Optimization of the Geometrical Design for an All-Dielectric Metasurface Sensor with a High Refractive-Index Response
Abstract
:1. Introduction
2. Design and Method
3. Results and Discussion
3.1. The Reflectance Spectrum Determined by the Lattice Constant
3.2. The Reflectance Spectrum Determined by the Radius of the Nanohole-Structured Layer
3.3. The Reflectance Spectrum Determined by the Depth of the Nanohole-Structured Layer
3.4. The Electric Field and Magnetic Field Distribution on the Interface of the Metasurface
3.5. Geometrical Optimization for High Sensitivity in the Visible Spectral Range
3.6. Comparison of Sensitivity with the Previous Study on Metasurface Sensors
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. The Fabrication Process of the Nanohole All-Dielectric Metasurface
References
- Anas, N.A.A.; Fen, Y.W.; Omar, N.A.S.; Daniyal, W.M.E.M.M.; Ramdzan, N.S.M.; Saleviter, S. Development of graphene quantum dots-based optical sensor for toxic metal ion detection. Sensors 2019, 19, 3850. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wang, J. Optical biosensors: An exhaustive and comprehensive review. Analyst 2020, 145, 1605–1628. [Google Scholar] [CrossRef]
- Esfahani Monfared, Y. Overview of recent advances in the design of plasmonic fiber-optic biosensors. Biosensors 2020, 10, 77. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z. Surface-enhanced Raman spectroscopy: Advancements and applications. J. Raman Spectrosc. 2005, 36, 466–470. [Google Scholar] [CrossRef]
- Yang, C.-M.; Yen, T.H.; Liu, H.-L.; Lin, Y.-J.; Lin, P.-Y.; Tsui, L.S.; Chen, C.-H.; Chen, Y.-P.; Hsu, Y.-C.; Lo, C.-H. A real-time mirror-LAPS mini system for dynamic chemical imaging and cell acidification monitoring. Sens. Actuators B Chem. 2021, 341, 130003. [Google Scholar] [CrossRef]
- Qin, J.; Jiang, S.; Wang, Z.; Cheng, X.; Li, B.; Shi, Y.; Tsai, D.P.; Liu, A.Q.; Huang, W.; Zhu, W. Metasurface micro/nano-optical sensors: Principles and applications. ACS Nano 2022, 16, 11598–11618. [Google Scholar] [CrossRef]
- Kumari, S.; Tripathi, S.M. Hybrid plasmonic SOI ring resonator for bulk and affinity bio-sensing applications. Silicon 2022, 14, 11577–11586. [Google Scholar] [CrossRef]
- Ahmadivand, A.; Gerislioglu, B. Photonic and plasmonic metasensors. Laser Photonics Rev. 2022, 16, 2100328. [Google Scholar] [CrossRef]
- Salim, A.; Lim, S. Recent advances in the metamaterial-inspired biosensors. Biosens. Bioelectron. 2018, 117, 398–402. [Google Scholar] [CrossRef]
- Smith, D.R.; Padilla, W.J.; Vier, D.; Nemat-Nasser, S.C.; Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 2000, 84, 4184. [Google Scholar] [CrossRef]
- Tang, C.; Yang, J.; Wang, Y.; Cheng, J.; Li, X.; Chang, C.; Hu, J.; Lü, J. Integrating terahertz metamaterial and water nanodroplets for ultrasensitive detection of amyloid β aggregates in liquids. Sens. Actuators B Chem. 2021, 329, 129113. [Google Scholar] [CrossRef]
- Liu, B.; Song, K.; Xiao, J. Two-dimensional optical metasurfaces: From plasmons to dielectrics. Adv. Condens. Matter Phys. 2019, 2019, 2329168. [Google Scholar] [CrossRef]
- Romano, S.; Zito, G.; Torino, S.; Calafiore, G.; Penzo, E.; Coppola, G.; Cabrini, S.; Rendina, I.; Mocella, V. Label-free sensing of ultralow-weight molecules with all-dielectric metasurfaces supporting bound states in the continuum. Photonics Res. 2018, 6, 726–733. [Google Scholar] [CrossRef]
- Moitra, P.; Yang, Y.; Anderson, Z.; Kravchenko, I.I.; Briggs, D.P.; Valentine, J. Realization of an all-dielectric zero-index optical metamaterial. Nat. Photonics 2013, 7, 791–795. [Google Scholar] [CrossRef]
- Gil, M.; Bonache, J.; Martin, F. Metamaterial filters: A review. Metamaterials 2008, 2, 186–197. [Google Scholar] [CrossRef]
- Mubeen, S.; Zhang, S.; Kim, N.; Lee, S.; Kramer, S.; Xu, H.; Moskovits, M. Plasmonic properties of gold nanoparticles separated from a gold mirror by an ultrathin oxide. Nano Lett. 2012, 12, 2088–2094. [Google Scholar] [CrossRef]
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.-P.; Capasso, F.; Gaburro, Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Consales, M.; Quero, G.; Spaziani, S.; Principe, M.; Micco, A.; Galdi, V.; Cutolo, A.; Cusano, A. Metasurface-Enhanced Lab-on-Fiber Biosensors. Laser Photonics Rev. 2020, 14, 2000180. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, H.; Lu, Y.; Chen, Y. All-dielectric metasurface for achieving perfect reflection at visible wavelengths. J. Phys. Chem. C 2018, 122, 2990–2996. [Google Scholar] [CrossRef]
- Kuznetsov, A.I.; Miroshnichenko, A.E.; Brongersma, M.L.; Kivshar, Y.S.; Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 2016, 354, aag2472. [Google Scholar] [CrossRef]
- Cui, S.; Tian, C.; Mao, J.; Wu, W.; Fu, Y. Nanopillar array-based plasmonic metasurface for switchable multifunctional biosensing. Opt. Commun. 2022, 506, 127548. [Google Scholar] [CrossRef]
- Galvez, F.; de Lara, D.P.; Spottorno, J.; García, M.; Vicent, J. Heating effects of low power surface plasmon resonance sensors. Sens. Actuators B Chem. 2017, 243, 806–811. [Google Scholar] [CrossRef]
- Tian, J.; Li, Q.; Belov, P.A.; Sinha, R.K.; Qian, W.; Qiu, M. High-Q all-dielectric metasurface: Super and suppressed optical absorption. ACS Photonics 2020, 7, 1436–1443. [Google Scholar] [CrossRef]
- Kivshar, Y. All-dielectric meta-optics and non-linear nanophotonics. Natl. Sci. Rev. 2018, 5, 144–158. [Google Scholar] [CrossRef]
- Kruk, S.; Kivshar, Y. Functional meta-optics and nanophotonics governed by Mie resonances. Acs Photonics 2017, 4, 2638–2649. [Google Scholar] [CrossRef]
- Decker, M.; Staude, I. Resonant dielectric nanostructures: A low-loss platform for functional nanophotonics. J. Opt. 2016, 18, 103001. [Google Scholar] [CrossRef]
- Decker, M.; Staude, I.; Falkner, M.; Dominguez, J.; Neshev, D.N.; Brener, I.; Pertsch, T.; Kivshar, Y.S. High-efficiency dielectric Huygens’ surfaces. Adv. Opt. Mater. 2015, 3, 813–820. [Google Scholar] [CrossRef]
- Cheng, J.; Ansari-Oghol-Beig, D.; Mosallaei, H. Wave manipulation with designer dielectric metasurfaces. Opt. Lett. 2014, 39, 6285–6288. [Google Scholar] [CrossRef]
- Staude, I.; Miroshnichenko, A.E.; Decker, M.; Fofang, N.T.; Liu, S.; Gonzales, E.; Dominguez, J.; Luk, T.S.; Neshev, D.N.; Brener, I. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano 2013, 7, 7824–7832. [Google Scholar] [CrossRef]
- Evlyukhin, A.B.; Reinhardt, C.; Chichkov, B.N. Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation. Phys. Rev. B 2011, 84, 235429. [Google Scholar] [CrossRef]
- Evlyukhin, A.B.; Reinhardt, C.; Seidel, A.; Luk’yanchuk, B.S.; Chichkov, B.N. Optical response features of Si-nanoparticle arrays. Phys. Rev. B 2010, 82, 045404. [Google Scholar] [CrossRef]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Wu, Y.; Yang, W.; Fan, Y.; Song, Q.; Xiao, S. TiO2 metasurfaces: From visible planar photonics to photochemistry. Sci. Adv. 2019, 5, eaax0939. [Google Scholar] [CrossRef] [PubMed]
- Semmlinger, M.; Zhang, M.; Tseng, M.L.; Huang, T.-T.; Yang, J.; Tsai, D.P.; Nordlander, P.; Halas, N.J. Generating third harmonic vacuum ultraviolet light with a TiO2 metasurface. Nano Lett. 2019, 19, 8972–8978. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Ma, B.; Qin, R.; Ghosh, P.; Qiu, M.; Li, Q. High-Q Absorption in All-Dielectric Photonics Assisted by Metamirrors. ACS Photonics 2022, 9, 3391–3397. [Google Scholar] [CrossRef]
- Yu, J.; Ma, B.; Ouyang, A.; Ghosh, P.; Luo, H.; Pattanayak, A.; Kaur, S.; Qiu, M.; Belov, P.; Li, Q. Dielectric super-absorbing metasurfaces via PT symmetry breaking. Optica 2021, 8, 1290–1295. [Google Scholar] [CrossRef]
- Koshelev, K.; Bogdanov, A.; Kivshar, Y. Meta-optics and bound states in the continuum. Sci. Bull. 2019, 64, 836–842. [Google Scholar] [CrossRef]
- Evlyukhin, A.B.; Novikov, S.M.; Zywietz, U.; Eriksen, R.L.; Reinhardt, C.; Bozhevolnyi, S.I.; Chichkov, B.N. Demonstration of Magnetic Dipole Resonances of Dielectric Nanospheres in the Visible Region. Nano Lett. 2012, 12, 3749–3755. [Google Scholar] [CrossRef]
- Babicheva, V.E.; Evlyukhin, A.B. Resonant Lattice Kerker Effect in Metasurfaces With Electric and Magnetic Optical Responses. Laser Photonics Rev. 2017, 11, 1700132. [Google Scholar] [CrossRef]
- Alhalaby, H.; Principe, M.; Zaraket, H.; Vaiano, P.; Aliberti, A.; Quero, G.; Crescitelli, A.; Di Meo, V.; Esposito, E.; Consales, M. Design and optimization of all-dielectric fluorescence enhancing metasurfaces: Towards advanced metasurface-assisted optrodes. Biosensors 2022, 12, 264. [Google Scholar] [CrossRef]
- Tognazzi, A.; Rocco, D.; Gandolfi, M.; Locatelli, A.; Carletti, L.; De Angelis, C. High quality factor silicon membrane metasurface for intensity-based refractive index sensing. Optics 2021, 2, 193–199. [Google Scholar] [CrossRef]
- Ollanik, A.J.; Oguntoye, I.O.; Hartfield, G.Z.; Escarra, M.D. Highly sensitive, affordable, and adaptable refractive index sensing with silicon-based dielectric metasurfaces. Adv. Mater. Technol. 2019, 4, 1800567. [Google Scholar] [CrossRef]
- Yavas, O.; Svedendahl, M.; Dobosz, P.; Sanz, V.; Quidant, R. On-a-chip biosensing based on all-dielectric nanoresonators. Nano Lett. 2017, 17, 4421–4426. [Google Scholar] [CrossRef]
- Romano, S.; Zito, G.; Yépez, S.N.L.; Cabrini, S.; Penzo, E.; Coppola, G.; Rendina, I.; Mocellaark, V. Tuning the exponential sensitivity of a bound-state-in-continuum optical sensor. Opt. Express 2019, 27, 18776–18786. [Google Scholar] [CrossRef]
- Conteduca, D.; Barth, I.; Pitruzzello, G.; Reardon, C.P.; Martins, E.R.; Krauss, T.F. Dielectric nanohole array metasurface for high-resolution near-field sensing and imaging. Nat. Commun. 2021, 12, 3293. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yang, Q.; Shao, T.; Xu, Y.; Wang, L.; Xu, Q.; Zhang, X.; Kravchenko, I.; Gu, J.; Han, J. Terahertz bound state in the continuum in dielectric membrane metasurfaces. New J. Phys. 2022, 24, 053010. [Google Scholar] [CrossRef]
- Available online: refractiveindex.info (accessed on 5 September 2023).
- Berenger, J.-P. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 1994, 114, 185–200. [Google Scholar] [CrossRef]
- Bérenger, J.-P. Perfectly matched layer (PML) for computational electromagnetics. Synth. Lect. Comput. Electromagn. 2007, 2, 1–117. [Google Scholar]
- Lee, Y.; Park, M.-K.; Kim, S.; Shin, J.H.; Moon, C.; Hwang, J.Y.; Choi, J.-C.; Park, H.; Kim, H.-R.; Jang, J.E. Electrical broad tuning of plasmonic color filter employing an asymmetric-lattice nanohole array of metasurface controlled by polarization rotator. Acs Photonics 2017, 4, 1954–1966. [Google Scholar] [CrossRef]
- Hsiao, H.H.; Hsu, Y.C.; Liu, A.Y.; Hsieh, J.C.; Lin, Y.H. Ultrasensitive Refractive Index Sensing Based on the Quasi-Bound States in the Continuum of All-Dielectric Metasurfaces. Adv. Opt. Mater. 2022, 10, 2200812. [Google Scholar] [CrossRef]
- Malekfar, M.R.; Shokooh-Saremi, M.; Mirsalehi, M.M. Design of highly transmissive all-dielectric metasurface based on silicon nanodisks. Photonics Nanostructures-Fundam. Appl. 2018, 31, 140–146. [Google Scholar] [CrossRef]
- Kodigala, A.; Lepetit, T.; Gu, Q.; Bahari, B.; Fainman, Y.; Kanté, B. Lasing action from photonic bound states in continuum. Nature 2017, 541, 196–199. [Google Scholar] [CrossRef]
- D’Amico, A.; Di Natale, C. A contribution on some basic definitions of sensors properties. IEEE Sens. J. 2001, 1, 183–190. [Google Scholar] [CrossRef]
- Mohamady, S.; Raja Ahmad, R.K.; Montazeri, A.; Zahari, R.; Abdul Jalil, N.A. Modeling and eigenfrequency analysis of sound-structure interaction in a rectangular enclosure with finite element method. Adv. Acoust. Vib. 2009, 2009, 371297. [Google Scholar] [CrossRef]
- Tan, C.-Y.; Huang, Y.-X. Dependence of refractive index on concentration and temperature in electrolyte solution, polar solution, nonpolar solution, and protein solution. J. Chem. Eng. Data 2015, 60, 2827–2833. [Google Scholar] [CrossRef]
- Antony, A.; Mitra, J. Refractive index-assisted UV/Vis spectrophotometry to overcome spectral interference by impurities. Anal. Chim. Acta 2021, 1149, 238186. [Google Scholar] [CrossRef]
- Xu, W.; Zhuo, Y.; Song, D.; Han, X.; Xu, J.; Long, F. Development of a novel label-free all-fiber optofluidic biosensor based on Fresnel reflection and its applications. Anal. Chim. Acta 2021, 1181, 338910. [Google Scholar] [CrossRef]
- Cole, T.; Kathman, A.; Koszelak, S.; McPherson, A. Determination of local refractive index for protein and virus crystals in solution by Mach-Zehnder interferometry. Anal. Biochem. 1995, 231, 92–98. [Google Scholar] [CrossRef]
- Li, Z.; Panmai, M.; Zhou, L.; Li, S.; Liu, S.; Zeng, J.; Lan, S. Optical sensing and switching in the visible light spectrum based on the bound states in the continuum formed in GaP metasurfaces. Appl. Surf. Sci. 2023, 620, 156779. [Google Scholar] [CrossRef]
- Ray, D.; Raziman, T.; Santschi, C.; Etezadi, D.; Altug, H.; Martin, O.J. Hybrid metal-dielectric metasurfaces for refractive index sensing. Nano Lett. 2020, 20, 8752–8759. [Google Scholar] [CrossRef]
- He, K.; Liu, Y.; Fu, Y. Transmit-array, metasurface-based tunable polarizer and high-performance biosensor in the visible regime. Nanomaterials 2019, 9, 603. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Luo, M.; Zhao, X.; Li, Y.; Wang, Q.; Liu, Z.; Guo, J.; Guo, Z.; Liu, J.; Wu, X. Asymmetric tetramer metasurface sensor governed by quasi-bound states in the continuum. Nanophotonics 2023, 12, 1295–1307. [Google Scholar] [CrossRef]
- Wu, P.; Qu, S.; Zeng, X.; Su, N.; Chen, M.; Yu, Y. High-Q refractive index sensors based on all-dielectric metasurfaces. RSC Adv. 2022, 12, 21264–21269. [Google Scholar] [CrossRef] [PubMed]
- Chao, M.; Liu, Q.; Zhang, W.; Zhuang, L.; Song, G. Mutual coupling of corner-localized quasi-BICs in high-order topological PhCs and sensing applications. Opt. Express 2022, 30, 29258–29270. [Google Scholar] [CrossRef]
- Wang, J.; Kühne, J.; Karamanos, T.; Rockstuhl, C.; Maier, S.A.; Tittl, A. All-dielectric crescent metasurface sensor driven by bound states in the continuum. Adv. Funct. Mater. 2021, 31, 2104652. [Google Scholar] [CrossRef]
Resonance Mode | Lattice Constant (nm) | Resonant Wavelength (nm) | Resonant Bandwidth (nm) | Reflectance (arb. unit) |
---|---|---|---|---|
PR Mode | 350 | 562 | 32 | 1.00 |
410 | 650 | 20 | 0.99 | |
qBIC Mode | 350 | 516 | N/A | 0.34 |
410 | 602 | N/A | 1.00 |
Resonance Mode | Radius (nm) | Resonant Wavelength (nm) | Resonant Bandwidth (nm) | Reflectance (arb. unit) |
---|---|---|---|---|
PR Mode | 130 | 562 | 32 | 1.00 |
70 | 597 | 9 | 0.99 | |
qBIC Mode | 130 | 494 | N/A | 0.20 |
70 | N/A | N/A | N/A |
Resonance Mode | Depth (nm) | Resonant Wavelength (nm) | Resonant Bandwidth (nm) | Reflectance (arb. unit) |
---|---|---|---|---|
PR Mode | 40 | 562 | 32 | 1.00 |
100 | 629 | 49 | 1.00 | |
qBIC Mode | 40 | 516 | N/A | 0.34 |
100 | 583 | 4 | 1.00 |
Symbol | Geometrical Parameters | |
---|---|---|
Range (nm) | Increment (nm) | |
a | 350 | N/A |
r | 10-160 | 30 nm |
h | 10-350 | 10 nm |
Resonance Mode | PR Mode | qBIC Mode |
---|---|---|
Resonant Wavelength (nm) | 570.19 | 618.73 |
Quality factor | 25.50 | 3.73 × 106 |
Sensitivity (nm/RIU) | 258 | 94 |
Optimized geometric parameter | a =350, r = 160 and h = 250 nm | a =350, r = 160 and h = 250 nm |
Mode/r (nm)/h (nm) | Sensitivity (nm/RIU) Investigation Range | Sensitivity (nm/RIU) Narrow Range |
---|---|---|
qBIC/130/200 | 49.85 | 49.59 |
PR/130/200 | 149.98 | 149.74 |
qBIC/160/200 | 93.25 | 92.74 |
PR/160/200 | 215.60 | 215.57 |
qBIC/130/250 | 49.02 | 48.78 |
PR/130/250 | 160.92 | 160.68 |
qBIC/160/250 | 94.49 | 94.00 |
PR/160/250 | 257.22 | 257.90 |
qBIC/130/300 | 48.82 | 48.59 |
PR/130/300 | 151.30 | 150.85 |
Reference | Unit Cell Type | Spectral Range (nm) | Sensitivity (nm/RIU) |
---|---|---|---|
He et al. (2019) [62] | GaN rectangular posts | 430–450 | 192 |
Li et al. (2023) [60] | GaP cuboids | 580–594 | 135 |
Wu et al. (2022) [64] | TiO2 2-D grating | 644–652 | 82 |
Yavas et al. (2017) [43] | Si nanoresonators | 844–848 | 227 |
Zhou et al. (2023) [63] | Si3N4 asymmetric tetramer | 852–857 | 171 |
Ray et al. (2020) [61] | Al/SiO2/Si hybrid nanoantenna | 1232–1344 | 245 |
Chao et al. (2022) [65] | dielectric hybrid disk | 1550–1610 | 313 |
Wang et al. (2021) [66] | Si crescent | 656–667 | 326 |
TiO2 nanohole [This work] | TiO2 nanohole | 570–572 | 257 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, C.-T.; Yang, C.-M.; Chen, I.-H.; Ho, C.-C.; Lu, Y.-J.; Yu, C.-J. Optimization of the Geometrical Design for an All-Dielectric Metasurface Sensor with a High Refractive-Index Response. Chemosensors 2023, 11, 498. https://doi.org/10.3390/chemosensors11090498
Chang C-T, Yang C-M, Chen I-H, Ho C-C, Lu Y-J, Yu C-J. Optimization of the Geometrical Design for an All-Dielectric Metasurface Sensor with a High Refractive-Index Response. Chemosensors. 2023; 11(9):498. https://doi.org/10.3390/chemosensors11090498
Chicago/Turabian StyleChang, Chia-Te, Chia-Ming Yang, I-Hsuan Chen, Chih-Ching Ho, Yu-Jen Lu, and Chih-Jen Yu. 2023. "Optimization of the Geometrical Design for an All-Dielectric Metasurface Sensor with a High Refractive-Index Response" Chemosensors 11, no. 9: 498. https://doi.org/10.3390/chemosensors11090498
APA StyleChang, C. -T., Yang, C. -M., Chen, I. -H., Ho, C. -C., Lu, Y. -J., & Yu, C. -J. (2023). Optimization of the Geometrical Design for an All-Dielectric Metasurface Sensor with a High Refractive-Index Response. Chemosensors, 11(9), 498. https://doi.org/10.3390/chemosensors11090498