Nanorods Assembled Hierarchical Bi2S3 for Highly Sensitive Detection of Trace NO2 at Room Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Hierarchical Bi2S3 Nanomaterials
2.2. Material Characterizations
2.3. Gas Sensing Measurements
3. Results
3.1. Morphology and Structure
3.2. Characterization of Gas Sensing Performance
3.3. Gas Sensing Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ou, J.Z.; Yao, C.K.; Rotbart, A.; Muir, J.G.; Gibson, P.R.; Kalantar-zadeh, K. Human intestinal gas measurement systems: In vitro fermentation and gas capsules. Trends Biotechnol. 2015, 33, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Wong, G.W.K.; Lai, C.K.W. Outdoor air pollution and asthma. Curr. Opin. Pulm. Med. 2004, 10, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Vassilyadi, M.; Michel, R. Effect of methylprednisolone on nitrogen dioxide (NO2)-induced pulmonary edema in guinea pigs. Toxicol. Appl. Pharmacol. 1989, 97, 256–266. [Google Scholar] [CrossRef] [PubMed]
- Long, H.; Harley-Trochimczyk, A.; Pham, T.; Tang, Z.; Shi, T.; Zettl, A.; Carraro, C.; Worsley, M.A.; Maboudian, R. High surface area MoS2/graphene hybrid aerogel for ultrasensitive NO2 detection. Adv. Funct. Mater. 2016, 26, 5158–5165. [Google Scholar] [CrossRef]
- Liu, B.; Chen, L.; Liu, G.; Abbas, A.N.; Fathi, M.; Zhou, C. High-performance chemical sensing using schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. ACS Nano 2014, 8, 5304–5314. [Google Scholar] [CrossRef] [PubMed]
- Kawamoto, T.; Matsuno, K.; Arashidani, K.; Yoshikawa, M.; Kodama, Y. Personal exposure to nitrogen dioxide from indoor heaters and cooking stoves. Arch. Environ. Contam. Toxicol. 1993, 25, 534–538. [Google Scholar] [CrossRef]
- Ikram, M.; Liu, L.; Lv, H.; Liu, Y.; Ur Rehman, A.; Kan, K.; Zhang, W.; He, L.; Wang, Y.; Wang, R.; et al. Intercalation of Bi2O3/Bi2S3 nanoparticles into highly expanded MoS2 nanosheets for greatly enhanced gas sensing performance at room temperature. J. Hazard. Mater. 2019, 363, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Scott Downen, R.; Dong, Q.; Chorvinsky, E.; Li, B.; Tran, N.; Jackson, J.H.; Pillai, D.K.; Zaghloul, M.; Li, Z. Personal NO2 sensor demonstrates feasibility of in-home exposure measurements for pediatric asthma research and management. J. Expo. Sci. Environ. Epidemiol. 2022, 32, 312–319. [Google Scholar] [CrossRef]
- Du, Y.; Yu, D.-G.; Yi, T. Electrospun nanofibers as chemosensors for detecting environmental pollutants: A review. Chemosensors 2023, 11, 208. [Google Scholar] [CrossRef]
- Wu, J.; Wu, Z.; Ding, H.; Wei, Y.; Huang, W.; Yang, X.; Li, Z.; Qiu, L.; Wang, X. Flexible, 3D SnS2/reduced graphene oxide heterostructured NO2 sensor. Sens. Actuators B 2020, 305, 127445. [Google Scholar] [CrossRef]
- Huang, Y.; Jiao, W.; Chu, Z.; Ding, G.; Yan, M.; Zhong, X.; Wang, R. Ultrasensitive room temperature ppb-level NO2 gas sensors based on SnS2/rGO nanohybrids with p–n transition and optoelectronic visible light enhancement performance. J. Mater. Chem. C 2019, 7, 8616–8625. [Google Scholar] [CrossRef]
- Shafiei, M.; Bradford, J.; Khan, H.; Piloto, C.; Wlodarski, W.; Li, Y.; Motta, N. Low-operating temperature NO2 gas sensors based on hybrid two-dimensional SnS2-reduced graphene oxide. Appl. Surf. Sci. 2018, 462, 330–336. [Google Scholar] [CrossRef]
- Li, G.; Zhu, X.; Liu, J.; Li, S.; Liu, X. Metal oxide semiconductor gas sensors for lung cancer diagnosis. Chemosensors 2023, 11, 251. [Google Scholar] [CrossRef]
- Hu, Z.; Zhou, L.; Li, L.; Ying, B.; Zhao, Y.; Wang, P.; Li, H.; Zhang, Y.; Liu, H. Quantum dots-sensitized high electron mobility transistor (HEMT) for sensitive NO2 detection. Chemosensors 2023, 11, 252. [Google Scholar] [CrossRef]
- Tang, T.; Li, Z.; Cheng, Y.; Xu, K.; Xie, H.; Wang, X.; Hu, X.; Yu, H.; Zhang, B.; Tao, X.; et al. Single-step growth of p-type 1D Se/2D GeSexOy heterostructures for optoelectronic NO2 gas sensing at room temperature. J. Mater. Chem. A 2023, 11, 6361–6374. [Google Scholar] [CrossRef]
- Tang, T.; Li, Z.; Cheng, Y.; Xie, H.; Wang, X.; Chen, Y.; Cheng, L.; Liang, Y.; Hu, X.; Hung, C.; et al. In-situ mechanochemically tailorable 2D gallium oxyselenide for enhanced optoelectronic NO2 gas sensing at room temperature. J. Hazard. Mater. 2023, 451, 131184. [Google Scholar] [CrossRef]
- Ni, J.; Zhao, Y.; Liu, T.; Zheng, H.; Gao, L.; Yan, C.; Li, L. Strongly coupled Bi2S3@CNT hybrids for robust lithium storage. Adv. Energy Mater. 2014, 4, 1400798. [Google Scholar] [CrossRef]
- Dong, Y.; Hu, M.; Zhang, Z.; Zapien, J.A.; Wang, X.; Lee, J.-M. Hierarchical self-assembled Bi2S3 hollow nanotubes coated with sulfur-doped amorphous carbon as advanced anode materials for lithium ion batteries. Nanoscale 2018, 10, 13343–13350. [Google Scholar] [CrossRef]
- Bernechea, M.; Cao, Y.; Konstantatos, G. Size and bandgap tunability in Bi2S3 colloidal nanocrystals and its effect in solution processed solar cells. J. Mater. Chem. A 2015, 3, 20642–20648. [Google Scholar] [CrossRef]
- Guo, Y.; Ao, Y.; Wang, P.; Wang, C. Mediator-free direct dual-z-scheme Bi2S3/BiOV4/MgIn2S4 composite photocatalysts with enhanced visible-light-driven performance towards carbamazepine degradation. Appl. Catal. B 2019, 254, 479–490. [Google Scholar] [CrossRef]
- Kan, H.; Li, M.; Song, Z.; Liu, S.; Zhang, B.; Liu, J.; Li, M.-Y.; Zhang, G.; Jiang, S.; Liu, H. Highly sensitive response of solution-processed bismuth sulfide nanobelts for room-temperature nitrogen dioxide detection. J. Colloid Interface Sci. 2017, 506, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Rath, A.K.; Bernechea, M.; Martinez, L.; Konstantatos, G. Solution-processed heterojunction solar cells based on p-type PbS quantum dots and n-type Bi2S3 nanocrystals. Adv. Mater. 2011, 23, 3712–3717. [Google Scholar] [CrossRef] [PubMed]
- Yao, K.; Gong, W.W.; Hu, Y.F.; Liang, X.L.; Chen, Q.; Peng, L.-M. Individual Bi2S3 nanowire-based room-temperature H2 sensor. J. Phys. Chem. C 2008, 112, 8721–8724. [Google Scholar] [CrossRef]
- Fu, T.-X. Gas sensor based on three dimensional Bi2S3 nanowires network for ammonia detection at room temperature. Mater. Res. Bull. 2018, 99, 460–465. [Google Scholar] [CrossRef]
- Rosolina, S.M.; Carpenter, T.S.; Xue, Z.L. Bismuth-based, disposable sensor for the detection of hydrogen sulfide gas. Anal. Chem. 2016, 88, 1553–1558. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Xie, X.; Zhang, M.; Liao, N. First-principles investigation of Bi2S3 as sensitive and selective NO2 sensor upon humidity exposure. J. Mater. Sci. 2023, 58, 2198–2208. [Google Scholar] [CrossRef]
- Chen, X.; Shi, J.; Wang, T.; Zheng, S.; Lv, W.; Chen, X.; Yang, J.; Zeng, M.; Hu, N.; Su, Y.; et al. High-performance wearable sensor inspired by the neuron conduction mechanism through gold-induced sulfur vacancies. ACS Sens. 2022, 7, 816–826. [Google Scholar] [CrossRef]
- Chen, X.; Wang, T.; Shi, J.; Lv, W.; Han, Y.; Zeng, M.; Yang, J.; Hu, N.; Su, Y.; Wei, H.; et al. A novel artificial neuron-like gas sensor constructed from CuS quantum dots/Bi2S3 nanosheets. Nano-Micro Lett. 2021, 14, 8. [Google Scholar] [CrossRef]
- Luo, J.; Feng, X.; Kan, H.; Li, H.; Fu, C. One-dimensional Bi2S3 nanobelts-based surface acoustic wave sensor for NO2 detection at room temperature. IEEE Sens. J. 2021, 21, 1404–1408. [Google Scholar] [CrossRef]
- Liu, D.; Tang, Z.; Zhang, Z. Nanoplates-assembled SnS2 nanoflowers for ultrasensitive ppb-level NO2 detection. Sens. Actuators B 2018, 273, 473–479. [Google Scholar] [CrossRef]
- Wang, T.; Wang, Y.; Zheng, S.; Sun, Q.; Wu, R.; Hao, J. Design of hierarchical SnSe2 for efficient detection of trace NO2 at room temperature. CrystEngComm 2021, 23, 6045–6052. [Google Scholar] [CrossRef]
- Zhang, Y.; Zeng, W.; Li, Y. Hydrothermal synthesis and controlled growth of hierarchical 3D flower-like MoS2 nanospheres assisted with CTAB and their NO2 gas sensing properties. Appl. Surf. Sci. 2018, 455, 276–282. [Google Scholar] [CrossRef]
- Fang, L.; Qiu, Y.; Zhai, T.; Wang, F.; Lan, M.; Huang, K.; Jing, Q. Flower-like nanoarchitecture assembled from Bi2S3 nanorod/MoS2 nanosheet heterostructures for high-performance supercapacitor electrodes. Colloids Surf. A 2017, 535, 41–48. [Google Scholar] [CrossRef]
- Lu, J.; Han, Q.; Yang, X.; Lu, L.; Wang, X. Microwave-assisted synthesis and characterization of 3D flower-like Bi2S3 superstructures. Mater. Lett. 2007, 61, 2883–2886. [Google Scholar] [CrossRef]
- Tang, J.; Alivisatos, A.P. Crystal splitting in the growth of Bi2S3. Nano Lett. 2006, 6, 2701–2706. [Google Scholar] [CrossRef] [PubMed]
- Shen, G.; Chen, D.; Tang, K.; Li, F.; Qian, Y. Large-scale synthesis of uniform urchin-like patterns of Bi2S3 nanorods through a rapid polyol process. Chem. Phys. Lett. 2003, 370, 334–337. [Google Scholar] [CrossRef]
- Kumari, P.; Awasthi, K.; Agarwal, S.; Ichikawa, T.; Kumar, M.; Jain, A. Flower-like Bi2S3 nanostructures as highly efficient anodes for all-solid-state lithium-ion batteries. RSC Adv. 2019, 9, 29549–29555. [Google Scholar] [CrossRef]
- Li, H.; Yang, J.; Zhang, J.; Zhou, M. Facile synthesis of hierarchical Bi2S3 nanostructures for photodetector and gas sensor. RSC Adv. 2012, 2, 6258. [Google Scholar] [CrossRef]
- Zheng, S.; Yin, D.; Zhang, S.; Wang, Y.; Li, J.; Wang, Z.; Yuan, Y.; Tsai, H.-S.; Hao, J. Tailoring selenium vacancies in MoSe2 through oxygen passivation for room-temperature NO2 sensing enhancement. J. Mater. Chem. A 2023, 11, 18755. [Google Scholar] [CrossRef]
- Miller, D.R.; Akbar, S.A.; Morris, P.A. Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sens. Actuators B 2014, 204, 250–272. [Google Scholar] [CrossRef]
- Hao, J.; Zhang, D.; Sun, Q.; Zheng, S.; Sun, J.; Wang, Y. Hierarchical SnS2/SnO2 nanoheterojunctions with increased active-sites and charge transfer for ultrasensitive NO2 detection. Nanoscale 2018, 10, 7210–7217. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Tian, S.; Li, R.; Wang, W.; Zhou, S. Use of single-crystalline Bi2S3 nanowires as room temperature ethanol sensor synthesized by hydrothermal approach. Sens. Actuators B 2017, 241, 210–216. [Google Scholar] [CrossRef]
- Yu, Y.; Jin, C.H.; Wang, R.H.; Chen, Q.; Peng, L.M. High-quality ultralong Bi2S3 nanowires: structure, growth, and properties. J. Phys. Chem. B 2005, 109, 18772–18776. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Chang, Y.; Feng, Y.; Jian, H.; Tang, Z.; Zhang, H. Deep-level defect enhanced photothermal performance of bismuth sulfide–gold heterojunction nanorods for photothermal therapy of cancer guided by computed tomography imaging. Angew. Chem. Int. Ed. 2018, 57, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Grigas, J.; Talik, E.; Lazauskas, V. X-ray photoelectron spectra and electronic structure of Bi2S3 crystals. Phys. Status Solidi 2002, 232, 220–230. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, J.; Hao, J.; Zheng, S.; Wan, P.; Wang, T.; Fang, H.; Wang, Y. SnS2/SnS p-n heterojunctions with an accumulation layer for ultrasensitive room-temperature NO2 detection. Nanoscale 2019, 11, 13741–13749. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.; Pu, H.; Wells, S.A.; Wen, Z.; Mao, S.; Chang, J.; Hersam, M.C.; Chen, J. Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors. Nat. Commun. 2015, 6, 8632. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Song, Z.; Li, Y.; Chen, S.; Li, S.; Li, Y.; Wang, H.; Wang, Z. Hierarchical hollow MoS2 microspheres as materials for conductometric NO2 gas sensors. Sens. Actuators B 2019, 282, 259–267. [Google Scholar] [CrossRef]
- Han, Y.; Liu, Y.; Su, C.; Wang, S.; Li, H.; Zeng, M.; Hu, N.; Su, Y.; Zhou, Z.; Wei, H.; et al. Interface engineered WS2/ZnS heterostructures for sensitive and reversible NO2 room temperature sensing. Sens. Actuators B 2019, 296, 126666. [Google Scholar] [CrossRef]
- Guo, R.; Han, Y.; Su, C.; Chen, X.; Zeng, M.; Hu, N.; Su, Y.; Zhou, Z.; Wei, H.; Yang, Z. Ultrasensitive room temperature NO2 sensors based on liquid phase exfoliated WSe2 nanosheets. Sens. Actuators B 2019, 300, 127013. [Google Scholar] [CrossRef]
- Simon Patrick, D.; Bharathi, P.; Krishna Mohan, M.; Muthamizchelvan, C.; Harish, S.; Navaneethan, M. Liquid phase exfoliated WS2 nanosheet-based gas sensor for room temperature NO2 detection. J. Mater. Sci. Mater. Electron. 2022, 33, 9235–9245. [Google Scholar] [CrossRef]
- Duan, Y.; Feng, S.; Zhang, K.; Qiu, J.; Zhang, S. Vertical few-layer WSe2 nanosheets for NO2 sensing. ACS Appl. Nano Mater. 2021, 4, 12043–12050. [Google Scholar] [CrossRef]
- Kwon, K.C.; Suh, J.M.; Lee, T.H.; Choi, K.S.; Hong, K.; Song, Y.G.; Shim, Y.-S.; Shokouhimehr, M.; Kang, C.-Y.; Kim, S.Y.; et al. SnS2 nanograins on porous SiO2 nanorods template for highly sensitive NO2 sensor at room temperature with excellent recovery. ACS Sens. 2019, 4, 678–686. [Google Scholar] [CrossRef] [PubMed]
- Camargo Moreira, Ó.L.; Cheng, W.-Y.; Fuh, H.-R.; Chien, W.-C.; Yan, W.; Fei, H.; Xu, H.; Zhang, D.; Chen, Y.; Zhao, Y.; et al. High selectivity gas sensing and charge transfer of SnSe2. ACS Sens. 2019, 4, 2546–2552. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Song, J.-G.; Ryu, G.H.; Ko, K.Y.; Woo, W.J.; Kim, Y.; Kim, D.; Lim, J.H.; Lee, S.; Lee, Z.; et al. Low-temperature synthesis of 2D MoS2 on a plastic substrate for a flexible gas sensor. Nanoscale 2018, 10, 9338–9345. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Nguyen, T.H.; Zhang, W.; Park, Y.; Yang, W. Correlation between lateral size and gas sensing performance of MoSe2 nanosheets. Appl. Phys. Lett. 2017, 111, 161603. [Google Scholar] [CrossRef]
- Kim, Y.; Kwon, K.C.; Kang, S.; Kim, C.; Kim, T.H.; Hong, S.-P.; Park, S.Y.; Suh, J.M.; Choi, M.-J.; Han, S.; et al. Two-dimensional NbS2 gas sensors for selective and reversible NO2 detection at room temperature. ACS Sens. 2019, 4, 2395–2402. [Google Scholar] [CrossRef]
- Bag, A.; Lee, N.-E. Gas sensing with heterostructures based on two-dimensional nanostructured materials: A review. J. Mater. Chem. C 2019, 7, 13367–13383. [Google Scholar] [CrossRef]
- Zappa, D.; Galstyan, V.; Kaur, N.; Munasinghe Arachchige, H.M.M.; Sisman, O.; Comini, E. “Metal oxide-based heterostructures for gas sensors”—A review. Anal. Chim. Acta 2018, 1039, 1–23. [Google Scholar] [CrossRef]
- Lee, E.; Yoon, Y.S.; Kim, D.J. Two-dimensional transition metal dichalcogenides and metal oxide hybrids for gas sensing. ACS Sens. 2018, 3, 2045–2060. [Google Scholar] [CrossRef]
Materials | NO2 Conc. (ppm) | Response | τres/τrec (s/s) | LOD (ppb) | Reference |
---|---|---|---|---|---|
WS2 nanosheets | 10 | 1.4 | 45/60 | 2000 | [51] |
WSe2 nanosheets | 1 | 1.3 | 66/1020 | 100 | [52] |
SnS2 nanograins | 10 | 7.0 | 272/3800 | 1000 | [53] |
SnSe2 nanosheets | 1 | 1.6 | 142/935 | 100 | [54] |
MoS2 nanograins | 500 | 3.5 | ~180/~480 | 25,000 | [55] |
MoSe2 nanosheets | 5 | 1.4 | 450/600 | 5000 | [56] |
NbS2 nanosheets | 5 | 1.2 | ~3000/~9000 | 241 | [57] |
Bi2S3 nanobelts | 1 | 6.9 | 72/400 | 500 | [21] |
CuS/Bi2S3 nanosheets | 10 | 3.4 | 18/388 | 500 | [27] |
Au/Bi2S3 nanosheets | 5 | 5.6 | 18/338 | 250 | [28] |
Bi2S3 hierarchical nanostructures | 1 | 5.8 | 28/116 | 50 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Liu, C.; Wang, Y.; Hao, J. Nanorods Assembled Hierarchical Bi2S3 for Highly Sensitive Detection of Trace NO2 at Room Temperature. Chemosensors 2024, 12, 8. https://doi.org/10.3390/chemosensors12010008
Yang Y, Liu C, Wang Y, Hao J. Nanorods Assembled Hierarchical Bi2S3 for Highly Sensitive Detection of Trace NO2 at Room Temperature. Chemosensors. 2024; 12(1):8. https://doi.org/10.3390/chemosensors12010008
Chicago/Turabian StyleYang, Yongchao, Chengli Liu, You Wang, and Juanyuan Hao. 2024. "Nanorods Assembled Hierarchical Bi2S3 for Highly Sensitive Detection of Trace NO2 at Room Temperature" Chemosensors 12, no. 1: 8. https://doi.org/10.3390/chemosensors12010008
APA StyleYang, Y., Liu, C., Wang, Y., & Hao, J. (2024). Nanorods Assembled Hierarchical Bi2S3 for Highly Sensitive Detection of Trace NO2 at Room Temperature. Chemosensors, 12(1), 8. https://doi.org/10.3390/chemosensors12010008