fe doped carbon dots as mimetic peroxidase. Sens. Actuat. B-Chem. 2019, 287, 408–415. [Google Scholar] [CrossRef]
- Gui, L.; Yan, J.; Zhao, J.; Wang, S.; Ji, Y.; Liu, J.; Wu, J.; Yuan, K.; Liu, H.; Deng, D.; et al. Hypochlorite activatable ratiometric fluorescent probe based on endoplasmic reticulum stress for imaging of atherosclerosis. Biosens. Bioelectron. 2023, 240, 115660. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Yan, S.; Yu, Y.; Xue, Y.; Yu, Y.; Han, C. Dual-Responsive Ratiometric fluorescent probe for hypochlorite and peroxynitrite detection and imaging in vitro and in vivo. Anal. Chem. 2022, 94, 1415–1424. [Google Scholar] [CrossRef]
- Gopu, C.L.; Shanti Krishna, A.; Sreenivasan, K. Fluorimetric detection of hypochlorite using albumin stabilized gold nanoclusters. Sens. Actuat. B-Chem. 2015, 209, 798–802. [Google Scholar] [CrossRef]
- Zhao, G.; Lv, C.-C.; Yang, X.-K.; Zhao, X.; Xie, F. Levonorgestrel protected Au10 cluster for hypochlorite sensing in living organisms. Anal. Chim. Acta 2024, 1320, 343033. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Wang, Y.; Li, Y.; Yan, C.; Liu, Z.; Wang, H.; Peng, H.; Du, J.; Zheng, B.; Guo, Y. Synthesis of vitamin B1-stabilized gold nanoclusters with high quantum yields for application as sensors. ACS Appl. Nano Mater. 2022, 5, 17234–17242. [Google Scholar] [CrossRef]
- Tang, Q.; Yang, T.; Huang, Y. Copper nanocluster-based fluorescent probe for hypochlorite. Microchim. Acta 2015, 182, 2337–2343. [Google Scholar] [CrossRef]
- Meng, Y.; Zhang, Z.; Zhao, H.; Jiao, Y.; Li, J.; Shuang, S.; Dong, C. Facile synthesis of multifunctional carbon dots with 54.4% orange emission for label-free detection of morin and endogenous/exogenous hypochlorite. J. Hazard. Mater. 2022, 424, 127289. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Liu, Y.; Zhang, H.; Lu, W.; Jiao, Y.; Shuang, S.; Dong, C. One-pot synthesis of efficient multifunctional nitrogen-doped carbon dots with efficient yellow fluorescence emission for detection of hypochlorite and thiosulfate. J. Mater. Chem. B 2022, 10, 8910–8917. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Zheng, X.; Chen, Z.; Teng, R.; Zhang, Y.; Li, H.; Ding, C.; Huang, Y. Fluorescent-colorimetric dual signal ratio sensor with AuNRs@UCNPs superstructure nanoprobe for accurate hypochlorite detection. Sens. Actuat. B-Chem. 2024, 419, 136384. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, X.; Dong, Q.; Chang, Y.; Zhang, S.; Shi, P. Water-Soluble Photoluminescent Ag Nanoclusters Stabilized by Amphiphilic Copolymers as Nanoprobe for Hypochlorite Detection. Chemosensors 2024, 12, 166. https://doi.org/10.3390/chemosensors12080166
Lin X, Dong Q, Chang Y, Zhang S, Shi P. Water-Soluble Photoluminescent Ag Nanoclusters Stabilized by Amphiphilic Copolymers as Nanoprobe for Hypochlorite Detection. Chemosensors. 2024; 12(8):166. https://doi.org/10.3390/chemosensors12080166
Chicago/Turabian StyleLin, Xiangfang, Qinhui Dong, Yalin Chang, Shusheng Zhang, and Pengfei Shi. 2024. "Water-Soluble Photoluminescent Ag Nanoclusters Stabilized by Amphiphilic Copolymers as Nanoprobe for Hypochlorite Detection" Chemosensors 12, no. 8: 166. https://doi.org/10.3390/chemosensors12080166
APA StyleLin, X., Dong, Q., Chang, Y., Zhang, S., & Shi, P. (2024). Water-Soluble Photoluminescent Ag Nanoclusters Stabilized by Amphiphilic Copolymers as Nanoprobe for Hypochlorite Detection. Chemosensors, 12(8), 166. https://doi.org/10.3390/chemosensors12080166