Improved Affinity: A Customized Fluorescent Probe for the Rapid Detection of Butyrylcholinesterase
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Steps for Spectral Measurement
2.2. Cytotoxicity Experiment
2.3. Fluorescence Imaging of Probe P5 in PC12 Cells
3. Results and Discussion
3.1. Probe Design and Synthesis
3.2. Optical Responses of the Probes to BChE
3.3. Fluorescence Imaging of Probe P5 in AD Model Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ha, Z.Y.; Mathew, S.; Yeong, K.Y. Butyrylcholinesterase: A multifaceted pharmacological target and tool. Curr. Protein Pept. Sci. 2020, 21, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Santarpia, L.; Grandone, I.; Contaldo, F.; Pasanisi, F. Butyrylcholinesterase as a prognostic marker: A review of the literature. J. Cachexia Sarcopenia Muscle 2013, 4, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Silman, I. The multiple biological roles of the cholinesterases. Prog. Biophys. Mol. Biol. 2021, 162, 41–56. [Google Scholar] [CrossRef]
- Sridhar, G.R.; Gumpeny, L. Emerging significance of butyrylcholinesterase. World J. Exp. Med. 2024, 14, 87202. [Google Scholar] [CrossRef] [PubMed]
- Furtado-Alle, L.; Tureck, L.V.; de Oliveira, C.S.; Hortega, J.V.; Souza, R.L. Butyrylcholinesterase and lipid metabolism: Possible dual role in metabolic disorders. Chem.-Biol. Interact. 2023, 383, 110680. [Google Scholar] [CrossRef] [PubMed]
- Gok, M.; Cicek, C.; Bodur, E. Butyrylcholinesterase in lipid metabolism: A new outlook. J. Neurochem. 2023, 168, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Jasiecki, J.; Szczoczarz, A.; Cysewski, D.; Lewandowski, K.; Skowron, P.; Waleron, K.; Wasąg, B. Butyrylcholinesterase–protein interactions in human serum. Int. J. Mol. Sci. 2021, 22, 10662. [Google Scholar] [CrossRef] [PubMed]
- Pohanka, M. Butyrylcholinesterase as a biochemical marker. Bratisl Lek Listy 2013, 114, 726–734. [Google Scholar] [CrossRef] [PubMed]
- Pohanka, M. Cholinesterases in biorecognition and biosensors construction: A review. Anal. Lett. 2013, 46, 1849–1868. [Google Scholar] [CrossRef]
- Contestabile, A. The history of the cholinergic hypothesis. Behav. Brain Res. 2011, 221, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Yang, H.; Chen, Y.; Sun, H. Recent progress in the identification of selective butyrylcholinesterase inhibitors for Alzheimer’s disease. Eur. J. Med. Chem. 2017, 132, 294–309. [Google Scholar] [CrossRef] [PubMed]
- Marucci, G.; Buccioni, M.; Dal Ben, D.; Lambertucci, C.; Volpini, R.; Amenta, F. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology 2021, 190, 108352. [Google Scholar] [CrossRef] [PubMed]
- Xing, S.; Li, Q.; Xiong, B.; Chen, Y.; Feng, F.; Liu, W.; Sun, H. Structure and therapeutic uses of butyrylcholinesterase: Application in detoxification, Alzheimer’s disease, and fat metabolism. Med. Res. Rev. 2021, 41, 858–901. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.S.; Younis, K.; Philippe, J.; Aschner, M.; Khan, H. Strategic approaches to target the enzymes using natural compounds for the management of Alzheimer’s disease: A review. CNS Neurol. Disord.-Drug Targets 2022, 21, 610–620. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Cao, Y.; Lin, Y.; Tan, K.S.; Zhao, H.; Guo, H.; Tan, W. Enhancement of Fear Extinction Memory and Resistance to Age-Related Cognitive Decline in Butyrylcholinesterase Knockout Mice and (R)-Bambuterol Treated Mice. Biology 2021, 10, 404. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, I.R.; Maxwell, S.P.; Reid, G.A.; Cash, M.K.; DeBay, D.R.; Darvesh, S. Quantification of butyrylcholinesterase activity as a sensitive and specific biomarker of Alzheimer’s disease. J. Alzheimer’s Dis. 2017, 58, 491–505. [Google Scholar] [CrossRef]
- Meden, A.; Knez, D.; Brazzolotto, X.; Nachon, F.; Dias, J.; Svete, J.; Stojan, J.; Grošelj, U.; Gobec, S. From tryptophan-based amides to tertiary amines: Optimization of a butyrylcholinesterase inhibitor series. Eur. J. Med. Chem. 2022, 234, 114248. [Google Scholar] [CrossRef] [PubMed]
- Mendes, G.O.; Pita, S.S.d.R.; Carvalho, P.B.d.; Silva, M.P.d.; Taranto, A.G.; Leite, F.H.A. Molecular Multi-Target Approach for Human Acetylcholinesterase, Butyrylcholinesterase and β-Secretase 1: Next Generation for Alzheimer’s Disease Treatment. Pharmaceuticals 2023, 16, 880. [Google Scholar] [CrossRef] [PubMed]
- Pathak, C.; Kabra, U.D. A comprehensive review of multi-target directed ligands in the treatment of Alzheimer’s disease. Bioorg. Chem. 2024, 144, 107152. [Google Scholar] [CrossRef] [PubMed]
- Teitsdottir, U.D.; Darreh-Shori, T.; Lund, S.H.; Jonsdottir, M.K.; Snaedal, J.; Petersen, P.H. Phenotypic Displays of Cholinergic Enzymes Associate With Markers of Inflammation, Neurofibrillary Tangles, and Neurodegeneration in Pre-and Early Symptomatic Dementia Subjects. Front. Aging Neurosci. 2022, 14, 876019. [Google Scholar] [CrossRef]
- Wang, L.; Sun, T.; Zhen, T.; Li, W.; Yang, H.; Wang, S.; Feng, F.; Chen, Y.; Sun, H. Butyrylcholinesterase-Activated Near-Infrared Fluorogenic Probe for In Vivo Theranostics of Alzheimer’s Disease. J. Med. Chem. 2024, 67, 6793–6809. [Google Scholar] [CrossRef]
- Wang, L.; Du, D.; Lu, D.; Lin, C.-T.; Smith, J.N.; Timchalk, C.; Liu, F.; Wang, J.; Lin, Y. Enzyme-linked immunosorbent assay for detection of organophosphorylated butyrylcholinesterase: A biomarker of exposure to organophosphate agents. Anal. Chim. Acta 2011, 693, 1–6. [Google Scholar] [CrossRef] [PubMed]
- De Almeida, R.; de Almeida Luz, R.L.S.; Leite, F.H.A.; Botura, M.B. A Review on the In Vitro Evaluation of the Anticholinesterase Activity Based on Ellman’s Method. Mini Rev. Med. Chem. 2022, 22, 1803–1813. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.-M.; Xu, B.; Dong, C. Recent advances in colorimetric strategies for acetylcholinesterase assay and their applications. TrAC Trends Anal. Chem. 2021, 142, 116320. [Google Scholar] [CrossRef]
- Miao, Y.; He, N.; Zhu, J.-J. History and new developments of assays for cholinesterase activity and inhibition. Chem. Rev. 2010, 110, 5216–5234. [Google Scholar] [CrossRef] [PubMed]
- Šinko, G.; Čalić, M.; Bosak, A.; Kovarik, Z. Limitation of the Ellman method: Cholinesterase activity measurement in the presence of oximes. Anal. Biochem. 2007, 370, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Bastos, M.; Abian, O.; Johnson, C.M.; Ferreira-da-Silva, F.; Vega, S.; Jimenez-Alesanco, A.; Ortega-Alarcon, D.; Velazquez-Campoy, A. Isothermal titration calorimetry. Nat. Rev. Methods Primers 2023, 3, 17. [Google Scholar] [CrossRef]
- Cavalcanti, I.D.L.; Junior, F.H.X.; Magalhães, N.S.S.; Nogueira, M.C.d.B.L. Isothermal titration calorimetry (ITC) as a promising tool in pharmaceutical nanotechnology. Int. J. Pharm. 2023, 641, 123063. [Google Scholar] [CrossRef]
- Pope, C.; Uchea, C.; Flynn, N.; Poindexter, K.; Geng, L.; Brimijoin, W.S.; Hartson, S.; Ranjan, A.; Ramsey, J.D.; Liu, J. In vitro characterization of cationic copolymer-complexed recombinant human butyrylcholinesterase. Biochem. Pharmacol. 2015, 98, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.; Hou, S.; Xue, L.; Yang, W.; Zhan, C.-G. Human Butyrylcholinesterase Mutants for (−)-Cocaine Hydrolysis: A Correlation Relationship between Catalytic Efficiency and Total Hydrogen Bonding Energy with an Oxyanion Hole. J. Phys. Chem. B 2023, 127, 10723–10729. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Sui, T.; Wang, B.; Xu, K.; Zhang, S.; Cao, X.; Wang, Y.; Qian, W.; Dong, J. Ultrasensitive Acetylcholinesterase detection based on a surface-enhanced Raman scattering lever strategy for identifying nerve fibers. Talanta 2023, 252, 123867. [Google Scholar] [CrossRef] [PubMed]
- Holas, O.; Musilek, K.; Pohanka, M.; Kuca, K. The progress in the cholinesterase quantification methods. Expert Opin. Drug Discov. 2012, 7, 1207–1223. [Google Scholar] [CrossRef]
- Wan, C.; Li, J.; Gao, J.; Liu, H.; Zhang, Q.; Zhang, P.; Ding, C. Ratiometric fluorescence assay for butyrylcholinesterase activity based on a hemicyanine and its application in biological imaging. Dyes Pigments 2022, 197, 109874. [Google Scholar] [CrossRef]
- Wu, D.; Sedgwick, A.C.; Gunnlaugsson, T.; Akkaya, E.U.; Yoon, J.; James, T.D. Fluorescent chemosensors: The past, present and future. Chem. Soc. Rev. 2017, 46, 7105–7123. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chai, X.; He, X.-P.; Kim, H.-J.; Yoon, J.; Tian, H. Fluorogenic probes for disease-relevant enzymes. Chem. Soc. Rev. 2019, 48, 683–722. [Google Scholar] [CrossRef]
- Liu, S.-Y.; Xiong, H.; Yang, J.-Q.; Yang, S.-H.; Li, Y.; Yang, W.-C.; Yang, G.-F. Discovery of butyrylcholinesterase-activated near-infrared fluorogenic probe for live-cell and in vivo imaging. ACS Sens. 2018, 3, 2118–2128. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-H.; Sun, Q.; Xiong, H.; Liu, S.-Y.; Moosavi, B.; Yang, W.-C.; Yang, G.-F. Discovery of a butyrylcholinesterase-specific probe via a structure-based design strategy. Chem. Commun. 2017, 53, 3952–3955. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Lu, X.; Zhai, H.; Li, Q.; Qiao, L.; Guo, Y. Rational design of a near-infrared fluorescence probe for highly selective sensing butyrylcholinesterase (BChE) and its bioimaging applications in living cell. Talanta 2020, 219, 121278. [Google Scholar] [CrossRef] [PubMed]
- Masson, P.; Shaihutdinova, Z.; Lockridge, O. Drug and pro-drug substrates and pseudo-substrates of human butyrylcholinesterase. Biochem. Pharmacol. 2023, 218, 115910. [Google Scholar] [CrossRef] [PubMed]
- Sawatzky, E. Design und Synthese Selektiver Butyrylcholinesterase (BChE) Inhibitoren zur Entwicklung von Radiopharmazeutika zur Erforschung der Alzheimer Erkrankung. Ph.D. Thesis, Universität Würzburg, Würzburg, Germany, 2016. [Google Scholar]
- Li, Q.; Chen, Y.; Xing, S.; Liao, Q.; Xiong, B.; Wang, Y.; Lu, W.; He, S.; Feng, F.; Liu, W. Highly potent and selective butyrylcholinesterase inhibitors for cognitive improvement and neuroprotection. J. Med. Chem. 2021, 64, 6856–6876. [Google Scholar] [CrossRef]
- Pohanka, M. Diagnoses of pathological states based on acetylcholinesterase and butyrylcholinesterase. Curr. Med. Chem. 2020, 27, 2994–3011. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Cheng, S.; Sussman, J.L.; Silman, I.; Jiang, H. Computational studies on acetylcholinesterases. Molecules 2017, 22, 1324. [Google Scholar] [CrossRef] [PubMed]
- Bosak, A.; Smilović, I.G.; Štimac, A.; Vinković, V.; Šinko, G.; Kovarik, Z. Peripheral site and acyl pocket define selective inhibition of mouse butyrylcholinesterase by two biscarbamates. Arch. Biochem. Biophys. 2013, 529, 140–145. [Google Scholar] [CrossRef] [PubMed]
- De Boer, D.; Nguyen, N.; Mao, J.; Moore, J.; Sorin, E.J. A comprehensive review of cholinesterase modeling and simulation. Biomolecules 2021, 11, 580. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Pan, Y.; Muzyka, J.L.; Zhan, C.-G. Active site gating and substrate specificity of butyrylcholinesterase and acetylcholinesterase: Insights from molecular dynamics simulations. J. Phys. Chem. B 2011, 115, 8797–8805. [Google Scholar] [CrossRef] [PubMed]
- Kulakova, A.; Lushchekina, S.; Grigorenko, B.; Nemukhin, A. Modeling reactivation of the phosphorylated human butyrylcholinesterase by QM (DFTB)/MM calculations. J. Theor. Comput. Chem. 2015, 14, 1550051. [Google Scholar] [CrossRef]
- Macdonald, I.R.; Martin, E.; Rosenberry, T.L.; Darvesh, S. Probing the peripheral site of human butyrylcholinesterase. Biochemistry 2012, 51, 7046–7053. [Google Scholar] [CrossRef] [PubMed]
- Mukhametgalieva, A.R.; Nemtarev, A.V.; Sykaev, V.V.; Pashirova, T.N.; Masson, P. Activation/Inhibition of Cholinesterases by Excess Substrate: Interpretation of the Phenomenological b Factor in Steady-State Rate Equation. Int. J. Mol. Sci. 2023, 24, 10472. [Google Scholar] [CrossRef] [PubMed]
- Lockridge, O. Review of human butyrylcholinesterase structure, function, genetic variants, history of use in the clinic, and potential therapeutic uses. Pharmacol. Ther. 2015, 148, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Ding, X.; Zhang, Z.; Li, J.; Fan, S.; Lai, J.; Su, R.; Wang, X.; Wang, B. Visualization of production and remediation of acetaminophen-induced liver injury by a carboxylesterase-2 enzyme-activatable near-infrared fluorescent probe. Talanta 2024, 269, 125418. [Google Scholar] [CrossRef]
- Ganeshpurkar, A.; Singh, R.; Kumar, D.; Gutti, G.; Sardana, D.; Shivhare, S.; Singh, R.B.; Kumar, A.; Singh, S.K. Development of homology model, docking protocol and Machine-Learning based scoring functions for identification of Equus caballus’s butyrylcholinesterase inhibitors. J. Biomol. Struct. Dyn. 2022, 40, 13693–13710. [Google Scholar] [CrossRef] [PubMed]
- Sawatzky, E.; Wehle, S.; Kling, B.; Wendrich, J.; Bringmann, G.; Sotriffer, C.A.; Heilmann, J.; Decker, M. Discovery of highly selective and nanomolar carbamate-based butyrylcholinesterase inhibitors by rational investigation into their inhibition mode. J. Med. Chem. 2016, 59, 2067–2082. [Google Scholar] [CrossRef] [PubMed]
- Wandhammer, M.; de Koning, M.; van Grol, M.; Loiodice, M.; Saurel, L.; Noort, D.; Goeldner, M.; Nachon, F. A step toward the reactivation of aged cholinesterases–crystal structure of ligands binding to aged human butyrylcholinesterase. Chem.-Biol. Interact. 2013, 203, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Bolognesi, M.L.; Andrisano, V.; Bartolini, M.; Banzi, R.; Melchiorre, C. Propidium-based polyamine ligands as potent inhibitors of acetylcholinesterase and acetylcholinesterase-induced amyloid-β aggregation. J. Med. Chem. 2005, 48, 24–27. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Sun, J.; Liu, D.; Liu, J.; Gui, L.; Luo, M.; Kong, D.; Wusiman, S.; Yang, C.; Liu, T. Developing a Two-Photon “AND” Logic Probe and Its Application in Alzheimer’s Disease Differentiation. Anal. Chem. 2023, 95, 16868–16876. [Google Scholar] [CrossRef] [PubMed]
- Cao, T.; Zheng, L.; Zhang, L.; Teng, Z.; Qian, J.; Ma, H.; Wang, J.; Cao, Y.; Qin, W.; Liu, Y. A highly butyrylcholinesterase selective red-emissive mitochondria-targeted fluorescent indicator imaging in liver tissue of mice. Sens. Actuators B Chem. 2021, 330, 129348. [Google Scholar] [CrossRef]
- Chen, G.; Feng, H.; Xi, W.; Xu, J.; Pan, S.; Qian, Z. Thiol–ene click reaction-induced fluorescence enhancement by altering the radiative rate for assaying butyrylcholinesterase activity. Analyst 2019, 144, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Huang, W.; Tan, H.; Yin, G.; Chen, S.; Zhao, K.; Huang, Y.; Zhang, Y.; Li, H.; Wu, C. A large Stokes shift NIR fluorescent probe for visual monitoring of mitochondrial peroxynitrite during inflammation and ferroptosis and in an Alzheimer’s disease model. Analyst 2023, 148, 4331–4338. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Zhao, L.; Wang, T.; Chen, Y.; Hao, W.; Zhang, Z.; Hao, Y.; Zhang, C.; Wei, X.; Zhang, Y. Dual-mode ratiometric electrochemical and turn-on fluorescent detection of butyrylcholinesterase utilizing a single probe for the diagnosis of Alzheimer’s disease. Anal. Chem. 2023, 95, 8340–8347. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.; Yan, C.; Guo, Z.; Zhang, J.; Zhang, H.; Tian, H.; Zhu, W.-H. Rational design of near-infrared aggregation-induced-emission-active probes: In situ mapping of amyloid-β plaques with ultrasensitivity and high-fidelity. J. Am. Chem. Soc. 2019, 141, 3171–3177. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Lee, S.; Yang, W.; Seo, J.; Han, M.S. A direct assay of butyrylcholinesterase activity using a fluorescent substrate. Org. Biomol. Chem. 2016, 14, 8815–8820. [Google Scholar] [CrossRef] [PubMed]
- Shen, A.; Hao, X.; Li, M.; Zhao, Y.; Li, Z.; Hou, L.; Duan, R.; Zhang, P.; Zhang, L.; Yang, Y. Organophosphate Level Evaluation for the Poisoning Treatment by Enzyme Activation Regeneration Strategy with Oxime-Functionalized ZIF-8 Nanoparticles. Anal. Chem. 2023, 95, 10376–10383. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.-X.; Jiang, W.-L.; Liu, Y.; Li, Y.; Zhang, J.; Li, C.-Y. Near-infrared fluorescence probe with a large stokes shift for visualizing hydrogen peroxide in ulcerative colitis mice. Sens. Actuators B Chem. 2020, 320, 128296. [Google Scholar] [CrossRef]
- Wang, W.-X.; Jiang, W.-L.; Mao, G.-J.; Tan, M.; Fei, J.; Li, Y.; Li, C.-Y. Monitoring the fluctuation of hydrogen peroxide in diabetes and its complications with a novel near-infrared fluorescent probe. Anal. Chem. 2021, 93, 3301–3307. [Google Scholar] [CrossRef] [PubMed]
- Xiang, C.; Dirak, M.; Luo, Y.; Peng, Y.; Cai, L.; Gong, P.; Zhang, P.; Kolemen, S. A responsive AIE-active fluorescent probe for visualization of acetylcholinesterase activity in vitro and in vivo. Mater. Chem. Front. 2022, 6, 1515–1521. [Google Scholar] [CrossRef]
- Xiang, C.; Xiang, J.; Yang, X.; Li, C.; Zhou, L.; Jiang, D.; Peng, Y.; Xu, Z.; Deng, G.; Zhu, B. Ratiometric imaging of butyrylcholinesterase activity in mice with nonalcoholic fatty liver using an AIE-based fluorescent probe. J. Mater. Chem. B 2022, 10, 4254–4260. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, L.; Wang, J.; Cao, Y.; Li, S.; Qin, W.; Liu, Y. Diagnosis of Alzheimer’s disease and in situ biological imaging via an activatable near-infrared fluorescence probe. Anal. Chem. 2022, 94, 13498–13506. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, L.; Li, Z.; Li, D.; Tian, X.; Zhang, C. Near-infrared fluorescence probe for hydrogen peroxide detection: Design, synthesis, and application in living systems. Analyst 2019, 144, 3643–3648. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Fu, C.; Liu, H.; Guo, X.; Zhang, Q.; Gao, J.; Chen, W.; Yuan, W.; Ding, C. AND-logic strategy for accurate analysis of Alzheimer’s disease via fluorescent probe lighted up by two specific biomarkers. Anal. Chem. 2021, 93, 11337–11345. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Fu, C.; Guo, X.; Gao, J.; Zhang, P.; Ding, C. Fluorescent determination of butyrylcholinesterase activity and its application in biological imaging and pesticide residue detection. ACS Sens. 2021, 6, 1138–1146. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Wang, Q.; Liao, H.; Liu, M.; Liu, Z.; Zhang, Y.; Zhu, W.-H. Trapping endoplasmic reticulum with amphiphilic AIE-active sensor via specific interaction of ATP-sensitive potassium (KATP). Natl. Sci. Rev. 2021, 8, nwaa198. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Chen, X.-F.; Zhang, Y.; Ran, Y.; Jin, L.; Li, S.; Guan, B.-O. Improved Affinity: A Customized Fluorescent Probe for the Rapid Detection of Butyrylcholinesterase. Chemosensors 2024, 12, 100. https://doi.org/10.3390/chemosensors12060100
Wang W, Chen X-F, Zhang Y, Ran Y, Jin L, Li S, Guan B-O. Improved Affinity: A Customized Fluorescent Probe for the Rapid Detection of Butyrylcholinesterase. Chemosensors. 2024; 12(6):100. https://doi.org/10.3390/chemosensors12060100
Chicago/Turabian StyleWang, Wei, Xiao-Fei Chen, Yi Zhang, Yang Ran, Long Jin, Shuai Li, and Bai-Ou Guan. 2024. "Improved Affinity: A Customized Fluorescent Probe for the Rapid Detection of Butyrylcholinesterase" Chemosensors 12, no. 6: 100. https://doi.org/10.3390/chemosensors12060100
APA StyleWang, W., Chen, X. -F., Zhang, Y., Ran, Y., Jin, L., Li, S., & Guan, B. -O. (2024). Improved Affinity: A Customized Fluorescent Probe for the Rapid Detection of Butyrylcholinesterase. Chemosensors, 12(6), 100. https://doi.org/10.3390/chemosensors12060100