Development of All-Solid-State Potentiometric Sensors for Monitoring Carbendazim Residues in Oranges: A Degradation Kinetics Investigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Apparatus
2.2. Standards and Samples
2.2.1. Pure Standards
2.2.2. Commercial Samples
2.3. Chemicals and Reagents
- Sodium Hydroxide (NaOH), hydrochloric acid (HCl), calcium chloride, fructose, and potassium chloride (El Nasr Company, Cairo, Egypt);
- High molecular weight polyvinyl chloride (PVC), tetrahydrofuran (THF) of HPLC grade, dioctyl phthalate (DOP), multi-walled carbon nanotubes (MWCNTs), β-cyclodextrin hydrate, and potassium tetrakis(4-chlorophenyl)borate (KTpClPB) (Sigma Aldrich, Darmstadt, Germany);
- Sodium tetraphenylborate (NaTPB), Fluka (Seelze, Germany);
- Ammonium molybdate, BDH Chemicals Ltd. (Poole, UK);
- Deionized water (DW) (MilliQ Plus, Millipore Iberica, Navalafuente, Spain);
- Thiabendazole (TBZ), (Sigma Aldrich, Germany);
- Sodium citrate, Prolabo (West Chester, PA, USA);
- A Britton-Robinson buffer was prepared by mixing equal volumes of 0.1 M acetic acid, 0.1 M boric acid, and 0.1 M phosphoric acid. The required pH was then adjusted using 1 M NaOH solution [32];
- Lactose monohydrate (PIOCHEM, Giza, Egypt).
2.4. Standard Solutions
2.4.1. Stock Standard Solutions
2.4.2. Working Standard Solutions
2.5. Procedure
2.5.1. Preparation of the Ion-Association Complexes
2.5.2. Ion Selective Membrane Composition and Sensor Fabrication
Precipitation Technique
Ionophore Technique
2.5.3. Potential Measurement
2.5.4. Experimental Conditions
Identification of Electrochemical Properties of the Proposed Electrodes
pH Effect
Effect of Foreign Compounds
Potentiometric Water Layer Test
2.5.5. Applications
Application to Spiked Orange Samples
Applications to the Treated Orange Samples
- a.
- Field Experiment
- b.
- Sampling and Storage
3. Results and Discussion
3.1. Sensor Fabrication
3.2. Sensor Calibration and Response Time
3.3. Effect of pH
3.4. Sensors’ Selectivity
3.5. Potentiometric Water Layer Test
3.6. Application to Spiked Orange Samples and Study of the Degradation Rate of MBC in Orange Samples
3.7. Statistical Analysis
3.8. Comparison to Other Electrochemical Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, Y.; Chu, X.; Pang, G.; Xiang, Y.; Fang, H. Effects of Repeated Applications of Fungicide Carbendazim on Its Persistence and Microbial Community in Soil. J. Environ. Sci. 2009, 21, 179–185. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Internationat Programme on Chemical Safety the Who Recommended Classification Guidelines to Classification 1996–1997; WHOJPCS/96. 3; World Health Organization: Geneva, Switzerland, 1997; pp. 1–64. [Google Scholar]
- Li, J.; Zhou, X.; Zhang, C.; Zhao, Y.; Zhu, Y.; Zhang, J.; Bai, J.; Xiao, X. The Effects of Carbendazim on Acute Toxicity, Development, and Reproduction in Caenorhabditis Elegans. J. Food Qual. 2020, 2020, 8853537. [Google Scholar] [CrossRef]
- Singh, S.; Singh, N.; Kumar, V.; Datta, S.; Wani, A.B.; Singh, D.; Singh, K.; Singh, J. Toxicity, Monitoring and Biodegradation of the Fungicide Carbendazim. Environ. Chem. Lett. 2016, 14, 317–329. [Google Scholar] [CrossRef]
- Khanchouch, K.; Pane, A.; Chriki, A.; Cacciola, S.O. Major and Emerging Fungal Diseases of Citrus in the Mediterranean Region. In Citrus Pathology; InTech: London, UK, 2017. [Google Scholar]
- Ladaniya, M.S. Preparation for fresh fruit market. In Citrus Fruit; Elsevier: Amsterdam, The Netherlands, 2008; ISBN 9780123741301. [Google Scholar]
- Fares, N.V.; Hassan, Y.A.A.; Hussein, L.A.; Ayad, M.F. Determination of Fungicides’ Residues and Their Degradation Kinetics in Orange Tree Fruits Using Liquid Chromatography—Tandem Mass Spectrometry Coupled with QuEChERS Method. Microchem. J. 2021, 168, 106376. [Google Scholar] [CrossRef]
- Valderrama, L.; Valderrama, P.; Carasek, E. A Semi-Quantitative Model through PLS-DA in the Evaluation of Carbendazim in Grape Juices. Food Chem. 2022, 368, 130742. [Google Scholar] [CrossRef]
- Yang, Y.; Xing, X.; Zou, T.; Wang, Z.; Zhao, R.; Hong, P.; Peng, S.; Zhang, X.; Wang, Y. A Novel and Sensitive Ratiometric Fluorescence Assay for Carbendazim Based on N-Doped Carbon Quantum Dots and Gold Nanocluster Nanohybrid. J. Hazard. Mater. 2020, 386, 121958. [Google Scholar] [CrossRef]
- Yang, Y.; Huo, D.; Wu, H.; Wang, X.; Yang, J.; Bian, M.; Ma, Y.; Hou, C. N, P-Doped Carbon Quantum Dots as a Fluorescent Sensing Platform for Carbendazim Detection Based on Fluorescence Resonance Energy Transfer. Sens. Actuators B Chem. 2018, 274, 296–303. [Google Scholar] [CrossRef]
- Dong, L.; Ren, Y.; Li, J.; Wu, H.; Hou, C.; Fa, H.; Yang, M.; Zhang, S.; Huo, D. Detection of Carbendazim Residues in Aqueous Samples by Fluorescent Quenching of Plant Esterase. J. Appl. Spectrosc. 2018, 85, 535–542. [Google Scholar] [CrossRef]
- Wang, S.; Su, L.; Wang, L.; Zhang, D.; Shen, G.; Ma, Y. Colorimetric Determination of Carbendazim Based on the Specific Recognition of Aptamer and the Poly-Diallyldimethylammonium Chloride Aggregation of Gold Nanoparticles. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2020, 228, 117809. [Google Scholar] [CrossRef]
- Wani, K.; Nirmal, M.; Patel, V.; Khatoon, R.; Rai, M.K.; Rai, J. Determination of Carbendazim in Environmental Samples with Iron(III) and 1,10-Phenanthroline as Reagents. Asian J. Chem. 2017, 29, 161–165. [Google Scholar] [CrossRef]
- Costa, I.M.; Codognoto, L.; Valle, E.M.A. Voltammetric and Spectroscopic Studies of the Interaction between Copper (II) Ions with the Pesticide Carbendazim and Its Effect in the Soil. J. Solid State Electrochem. 2017, 22, 1563–1570. [Google Scholar] [CrossRef]
- Xie, Y.; Gao, F.; Tu, X.; Ma, X.; Dai, R.; Peng, G.; Yu, Y.; Lu, L. Flake-like Neodymium Molybdate Wrapped with Multi-Walled Carbon Nanotubes as an Effective Electrode Material for Sensitive Electrochemical Detection of Carbendazim. J. Electroanal. Chem. 2019, 855, 113468. [Google Scholar] [CrossRef]
- Lima, T.d.S.; Simões, F.R.; Codognoto, L. Simultaneous Voltammetric Determination of Carbendazim and Carbaryl in Medicinal Plant Infusions with a Boron-Doped Diamond Electrode. Int. J. Environ. Anal. Chem. 2017, 97, 768–782. [Google Scholar]
- Teadoum, D.N.; Noumbo, S.K.; Arnaud, K.T.; Ranil, T.T.; Mvondo Zé, A.D.; Tonle, I.K. Square Wave Voltammetric Determination of Residues of Carbendazim Using a Fullerene/Multiwalled Carbon Nanotubes/Nafion ®/Coated Glassy Carbon Electrode. Int. J. Electrochem. 2016, 2016, 7839708. [Google Scholar] [CrossRef]
- Hassan, Y.A.A.; Ayad, M.F.; Hussein, L.A.; Fares, N.V. Hydrophilic Interaction Liquid Chromatography (HILIC) with DAD Detection for the Determination of Relatively Non Polar Fungicides in Orange Samples. Microchem. J. 2023, 193, 109196. [Google Scholar] [CrossRef]
- He, S.; Tang, W.; Row, K.H. Determination of Thiophanate-Methyl and Carbendazim from Environmental Water by Liquid-Liquid Microextraction (LLME) Using a Terpenoid-Based Hydrophobic Deep Eutectic Solvent and High-Performance Liquid Chromatography (HPLC). Anal. Lett. 2021, 55, 1235–1248. [Google Scholar] [CrossRef]
- Liang, P.; Zhao, Y.; Li, P.; Yu, Q.; Dong, N. Matrix Solid-Phase Dispersion Based on Cucurbit [7]Uril-Assisted Dispersive Liquid–Liquid Microextraction Coupled with High Performance Liquid Chromatography for the Determination of Benzimidazole Fungicides from Vegetables. J. Chromatogr. A 2021, 1658, 462592. [Google Scholar] [CrossRef]
- Alvarado-Gutiérrez, M.L.; Ruiz-Ordaz, N.; Galíndez-Mayer, J.; Curiel-Quesada, E.; Santoyo-Tepole, F. Degradation Kinetics of Carbendazim by Klebsiella Oxytoca, Flavobacterium Johnsoniae, and Stenotrophomonas Maltophilia Strains. Environ. Sci. Pollut. Res. 2020, 27, 28518–28526. [Google Scholar] [CrossRef]
- Aguiar Júnior, C.A.S.; dos Santos, A.L.R.; de Faria, A.M. Disposable Pipette Extraction Using a Selective Sorbent for Carbendazim Residues in Orange Juice. Food Chem. 2020, 309, 125756. [Google Scholar] [CrossRef]
- Yu, Q.W.; Sun, H.; Wang, K.; He, H.B.; Feng, Y.Q. Monitoring of Carbendazim and Thiabendazole in Fruits and Vegetables by SiO2@NiO-Based Solid-Phase Extraction Coupled to High-Performance Liquid Chromatography-Fluorescence Detector. Food Anal. Methods 2017, 10, 2892–2901. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, W.; Wu, Q.; Zang, X.; Zhou, X.; Zeng, X.; Wang, Z. Determination of Carbendazim and Thiabendazole in Apple Juice by Hollow Fibre-Based Liquid Phase Microextraction-High Performance Liquid Chromatography with Fluorescence Detection. Int. J. Environ. Anal. Chem. 2012, 92, 582–591. [Google Scholar] [CrossRef]
- Bojanowska-Czajka, A.; Nichipor, H.; Drzewicz, P.; Szostek, B.; Gałȩzowska, A.; Męczyńska, S.; Kruszewski, M.; Zimek, Z.; Nałęcz-Jawecki, G.; Trojanowicz, M. Radiolytic Decomposition of Pesticide Carbendazim in Waters and Wastes for Environmental Protection. J. Radioanal. Nucl. Chem. 2011, 289, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Li, Y.; Wang, C.; Liu, Z.; Zang, X.; Zhou, X.; Wang, Z. Dispersive Liquid–Liquid Microextraction Combined with High Performance Liquid Chromatography–Fluorescence Detection for the Determination of Carbendazim and Thiabendazole in Environmental Samples. Anal. Chim. Acta 2009, 638, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Osaili, T.M.; Al Sallagi, M.S.; Dhanasekaran, D.K.; Bani Odeh, W.A.M.; Al Ali, H.J.; Al Ali, A.A.S.A.; Radwan, H.; Obaid, R.S.; Holley, R. Pesticide Residues in Fresh Vegetables Imported into the United Arab Emirates. Food Control 2022, 133, 108663. [Google Scholar] [CrossRef]
- Mozzaquatro, J.d.O.; César, I.A.; Pinheiro, A.E.B.; Caldas, E.D. Pesticide Residues Analysis in Passion Fruit and Its Processed Products by LC–MS/MS and GC–MS/MS: Method Validation, Processing Factors and Dietary Risk Assessment. Food Chem. 2021, 375, 131643. [Google Scholar] [CrossRef]
- Mahdavi, V.; Eslami, Z.; Golmohammadi, G.; Tajdar-oranj, B.; Keikavousi Behbahan, A.; Mousavi Khaneghah, A. Simultaneous Determination of Multiple Pesticide Residues in Iranian Saffron: A Probabilistic Health Risk Assessment. J. Food Compos. Anal. 2021, 100, 103915. [Google Scholar] [CrossRef]
- Yang, F.; Tang, G.; Ye, C.; Wang, Y.; Fan, M.; Deng, H.; Liu, S.; Bian, Z.; Ji, Y. Simultaneous Determination of Fungicides and Carbamates in Tobacco by Ultra Performance Convergence Chromatography-Tandem Mass Spectrometry Coupled with Modified QuEChERS. Microchem. J. 2021, 171, 106849. [Google Scholar] [CrossRef]
- Golge, O.; Kabak, B. Determination of 115 Pesticide Residues in Oranges by High-Performance Liquid Chromatography-Triple-Quadrupole Mass Spectrometry in Combination with QuEChERS Method. J. Food Compos. Anal. 2015, 41, 86–97. [Google Scholar] [CrossRef]
- Souri, E.; Kaboodari, A.; Adib, N.; Amanlou, M. A New Extractive Spectrophotometric Method for Determination of Rizatriptan Dosage Forms Using Bromocresol Green. DARU J. Pharm. Sci. 2013, 21, 12. [Google Scholar] [CrossRef]
- Pingarrón, J.M.; Labuda, J.; Barek, J.; Brett, C.M.A.; Camões, M.F.; Fojta, M.; Hibbert, D.B. Terminology of Electrochemical Methods of Analysis (IUPAC Recommendations 2019). Pure Appl. Chem. 2020, 92, 641–694. [Google Scholar] [CrossRef]
- Umezawa, Y.; Bühlmann, P.; Umezawa, K.; Tohda, K.; Amemiya, S. Potentiometric Selectivity Coefficients of Ion-Selective Electrodes Part I. Inorganic Cations (Technical Report). Pure Appl. Chem. 2000, 72, 1851–2082. [Google Scholar] [CrossRef]
- Lindner, E.; Umezawa, Y. Performance Evaluation Criteria for Preparation and Measurement of Macro- and Microfabricated Ion-Selective Electrodes (IUPAC Technical Report). Pure Appl. Chem. 2008, 80, 85–104. [Google Scholar] [CrossRef]
- Umezawa, Y.; Umezawa, K.; Sato, H. Selectivity Coefficients for Ion-Selective Electrodes: Recommended Methods for Reporting Values KpotA, Bvalues (Technical Report). Pure Appl. Chem. 1995, 67, 507–518. [Google Scholar] [CrossRef]
- Gadhari, N.S.; Gholave, J.V.; Patil, S.S.; Patil, V.R.; Upadhyay, S.S. Enantioselective High Performance New Solid Contact Ion-Selective Electrode Potentiometric Sensor Based on Sulphated γ-Cyclodextrin-carbon Nanofiber Composite for Determination of Multichiral Drug Moxifloxacin. J. Electroanal. Chem. 2021, 882, 114981. [Google Scholar] [CrossRef]
- Mahmoud, A.M.; Moaaz, E.M.; Rezk, M.R.; Abdel-Moety, E.M.; Fayed, A.S. Microfabricated Solid-Contact Potentiometric Sensor for Determination of Tedizolid Phosphate, Application to Content Uniformity Testing. Electroanalysis 2022, 34, e202200115. [Google Scholar] [CrossRef]
- Machatha, S.G.; Sanghvi, T.; Yalkowsky, S.H. Structure Determination and Characterization of Carbendazim Hydrochloride Dihydrate. AAPS PharmSciTech 2005, 6, 115–119. [Google Scholar] [CrossRef]
- Suliman, F.E.O.; Elbashir, A.A.; Schmitz, O.J. Study on the Separation of Ofloxacin Enantiomers by Hydroxyl-Propyl-β-Cyclodextrin as a Chiral Selector in Capillary Electrophoresis: A Computational Approach. J. Incl. Phenom. Macrocycl. Chem. 2015, 83, 119–129. [Google Scholar] [CrossRef]
- El-Kosasy, A.M.; abd El Aziz, L.; Trabik, Y.A. Comparative Study of Beta Cyclodextrin and Calix-8-Arene as Ionophores in Potentiometric Ion-Selective Electrodes for Sitagliptin Phosphate. J. Appl. Pharm. Sci. 2012, 2, 51–56. [Google Scholar] [CrossRef]
- Ge, X.; Huang, Z.; Tian, S.; Huang, Y.; Zeng, C. Complexation of Carbendazim with Hydroxypropyl-β-Cyclodextrin to Improve Solubility and Fungicidal Activity. Carbohydr. Polym. 2012, 89, 208–212. [Google Scholar] [CrossRef]
- Ayad, M.F.; Trabik, Y.A.; Abdelrahman, M.H.; Fares, N.V.; Magdy, N. Potentiometric Carbon Quantum Dots-Based Screen-Printed Arrays for Nano-Tracing Gemifloxacin as a Model Fluoroquinolone Implicated in Antimicrobial Resistance. Chemosensors 2021, 9, 8. [Google Scholar] [CrossRef]
- Khalil, M.M.; El Rouby, W.M.A.; Korany, M.A. Potentiometric Sensor Based on Novel Flowered-like Mg-Al Layered Double Hydroxides/Multiwalled Carbon Nanotubes Nanocomposite for Bambuterol Hydrochloride Determination. Mater. Sci. Eng. C 2019, 100, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Arahman, N.; Fahrina, A.; Wahab, M.Y.; Fathanah, U. Morphology and Performance of Polyvinyl Chloride Membrane Modified with Pluronic F127. F1000Research 2018, 7, 726. [Google Scholar] [CrossRef] [PubMed]
- Özbek, O. Potentiometric PVC Membrane Ion–Selective Electrode for the Determination of Sr(II) Ions. Sens. Int. 2022, 3, 100185. [Google Scholar] [CrossRef]
- Lindner, E.; Guzinski, M.; Pendley, B.; Chaum, E. Plasticized PVC Membrane Modified Electrodes: Voltammetry of Highly Hydrophobic Compounds. Membranes 2020, 10, 202. [Google Scholar] [CrossRef] [PubMed]
- Jagarlapudi, S.S.; Cross, H.S.; Das, T.; Goddard, W.A. Thermomechanical Properties of Nontoxic Plasticizers for Polyvinyl Chloride Predicted from Molecular Dynamics Simulations. ACS Appl. Mater. Interfaces 2023, 15, 24858–24867. [Google Scholar] [CrossRef]
- Alizadeh, T.; Nayeri, S.; Mirzaee, S. A High Performance Potentiometric Sensor for Lactic Acid Determination Based on Molecularly Imprinted Polymer/MWCNTs/PVC Nanocomposite Film Covered Carbon Rod Electrode. Talanta 2019, 192, 103–111. [Google Scholar] [CrossRef]
- Zareh, M.M. Plasticizers and Their Role in Membrane Selective Electrodes. In Recent Advances in Plasticizers; InTech: London, UK, 2012. [Google Scholar]
- Lyu, Y.; Gan, S.; Bao, Y.; Zhong, L.; Xu, J.; Wang, W.; Liu, Z.; Ma, Y.; Yang, G.; Niu, L. Solid-Contact Ion-Selective Electrodes: Response Mechanisms, Transducer Materials and Wearable Sensors. Membranes 2020, 10, 128. [Google Scholar] [CrossRef]
- Crespo, G.A.; Macho, S.; Rius, F.X. Ion-Selective Electrodes Using Carbon Nanotubes as Ion-to-Electron Transducers. Anal. Chem. 2008, 80, 1316–1322. [Google Scholar] [CrossRef]
- Galal, M.M.; Saad, A.S. Portable Solid-State Sensor for Therapeutic Monitoring of an Antineoplastic Drug; Vinblastine in Human Plasma. RSC Adv. 2020, 10, 42699–42705. [Google Scholar] [CrossRef]
- Aleem, A.A.A.; Khaled, E.; Farghali, A.A.; Abdelwahab, A.; Khalil, M.M. β-Cyclodextrin/Carbon Xerogel Based Potentiometric Screen Printed Sensor for Determination of Meclofenoxate Hydrochloride. Int. J. Electrochem. Sci. 2020, 15, 3365–3381. [Google Scholar] [CrossRef]
- Zhang, G.H.; Imato, T.; Ishibashi, N.; Asano, Y.; Sonoda, T.; Kobayashi, H. Vitamin B1 Sensitive Poly(Vinyl Chloride) Membrane Electrode Based on Hydrophobic Tetraphenylborate Derivatives and Their Application. Anal. Chem. 1990, 62, 1644–1648. [Google Scholar] [CrossRef]
- Bagheri, H.; Afkhami, A.; Shirzadmehr, A.; Khoshsafar, H. A New Nano-Composite Modified Carbon Paste Electrode as a High Performance Potentiometric Sensor for Nanomolar Tl(I) Determination. J. Mol. Liq. 2014, 197, 52–57. [Google Scholar] [CrossRef]
- Mashhadizadeh, M.H.; Ramezani, S.; Rofouei, M.K. Development of a Novel MWCNTs-Triazene-Modified Carbon Paste Electrode for Potentiometric Assessment of Hg(II) in the Aquatic Environments. Mater. Sci. Eng. C 2015, 47, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Bangaleh, Z.; Sadeghi, H.B.; Ebrahimi, S.A.; Najafizadeh, P. A New Potentiometric Sensor for Determination and Screening Phenylalanine in Blood Serum Based on Molecularly Imprinted Polymer. Iran. J. Pharm. Res. 2019, 18, 61–71. [Google Scholar] [PubMed]
- Fibbioli, M.; Morf, W.E.; Badertscher, M.; De Rooij, N.F.; Pretsch, E. Potential Drifts of Solid-Contacted Ion-Selective Electrodes Due to Zero-Current Ion Fluxes through the Sensor Membrane. Electroanalysis 2000, 12, 1286–1292. [Google Scholar] [CrossRef]
- Hjort, R.G.; Soares, R.R.A.; Li, J.; Jing, D.; Hartfiel, L.; Chen, B.; Van Belle, B.; Soupir, M.; Smith, E.; McLamore, E.; et al. Hydrophobic Laser-Induced Graphene Potentiometric Ion-Selective Electrodes for Nitrate Sensing. Microchim. Acta 2022, 189, 122. [Google Scholar] [CrossRef]
- Yuan, D.; Anthis, A.H.C.; Ghahraman Afshar, M.; Pankratova, N.; Cuartero, M.; Crespo, G.A.; Bakker, E. All-Solid-State Potentiometric Sensors with a Multiwalled Carbon Nanotube Inner Transducing Layer for Anion Detection in Environmental Samples. Anal. Chem. 2015, 87, 8640–8645. [Google Scholar] [CrossRef]
- Sjöberg-Eerola, P.; Bobacka, J.; Sokalski, T.; Mieczkowski, J.; Ivaska, A.; Lewenstam, A. All-Solid-State Chloride Sensors with Poly(3-Octylthiopene) Matrix and Trihexadecylmethylammonium Chlorides as an Ion Exchanger Salt. Electroanalysis 2004, 16, 379–385. [Google Scholar] [CrossRef]
- Cheong, Y.H.; Sagar, K.; Lisak, G. Evolution of Electrochemical Potentials Mediated by Lipophilic Salts at the Buried Membrane Interface of Solid Contact Ion Selective Electrodes. Sens. Actuators B Chem. 2021, 349, 130766. [Google Scholar] [CrossRef]
- Abdel-Ghany, M.F.; Hussein, L.A.; El Azab, N.F.; El-Khatib, A.H.; Linscheid, M.W. Simultaneous Determination of Eight Neonicotinoid Insecticide Residues and Two Primary Metabolites in Cucumbers and Soil by Liquid Chromatography–Tandem Mass Spectrometry Coupled with QuEChERS. J. Chromatogr. B 2016, 1031, 15–28. [Google Scholar] [CrossRef]
- Severo, F.J.R.; Lourenço, A.S.; Moreira, E.D.T.; Silva, A.C.; Araujo, M.C.U.; Bichinho, K.M. A Square-Wave Anodic Stripping Voltammetric Method for Determining Carbendazim in Pineapple and Orange Juices without Sample Pre-Treatment. J. Food Compos. Anal. 2024, 125, 105823. [Google Scholar] [CrossRef]
- Yola, M.L. Carbendazim Imprinted Electrochemical Sensor Based on CdMoO4/g-C3N4 Nanocomposite: Application to Fruit Juice Samples. Chemosphere 2022, 301, 134766. [Google Scholar] [CrossRef] [PubMed]
- Özcan, A.; Hamid, F.; Özcan, A.A. Synthesizing of a Nanocomposite Based on the Formation of Silver Nanoparticles on Fumed Silica to Develop an Electrochemical Sensor for Carbendazim Detection. Talanta 2021, 222, 121591. [Google Scholar] [CrossRef] [PubMed]
- Sant’Anna, M.V.S.; Carvalho, S.W.M.M.; Gevaerd, A.; Silva, J.O.S.; Santos, E.; Carregosa, I.S.C.; Wisniewski, A.; Marcolino-Junior, L.H.; Bergamini, M.F.; Sussuchi, E.M. Electrochemical Sensor Based on Biochar and Reduced Graphene Oxide Nanocomposite for Carbendazim Determination. Talanta 2020, 220, 121334. [Google Scholar] [CrossRef] [PubMed]
- Santana, P.C.A.; Lima, J.B.S.; Santana, T.B.S.; Santos, L.F.S.; Matos, C.R.S.; da Costa, L.P.; Gimenez, I.F.; Sussuchi, E.M. Semiconductor Nanocrystals-Reduced Graphene Composites for the Electrochemical Detection of Carbendazim. J. Braz. Chem. Soc. 2019, 30, 1302–1308. [Google Scholar] [CrossRef]
- Arruda, G.J.; De Lima, F.; Cardoso, C.A.L. Ultrasensitive Determination of Carbendazim in Water and Orange Juice Using a Carbon Paste Electrode. J. Environ. Sci. Health Part B 2016, 51, 534–539. [Google Scholar] [CrossRef]
- Razzino, C.A.; Sgobbi, L.F.; Canevari, T.C.; Cancino, J.; Machado, S.A.S. Sensitive Determination of Carbendazim in Orange Juice by Electrode Modified with Hybrid Material. Food Chem. 2015, 170, 360–365. [Google Scholar] [CrossRef]
Parameter | Sensor 1 | Sensor 2 | Sensor 3 | Sensor 4 | Sensor 5 |
---|---|---|---|---|---|
Slope (mV/decade) * | 54.56 | 55.48 | 56.00 | 56.85 | 57.34 |
Intercept (mV) | 526.5 | 438.33 | 448.53 | 467.37 | 506.18 |
Response time (s) | 25 | 20 | 20 | 15 | 10 |
Working pH range | 2–4.5 | 2–5 | 2–4 | 2–4.5 | 2.5–4.5 |
Linearity range (M) | 1 × 10−4–1 × 10−2 | 1 × 10−5–1 × 10−2 | 1 × 10−5–1 × 10−3 | 1 × 10−6–1 × 10−3 | 1 × 10−7–1 × 10−3 |
Stability (days) | 40 | 45 | 50 | 60 | 65 |
Accuracy (Mean ± SD) ** | 99.42 ± 1.13 | 98.94 ± 0.73 | 99.43 ± 0.95 | 99.31 ± 1.03 | 99.36 ± 0.91 |
Correlation coefficient | 0.9997 | 0.9999 | 0.9998 | 0.9999 | 0.9998 |
Intra-day precision (RSD%) *** | 1.49 | 0.51 | 1.17 | 1.14 | 0.65 |
Inter-day precision (RSD%) *** | 1.74 | 1.07 | 1.59 | 1.19 | 0.69 |
LOD (M) **** | 7.92 × 10−5 | 9.98 × 10−6 | 9.72 × 10−6 | 9.61 × 10−7 | 9.57 × 10−8 |
MRL (M) | 1.05 × 10−6 |
Interferant | Sensor 1 | Sensor 2 | Sensor 3 | Sensor 4 | Sensor 5 | |
---|---|---|---|---|---|---|
Calcium Chloride | KpotMBC, int. | 9.81 × 10−1 | 7.44 × 10−1 | 2.98 × 10−1 | 5.69 × 10−3 | 2.84 × 10−3 |
±SE | 1.79 × 10−1 | 7.30 × 10−2 | 4.39 × 10−2 | 1.40 × 10−3 | 1.20 × 10−3 | |
Sodium Citrate | KpotMBC, int. | 7.78 × 10−1 | 8.89 × 10−1 | 3.53 × 10−2 | 9.80 × 10−2 | 8.0 × 10−3 |
±SE | 9.45 × 10−2 | 8.85 × 10−2 | 7.90 × 10−3 | 1.45 × 10−3 | 1.50 × 10−3 | |
Potassium Chloride | KpotMBC, int. | 1.48 × 10−1 | 6.48 × 10−2 | 3.89 × 10−1 | 1.45 × 10−3 | 3.53 × 10−3 |
±SE | 8.55 × 10−2 | 7.35 × 10−2 | 6.60 × 10−2 | 1.20 × 10−3 | 1.30 × 10−3 | |
Lactose | KpotMBC, int. | 1.98 × 10−1 | 4.69 × 10−2 | 3.75 × 10−2 | 5.94 × 10−3 | 1.13 × 10−3 |
±SE | 6.65 × 10−2 | 1.07 × 10−2 | 1.14 × 10−2 | 1.10 × 10−3 | 1.10 × 10−3 | |
Fructose | KpotMBC, int. | 1.15 × 10−1 | 3.73 × 10−2 | 2.36 × 10−2 | 9.1 × 10−3 | 1.79 × 10−3 |
±SE | 1.22 × 10−1 | 1.24 × 10−2 | 1.69 × 10−2 | 1.50 × 10−3 | 7.00 × 10−4 | |
TBZ | KpotMBC, int. | 5.35 × 10−1 | 8.08 × 10−2 | 3.53 × 10−2 | 9.65 × 10−2 | 1.78 × 10−2 |
±SE | 1.33 × 10−1 | 1.46 × 10−2 | 1.36 × 10−2 | 2.88 × 10−2 | 2.10 × 10−3 |
Spiked Concentrations (M) | Recovery * % | ||||
---|---|---|---|---|---|
Sensor 1 | Sensor 2 | Sensor 3 | Sensor 4 | Sensor 5 | |
10−2 | 95.89 | 105.65 | --------- | ----------- | ---------- |
10−3 | 113.69 | 101.20 | 99.11 | 97.30 | 100.26 |
10−4 | 103.26 | 100.41 | 102.61 | 103.63 | 102.45 |
10−5 | --------- | --------- | 111.99 | 98.19 | 94.41 |
Mean ± SD | 104.28 ± 8.94 | 102.42 ± 2.83 | 104.57 ± 6.66 | 99.71 ± 3.43 | 99.04 ± 4.16 |
Time (Days) | Sensor 1 | Sensor 2 | Sensor 3 | Sensor 4 | Sensor 5 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Conc (M) * | % Loss | Conc (M) * | % Loss | Conc (M) * | % Loss | Conc (M) * | % Loss | Conc (M) * | % Loss | |
0 | N.D ** | ------ | 3.16 × 10−5 | 0 | 4.17 × 10−5 | 0 | 3.66 × 10−5 | 0 | 4.31 × 10−5 | 0 |
1 | N.D | ------ | 2.82 × 10−5 | 10.76 | 3.53 × 10−5 | 15.35 | 2.43 × 10−5 | 33.61 | 3.89 × 10−5 | 9.74 |
2 | N.D | ------ | 2.45 × 10−5 | 22.47 | 2.83 × 10−5 | 32.13 | 1.99 × 10−5 | 45.63 | 3.02 × 10−5 | 29.93 |
5 | N.D | ------ | 1.76 × 10−5 | 44.30 | 2.18 × 10−5 | 47.72 | 1.79 × 10−5 | 51.09 | 2.63 × 10−5 | 38.98 |
7 | N.D | ------ | 1.02 × 10−5 | 67.72 | 1.42 × 10−5 | 65.95 | 6.91 × 10−6 | 81.12 | 1.29 × 10−5 | 70.07 |
14 | N.D | ------ | N.D | ------ | N.D | ------ | 3.99 × 10−6 | 89.10 | 5.01 × 10−6 | 88.38 |
21 | N.D | ------ | N.D | ------ | N.D | ------ | 1.43 × 10−6 | 96.09 | 1.71 × 10−6 | 96.03 |
28 | N.D | ------ | N.D | ------ | N.D | ------ | N.D | ------ | 4.79 × 10−7 | 98.89 |
Sensor 2 | Sensor 3 | Sensor 4 | Sensor 5 | |
---|---|---|---|---|
Order | First order (At = Aoe−kt) | |||
R2 | 0.9954 | 0.9982 | 0.9940 | 0.9989 |
Degradation constant (k) * (days−1) ± SE | 0.1569 ± 0.0176 | 0.1482 ± 0.0113 | 0.1495 ± 0.0136 | 0.1582 ± 0.0069 |
Half-life (t1/2) ** (days) | 4.42 | 4.68 | 4.64 | 4.38 |
PHI (days) | 22 | 25 | 23 | 24 |
Parameter | Proposed Method | Reported Method ** | ||||
---|---|---|---|---|---|---|
Sensor 1 | Sensor 2 | Sensor 3 | Sensor 4 | Sensor 5 | ||
Mean | 99.42 | 98.95 | 99.43 | 99.31 | 99.36 | 98.37 |
SD | 1.13 | 0.73 | 0.95 | 1.03 | 0.91 | 0.31 |
Variance | 1.28 | 0.53 | 0.90 | 1.06 | 0.83 | 0.09 |
N | 5 | 5 | 5 | 5 | 5 | 3 |
Student’s t-test (2.447) * | 1.535 | 1.284 | 1.824 | 1.507 | 1.790 | ---------- |
F (39.248) * | 13.733 | 5.710 | 9.705 | 11.375 | 8.791 | ---------- |
Technique | Sensor Used | Linearity Range | Limit of Detection (LOD) | Application and Matrix | Sample Pretreatment | Degradation Kinetics Study | Reference |
---|---|---|---|---|---|---|---|
Potentiometric Methods | |||||||
Potentiometry with Ion-Selective Electrodes (ISE) | Detection of carbendazim using modified electrodes with precipitation-based and ionophore-based techniques, including MWCNTs for enhanced sensitivity | 1 × 10−7−1 × 10−3 M (0.019–190 µg/mL) | 9.57 × 10−8 M (0.0183 µg/mL) | Orange samples | Grinding and homogenization of orange fruit, mixing with Britton-Robinson buffer, sonication, and finally, filtration using filter paper | Yes Sensors used to track degradation kinetics of MBC in oranges | This work |
Voltammetric Methods | |||||||
Square-wave anodic stripping voltammetry | Carbon paste electrode modified with cobalt phthalocyanine | 49.7–384.6 × 10−9 M | 5.7 × 10−10 M | Orange and pineapple juice samples | None | No | Severo et al. (2024) [65] |
Differential-pulse anodic stripping voltammetry | Glassy carbon electrode modified with molecularly imprinted polymer on CdMoO4/g-C3N4 nanocomposite | 0.1–10 × 10−10 M | 2.5 × 10−12 M | Orange and apple juice | Sonication for 20 min, centrifugation, filtration of the supernatant with a 0.50 µm filter, and dilution with 0.1 M PBS * | No | Yola et al. (2022) [66] |
Differential pulse voltammetry | Carbon paste electrode modified with silver nanoparticles on fumed silica (FS@Ag) | 5.0 × 10−8–3.0 × 10−6 M | 9.4 × 10−10 M | River water, tomato juice, and commercial orange and apple juices | Filtration through 0.45 µm membrane filter and dilution with PBS * | No | Özcan et al. (2021) [67] |
Differential pulse voltammetry | Carbon paste electrode modified with biochar and reduced graphene oxide nanocomposite | 3.0 × 10−8–9.0 × 10−7 M (30–900 nmole/L) | 2.3 × 10−9 M (2.3 nmole/L) | Spiked whole orange juice, lettuce leaves, drinking water, and wastewater samples | Extraction in methanol in an ultrasonic bath, then filtration of the extract by membrane syringe filter and concentration under a flow of N2 gas | No | Sant’Anna et al. (2020) [68] |
Differential pulse voltammetry | Carbon paste electrodes modified with the nanocomposite based on ZnCdTe semiconductor nanocrystals synthesized in situ on reduced graphene oxide | 9.98 × 10−8 to 1.18 × 10−5 M | 9.16 × 10−8 M | Spiked orange juice samples. | Extraction with a manual extractor, the collected juice was centrifuged. The samples were stored in an amber glass bottle in the refrigerator | No | Santana et al. (2019) [69] |
Differential pulse voltammetry | Carbon paste electrode | 1.49 × 10−8–2.38 × 10−7 M (2.84 to 45.44 μg/L) | 5.02 × 10−9 M (0.96 μg/L) | Spiked ultrapurified water, river water, and orange juice | Filtered through cotton | No | Arruda et al. (2016) [70] |
Square-wave voltammetry | Glassy carbon electrode modified with a thin film of mesoporous silica/multi-walled carbon nanotubes | 2.0 × 10−7 –4.0 × 10−6 M (0.2 to 4.0 μM) | 5.6 × 10−8 M (0.056 μM) | Spiked orange juice sample | None | No | Razzino et al. (2015) [71] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, Y.A.A.; Okeil, S.; Ayad, M.F.; Hussein, L.A.; Fares, N.V. Development of All-Solid-State Potentiometric Sensors for Monitoring Carbendazim Residues in Oranges: A Degradation Kinetics Investigation. Chemosensors 2024, 12, 246. https://doi.org/10.3390/chemosensors12120246
Hassan YAA, Okeil S, Ayad MF, Hussein LA, Fares NV. Development of All-Solid-State Potentiometric Sensors for Monitoring Carbendazim Residues in Oranges: A Degradation Kinetics Investigation. Chemosensors. 2024; 12(12):246. https://doi.org/10.3390/chemosensors12120246
Chicago/Turabian StyleHassan, Yasmeen A. A., Sherif Okeil, Miriam F. Ayad, Lobna A. Hussein, and Nermine V. Fares. 2024. "Development of All-Solid-State Potentiometric Sensors for Monitoring Carbendazim Residues in Oranges: A Degradation Kinetics Investigation" Chemosensors 12, no. 12: 246. https://doi.org/10.3390/chemosensors12120246
APA StyleHassan, Y. A. A., Okeil, S., Ayad, M. F., Hussein, L. A., & Fares, N. V. (2024). Development of All-Solid-State Potentiometric Sensors for Monitoring Carbendazim Residues in Oranges: A Degradation Kinetics Investigation. Chemosensors, 12(12), 246. https://doi.org/10.3390/chemosensors12120246