The Influence of Temperature on the Spatial Distribution of AuNPs on a Ceramic Substrate for Biosensing Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. The Synthesis of AuNPs on the AAO Substrate
2.3. Physical Characterization of the Samples
2.4. Spatial Distribution Analysis for Biosensing Applications
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Cancer Burden Growing, Amidst Mounting Need for Services, International Agency for Research on Cancer. 2024. Available online: https://www.who.int/ (accessed on 3 October 2024).
- Zhou, Y.; Tao, L.; Qiu, J.; Xu, J.; Yang, X.; Zhang, Y.; Tian, X.; Guan, X.; Cen, X.; Zhao, Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct. Target. Ther. 2024, 9, 132. [Google Scholar] [CrossRef] [PubMed]
- Kuklinski, D.; Blum, M.; Subelack, J.; Geissler, A.; Eichenberger, A.; Morant, R. Breast cancer patients enrolled in the Swiss mammography screening program “donna” demonstrate prolonged survival. Breast Cancer Res. 2024, 26, 84. [Google Scholar] [CrossRef]
- Keerthana, S.; Saquib, M.; Poojary, H.; Illanad, G.; Valavan, D.; Selvakumar, M.; Nayak, R.; Mazumder, N.; Ghosh, C. Skin emitted volatiles analysis for noninvasive diagnosis: The current advances in sample preparation techniques for biomedical application. RSC Adv. 2024, 14, 12009–12020. [Google Scholar] [CrossRef]
- Cigarroa-Mayorga, O.; Gallardo-Hernández, S.; Talamás-Rohana, P. Tunable Raman scattering enhancement due to self-assembled Au nanoparticles layer on porous AAO: The influence of the alumina support. Appl. Surf. Sci. 2021, 536, 147674. [Google Scholar] [CrossRef]
- Li, D.; Yue, W.; He, Q.; Gao, P.; Gong, T.; Luo, Y.; Wang, C.; Luo, X. Single-molecule detection of SARS-CoV-2 N protein on multilayered plasmonic nanotraps with surface-enhanced Raman spectroscopy. Talanta 2024, 278, 126494. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.-S.; Lin, H.-T.; Wen, Y.-J.; Huang, L.-Y.; Yang, M.-C.; Liu, T.-Y. Thiol-functionalized mesoporous silica-embedded AuNPs with highly sensitive substrates for surface-enhanced Raman scattering detection. Surf. Coat. Technol. 2024, 483, 130814. [Google Scholar] [CrossRef]
- Sun, M.; Xie, M.; Jiang, J.; Qi, Z.; Wang, L.; Chao, J. Customized Self-Assembled Gold Nanoparticle-DNA Origami Composite Templates for Shape-Directed Growth of Plasmonic Structures. Nano Lett. 2024, 24, 6480–6487. [Google Scholar] [CrossRef]
- Borah, D.; Mishra, V.; Debnath, R.; Ghosh, K.; Gogoi, D.; Rout, J.; Pandey, P.; Ghosh, N.N.; Bhattacharjee, C.R. Facile green synthesis of highly stable, water dispersible carbohydrate conjugated Ag, Au and Ag-Au biocompatible nanoparticles: Catalytic and antimicrobial activity. Mater. Today Commun. 2023, 37, 107096. [Google Scholar] [CrossRef]
- Das, A.; Pant, U.; Cao, C.; Moirangthem, R.S.; Kamble, H.B. Wearable Surface-Enhanced Raman Spectroscopy Sensor Using Inverted Bimetallic Nanopyramids for Biosensing and Sweat Monitoring. ACS Appl. Opt. Mater. 2023, 1, 1938–1951. [Google Scholar] [CrossRef]
- Wang, X.; Chen, C.; Zuo, E.; Han, S.; Yang, J.; Yan, Z.; Lv, X.; Hou, J.; Jia, Z. Novel SERS biosensor for rapid detection of breast cancer based on Ag2O-Ag-PSi nanochips. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 303, 123226. [Google Scholar] [CrossRef]
- Guselnikova, O.; Trelin, A.; Kang, Y.; Postnikov, P.; Kobashi, M.; Suzuki, A.; Shrestha, L.K.; Henzie, J.; Yamauchi, Y. Pretreatment-free SERS sensing of microplastics using a self-attention-based neural network on hierarchically porous Ag foams. Nat. Commun. 2024, 15, 4351. [Google Scholar] [CrossRef] [PubMed]
- Sharipov, M.; Kakhkhorov, S.A.; Tawfik, S.M.; Azizov, S.; Liu, H.-G.; Shin, J.H.; Lee, Y.-I. Highly sensitive plasmonic paper substrate fabricated via amphiphilic polymer self-assembly in microdroplet for detection of emerging pharmaceutical pollutants. Nano Converg. 2024, 11, 13. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Sheng, W.; Hassan, M.; Geng, W.; Chen, Q. Quantification of antibiotics in food by octahedral gold-silver nanocages-based SERS sensor coupling multivariate calibration. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 320, 124595. [Google Scholar] [CrossRef] [PubMed]
- Sahafnejad, Z.; Hashemzadeh, H.; Allahverdi, A.; Fathi, A.; Saievar-Iranizad, E.; Naderi-Manesh, H. Sensitive detection of miR-9 in human serum: An electrochemical approach utilizing robust gold nanostructures for early diagnosis of lung cancer. Talanta Open 2023, 8, 100272. [Google Scholar] [CrossRef]
- Mendoza-Sánchez, A.R.; Hernández-Rodríguez, Y.; Casas-Espínola, J.; Cigarroa-Mayorga, O. Nanostructural modulation of Schottky barrier in Au/α-MoO3 heterojunction via Au nanoparticle size control. Appl. Surf. Sci. 2024, 670, 160624. [Google Scholar] [CrossRef]
- Horta-Piñeres, S.; Cortez-Valadez, M.; Avila, D.A.; Leal-Perez, J.E.; Leyva-Porras, C.C.; Flores-Acosta, M.; Torres, C.O. Influence of Carboxymethyl Cellulose on the Green Synthesis of Gold Nanoparticles Using Gliricidia sepium and Petiveria alliacea Extracts: Surface-Enhanced Raman Scattering Effect Evaluation. ACS Omega 2023, 8, 46466–46474. [Google Scholar] [CrossRef]
- Zhou, H.; Shi, T.; Cai, W.; Wu, D. Rational design of Au NPs satellite nanostructure modified microelectrode for dual-mode detection of mercury ions in algal solution. Electrochim. Acta 2023, 472, 143461. [Google Scholar] [CrossRef]
- Saldivar-Ayala, D.; Ashok, A.; Cigarroa-Mayorga, O.; Hernández-Rodríguez, Y. Tuning the plasmon resonance of Au-Ag core-shell nanoparticles: The influence on the visible light emission for inorganic fluorophores application. Colloids Surfaces A Physicochem. Eng. Asp. 2023, 677 Pt A, 132359. [Google Scholar] [CrossRef]
- Liu, C.; Weber, S.; Peng, R.; Wu, L.; Zhang, W.-S.; Luppa, P.B.; Popp, J.; Cialla-May, D. Toward SERS-based therapeutic drug monitoring in clinical settings: Recent developments and trends. TrAC Trends Anal. Chem. 2023, 164, 117094. [Google Scholar] [CrossRef]
- Fang, T.; Wei, Q.; Wu, E.; Pu, H. Elevating electron transfer of recyclable SERS sensor using AuNPs/TiO2/Ti3C2 heterostructures for detection of malachite green in sunfish. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 325, 125047. [Google Scholar] [CrossRef]
- Xu, D.; Zhou, L.; Zhang, S.; Wang, Z.; Yang, W.; Guo, Q.; Wang, Z.; Chen, J. Facile fabrication of Au-Ag alloy nanoparticles/Ag nanowires SERS substrates with bimetallic synergistic effect for ultra-sensitive detection of crystal violet and alkali blue 6B. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 324, 124981. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, H.; Ni, C.; Wang, Q.; Lin, T. Three-dimensional nanoporous gold/gold nanoparticles substrate for surface-enhanced Raman scattering detection of illegal additives in food. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 323, 124879. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Yoo, S.; Nam, D.H.; Kim, H.; Hafner, J.H.; Lee, S. Monodispersed mesoscopic star-shaped gold particles via silver-ion-assisted multi-directional growth for highly sensitive SERS-active substrates. Nano Converg. 2024, 11, 26. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.-F.; Zhu, J.; Li, X.; Weng, G.-J.; Li, J.-J.; Zhao, J.-W. Au-Ag nano-garlands as a versatile SERS substrate: Two-step synthesis realizes the growth of petal-shaped branches on hollow Au-Ag nanoshells. Colloids Surfaces A Physicochem. Eng. Asp. 2024, 698, 134541. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Q.; Diao, Z.; Huo, D.; Hou, C. Label-free fluorescent biosensor based on AuNPs etching releasing signal for miRNA-155 detection. Talanta 2024, 278, 126481. [Google Scholar] [CrossRef]
- Pallavi, P.; Harini, K.; Crowder, S.; Ghosh, D.; Gowtham, P.; Girigoswami, K.; Girigoswami, A. Rhodamine-Conjugated Anti-Stokes Gold Nanoparticles with Higher ROS Quantum Yield as Theranostic Probe to Arrest Cancer and MDR Bacteria. Appl. Biochem. Biotechnol. 2023, 195, 6979–6993. [Google Scholar] [CrossRef]
- He, Q.; Liu, J.; Liang, J.; Liu, X.; Tuo, D.; Li, W. Chemically Surface Tunable Solubility Parameter for Controllable Drug Delivery—An Example and Perspective from Hollow PAA-Coated Magnetite Nanoparticles with R6G Model Drug. Materials 2018, 11, 247. [Google Scholar] [CrossRef]
- Swanson, W.B.; Durdan, M.; Eberle, M.; Woodbury, S.M.; Mauser, A.; Gregory, J.; Zhang, B.; Niemann, D.; Herremans, J.; Ma, P.X.; et al. A library of Rhodamine6G-based pH-sensitive fluorescent probes with versatile in vivo and in vitro applications. RSC Chem. Biol. 2022, 3, 748–764. [Google Scholar] [CrossRef]
- Cortés-Valadez, P.J.; Baños-López, E.; Hernández-Rodríguez, Y.M.; Cigarroa-Mayorga, O.E. Bryophyte-Bioinspired Nanoporous AAO/C/MgO Composite for Enhanced CO2 Capture: The Role of MgO. Nanomaterials 2024, 14, 658. [Google Scholar] [CrossRef]
- Wang, H.; Cai, J.; Wang, T.; Yan, R.; Shen, M.; Zhang, J.; Yue, X.; Wang, L.; Yuan, X.; Lv, E.; et al. Functionalized gold nanoparticle enhanced nanorod hyperbolic metamaterial biosensor for highly sensitive detection of carcinoembryonic antigen. Biosens. Bioelectron. 2024, 257, 116295. [Google Scholar] [CrossRef]
- Abou-Ras, D.; Caballero, R.; Fischer, C.-H.; Kaufmann, C.; Lauermann, I.; Mainz, R.; Mönig, H.; Schöpke, A.; Stephan, C.; Streeck, C.; et al. Comprehensive Comparison of Various Techniques for the Analysis of Elemental Distributions in Thin Films. Microsc. Microanal. 2011, 17, 728–751. [Google Scholar] [CrossRef] [PubMed]
- Tao, X.; Eades, A. Measurement and Mapping of Small Changes of Crystal Orientation by Electron Backscattering Diffraction. Microsc. Microanal. 2005, 11, 341–353. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Sánchez, A.; Cano, F.J.; Hernández-Rodríguez, M.; Cigarroa-Mayorga, O. Influence of ZnO Morphology on the Functionalization Efficiency of Nanostructured Arrays with Hemoglobin for CO2 Capture. Crystals 2022, 12, 1086. [Google Scholar] [CrossRef]
- Mandal, S.; Singh, R.; Roy, D.; Mukhopadhyay, K.; Dwivedi, M.; Joshi, M. Insights into the hierarchical geometries of hybrid low-dimensional carbons. Discov. Mater. 2024, 4, 21. [Google Scholar] [CrossRef]
- Kheradmandfard, M.; Kharazi, A.Z.; Javanmard, S.H.; Minouei, H.; Rahimzadeh, R.; Kim, D.-E. Architecting ultra-thin SiO2 shell for high magnetic performance of Fe3O4 nanoparticles for biomedical applications. Inorg. Chem. Commun. 2024, 168, 112845. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Z.; Zhang, K.; Song, Y.; Dong, B.; Wang, J.; Yan, M.; Sun, Q. Fabrication of Superhydrophobic–Hydrophilic Patterned Cu@Ag Composite SERS Substrate via Femtosecond Laser. Nanomanufacturing Metrol. 2024, 7, 1. [Google Scholar] [CrossRef]
- Natan, M.J. Concluding Remarks: Surface enhanced Raman scattering. Faraday Discuss. 2006, 132, 321–328. [Google Scholar] [CrossRef]
- Sloan-Dennison, S.; Wallace, G.Q.; Hassanain, W.A.; Laing, S.; Faulds, K.; Graham, D. Advancing SERS as a quantitative technique: Challenges, considerations, and correlative approaches to aid validation. Nano Converg. 2024, 11, 33. [Google Scholar] [CrossRef]
- Sibug-Torres, S.M.; Grys, D.-B.; Kang, G.; Niihori, M.; Wyatt, E.; Spiesshofer, N.; Ruane, A.; de Nijs, B.; Baumberg, J.J. In situ electrochemical regeneration of nanogap hotspots for continuously reusable ultrathin SERS sensors. Nat. Commun. 2024, 15, 2022. [Google Scholar] [CrossRef]
- Lei, H.; Zhao, W.; Huang, F.; Tian, Y.; Zhao, Q.; Ma, R.; Ren, L.; Li, H.; Dou, S.; Wang, Z. Shell thickness-dependent Au@Ag nanoparticles for surface-enhanced Raman scattering detection of pollutants. Vacuum 2024, 229, 113577. [Google Scholar] [CrossRef]
Peak Position in Figure 5f | Vibrational Mode |
---|---|
769 cm−1 | C–H out-of-plane bending |
1184 cm−1 | C–H in-of-plane bending |
1311 cm−1 | C–O–C stretching in COOC2H5 group |
1358 cm−1 | C–C stretching in xanthene ring |
1574 cm−1 | C–C stretching in phenyl ring |
1645 cm−1 | C–C stretching in xanthene ring |
Sample | ∆I | D (%) | |
---|---|---|---|
1 | 140.18 | 24.59 | 17.54 |
2 | 408.2 | 74.96 | 18.36 |
3 | 191.46 | 30.39 | 15.87 |
4 | 57.88 | 11.31 | 19.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Rodríguez, Y.M.; Baños-López, E.; Damián-Matsumura, P.; González de la Rosa, C.H.; Cigarroa-Mayorga, O.E. The Influence of Temperature on the Spatial Distribution of AuNPs on a Ceramic Substrate for Biosensing Applications. Chemosensors 2024, 12, 212. https://doi.org/10.3390/chemosensors12100212
Hernández-Rodríguez YM, Baños-López E, Damián-Matsumura P, González de la Rosa CH, Cigarroa-Mayorga OE. The Influence of Temperature on the Spatial Distribution of AuNPs on a Ceramic Substrate for Biosensing Applications. Chemosensors. 2024; 12(10):212. https://doi.org/10.3390/chemosensors12100212
Chicago/Turabian StyleHernández-Rodríguez, Yazmín Mariela, Esperanza Baños-López, Pablo Damián-Matsumura, Claudia Haydée González de la Rosa, and Oscar Eduardo Cigarroa-Mayorga. 2024. "The Influence of Temperature on the Spatial Distribution of AuNPs on a Ceramic Substrate for Biosensing Applications" Chemosensors 12, no. 10: 212. https://doi.org/10.3390/chemosensors12100212
APA StyleHernández-Rodríguez, Y. M., Baños-López, E., Damián-Matsumura, P., González de la Rosa, C. H., & Cigarroa-Mayorga, O. E. (2024). The Influence of Temperature on the Spatial Distribution of AuNPs on a Ceramic Substrate for Biosensing Applications. Chemosensors, 12(10), 212. https://doi.org/10.3390/chemosensors12100212