Ammonia Mediated Silver Nanoparticles Based Detection of Bisphenol A, an Endocrine Disruptor, in Water Samples after Vortex-Assisted Liquid–Liquid Microextraction
Abstract
:1. Introduction
2. Experimental
2.1. Apparatus
2.2. Reagents and Chemicals
2.3. Preparation of the Aqueous Nanoparticles Dispersion
2.4. Solution, Standards, and Aqueous Dispersions
2.5. BPA Detection via a Conjugate Probe
2.6. Vortex-Assisted Liquid–Liquid Microextraction (VALLME)
3. Results and Discussion
3.1. Characterization of BJ-35-AgNPs
3.2. Preliminary Studies
3.3. Optimization of Experimental Analytical Probe Conditions
3.3.1. Ammonia Amounts
3.3.2. Amount of AgNPs-NH3 Probe
3.3.3. Stability of the AgNP-NH3 Conjugate and Response Time
3.3.4. Effect of pH
3.3.5. Effect of the Surfactants on the Response of the Probe
3.4. Analytical Characteristics of the AgNPs-NH3 Probe for BPA Detection
3.5. Selectivity Studies
3.6. Jobs Plot
3.7. Method Application to Real Water Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frederiksen, H.; Aksglaede, L.; Sorensen, K.; Nielsen, O.; Main, K.M.; Skakkebaek, N.E.; Juul, A.; Andersson, A.-M. Bisphenol A and other phenols in urine from Danish children and adolescents analyzed by isotope diluted TurboFlow-LC–MS/MS. Int. J. Hyg. Environ. Health 2013, 216, 710–720. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Aruna Priyanka, R.; Shalini Priya, P.; Gunasree, B.; Srivanth, S.; Jayasakthi, S.; Kapoor, A.; MuthuKumar, R. Bisphenol A contamination in processed food samples: An overview. Int. J. Environ. Sci. Technol. 2023, 20, 1–20. [Google Scholar] [CrossRef]
- Hoshyar, S.A.; Barzani, H.A.; Yardım, Y.; Şentürk, Z. The effect of CTAB, a cationic surfactant, on the adsorption ability of the boron-doped diamond electrode: Application for voltammetric sensing of Bisphenol A and Hydroquinone in water samples. Colloids Surf. A Physicochem. Eng. Asp. 2021, 610, 125916. [Google Scholar] [CrossRef]
- Chen, X.; Wang, C.; Tan, X.; Wang, J. Determination of bisphenol A in water via inhibition of silver nanoparticles-enhanced chemiluminescence. Anal. Chim. Acta 2011, 689, 92–96. [Google Scholar] [CrossRef]
- European Commission. Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers, amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004. Off. J. Eur. Union 2011, 304, 18–63. [Google Scholar]
- Zhuang, Y.; Zhou, M.; Gu, J.; Li, X. Spectrophotometric and high performance liquid chromatographic methods for sensitive determination of bisphenol A. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 122, 153–157. [Google Scholar] [CrossRef]
- Braunrath, R.; Podlipna, D.; Padlesak, S.; Cichna-Markl, M. Determination of bisphenol A in canned foods by immunoaffinity chromatography, HPLC, and fluorescence detection. J. Agric. Food Chem. 2005, 53, 8911–8917. [Google Scholar] [CrossRef]
- Brenn-Struckhofova, Z.; Cichna-Markl, M. Determination of bisphenol A in wine by sol-gel immunoaffinity chromatography, HPLC and fluorescence detection. Food Addit. Contam. 2006, 23, 1227–1235. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.-H.; Kondo, F. Determination of bisphenol A in milk and dairy products by high-performance liquid chromatography with fluorescence detection. J. Food Prot. 2003, 66, 1439–1443. [Google Scholar] [CrossRef]
- Dreolin, N.; Aznar, M.; Moret, S.; Nerin, C. Development and validation of a LC–MS/MS method for the analysis of bisphenol a in polyethylene terephthalate. Food Chem. 2019, 274, 246–253. [Google Scholar] [CrossRef]
- Ashley-Martin, J.; Gaudreau, É.; Dumas, P.; Liang, C.L.; Logvin, A.; Bélanger, P.; Provencher, G.; Gagne, S.; Foster, W.; Lanphear, B. Direct LC-MS/MS and indirect GC–MS/MS methods for measuring urinary bisphenol A concentrations are comparable. Environ. Int. 2021, 157, 106874. [Google Scholar] [CrossRef]
- Jurek, A.; Leitner, E. Analytical determination of bisphenol A (BPA) and bisphenol analogues in paper products by LC-MS/MS. Food Addit. Contam. Part A 2018, 35, 2256–2269. [Google Scholar] [CrossRef]
- Caban, M.; Stepnowski, P. The quantification of bisphenols and their analogues in wastewaters and surface water by an improved solid-phase extraction gas chromatography/mass spectrometry method. Environ. Sci. Pollut. Res. 2020, 27, 28829–28839. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Wu, Z.; Li, W.; Wang, Z.; Li, Q.; Kong, F.; Zhang, H.; Zhu, X.; Du, Y.P.; Jin, Y. Appropriate size of magnetic nanoparticles for various bioapplications in cancer diagnostics and therapy. ACS Appl. Mater. Interfaces 2016, 8, 3092–3106. [Google Scholar] [CrossRef]
- Chen, L.; Li, H.; He, H.; Wu, H.; Jin, Y. Smart plasmonic glucose nanosensors as generic theranostic agents for targeting-free cancer cell screening and killing. Anal. Chem. 2015, 87, 6868–6874. [Google Scholar] [CrossRef]
- Hanada, N.; Ichikawa, T.; Fujii, H. Catalytic effect of nanoparticle 3d-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling. J. Phys. Chem. B 2005, 109, 7188–7194. [Google Scholar] [CrossRef]
- Khalililaghab, S.; Momeni, S.; Farrokhnia, M.; Nabipour, I.; Karimi, S. Development of a new colorimetric assay for detection of bisphenol-A in aqueous media using green synthesized silver chloride nanoparticles: Experimental and theoretical study. Anal. Bioanal. Chem. 2017, 409, 2847–2858. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuan, X.; Wang, Y.; Chen, Y. One-pot photochemical synthesis of graphene composites uniformly deposited with silver nanoparticles and their high catalytic activity towards the reduction of 2-nitroaniline. J. Mater. Chem. 2012, 22, 7245–7251. [Google Scholar] [CrossRef]
- Qadri, T.; Khan, S.; Begum, I.; Ahmed, S.; Shah, Z.A.; Ali, I.; Ahmed, F.; Hussain, M.; Hussain, Z.; Rahim, S. Synthesis of phenylbenzotriazole derivative stabilized silver nanoparticles for chromium (III) detection in tap water. J. Mol. Struct. 2022, 1267, 133589. [Google Scholar] [CrossRef]
- Mochi, F.; Burratti, L.; Fratoddi, I.; Venditti, I.; Battocchio, C.; Carlini, L.; Iucci, G.; Casalboni, M.; De Matteis, F.; Casciardi, S. Plasmonic sensor based on interaction between silver nanoparticles and Ni2+ or Co2+ in water. Nanomaterials 2018, 8, 488. [Google Scholar] [CrossRef] [Green Version]
- Ghoto, S.A.; Khuhawar, M.Y.; Jahangir, T.M. Silver nanoparticles with sodium dodecyl sulfate as colorimetric probe for detection of dithiocarbamate pesticides in environmental samples. Anal. Sci. 2019, 35, 631–637. [Google Scholar] [CrossRef] [Green Version]
- Ghodake, G.; Shinde, S.; Saratale, R.G.; Kadam, A.; Saratale, G.D.; Syed, A.; Marraiki, N.; Elgorban, A.M.; Kim, D.Y. Silver nanoparticle probe for colorimetric detection of aminoglycoside antibiotics: Picomolar-level sensitivity toward streptomycin in water, serum, and milk samples. J. Sci. Food Agric. 2020, 100, 874–884. [Google Scholar] [CrossRef]
- Amirjani, A.; Fatmehsari, D.H. Colorimetric detection of ammonia using smartphones based on localized surface plasmon resonance of silver nanoparticles. Talanta 2018, 176, 242–246. [Google Scholar] [CrossRef]
- Nishan, U.; Gul, R.; Muhammad, N.; Asad, M.; Rahim, A.; Shah, M.; Iqbal, J.; Uddin, J.; Shujah, S. Colorimetric based sensing of dopamine using ionic liquid functionalized drug mediated silver nanostructures. Microchem. J. 2020, 159, 105382. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, J.; Ye, J.; Xu, L.; Xu, H.; Zhan, S.; Xia, B.; Wang, L. Colorimetric detection of bisphenol A based on unmodified aptamer and cationic polymer aggregated gold nanoparticles. Anal. Biochem. 2016, 499, 51–56. [Google Scholar] [CrossRef]
- Saygılı-Canlıdinç, R.; Caglayan, M.O.; Kariper, İ.A.; Üstündağ, Z.; Şahin, S. Aptamer-based impedimetric label-free detection of bisphenol A from water samples using a gold nanoparticle-modified electrochemical nanofilm platform. J. Appl. Electrochem. 2023, 53, 1–10. [Google Scholar] [CrossRef]
- Jang, M.H.; Kim, J.K.; Yoo, H. Nonionic brij surfactant-mediated synthesis of raspberry-like gold nanoparticles with high surface area. J. Nanosci. Nanotechnol. 2012, 12, 4088–4092. [Google Scholar] [CrossRef]
- Guo, H.; Tao, S. Silver nanoparticles doped silica nanocomposites coated on an optical fiber for ammonia sensing. Sens. Actuators B Chem. 2007, 123, 578–582. [Google Scholar] [CrossRef]
- Miranda-Andrades, J.R.; Pérez-Gramatges, A.; Pandoli, O.; Romani, E.C.; Aucélio, R.Q.; da Silva, A.R. Spherical gold nanoparticles and gold nanorods for the determination of gentamicin. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 172, 126–134. [Google Scholar] [CrossRef]
- Restrepo, C.V.; Villa, C.C. Synthesis of silver nanoparticles, influence of capping agents, and dependence on size and shape: A review. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100428. [Google Scholar] [CrossRef]
- Chakraborty, G.; Chowdhury, M.P.; Hassan, P.; Tsuchiya, K.; Torigoe, K.; Saha, S.K. Interaction of Tyrosine Analogues with Quaternary Ammonium Head Groups at the Micelle/Water Interface and Contrasting Effect of Molecular Folding on the Hydrophobic Outcome and End-Cap Geometry. J. Phys. Chem. B 2018, 122, 2355–2367. [Google Scholar] [CrossRef]
- Toloza, C.A.; Almeida, J.M.; Khan, S.; Dos Santos, Y.G.; da Silva, A.R.; Romani, E.C.; Larrude, D.G.; Freire, F.L., Jr.; Aucélio, R.Q. Gold nanoparticles coupled with graphene quantum dots in organized medium to quantify aminoglycoside anti-biotics in yellow fever vaccine after solid phase extraction using a selective imprinted polymer. J. Pharm. Biomed. Anal. 2018, 158, 480–493. [Google Scholar] [CrossRef]
- Boruah, B.S.; Daimari, N.K.; Biswas, R. Functionalized silver nanoparticles as an effective medium towards trace determination of arsenic (III) in aqueous solution. Results Phys. 2019, 12, 2061–2065. [Google Scholar] [CrossRef]
- Li, X.; Ying, G.-G.; Su, H.-C.; Yang, X.-B.; Wang, L. Simultaneous determination and assessment of 4-nonylphenol, bisphenol A and triclosan in tap water, bottled water and baby bottles. Environ. Int. 2010, 36, 557–562. [Google Scholar] [CrossRef]
- Maduka Ignatius, C.; Ezeonu Francis, E.; Neboh Emeka, E.; Shu Elvis, N.; Ikekpeazu Ebele, J. BPA and environmental estrogen in potable water sources in Enugu municipality, South-East, Nigeria. Bull. Environ. Contam. Toxicol. 2010, 85, 534–537. [Google Scholar] [CrossRef]
- Esteban, S.; Gorga, M.; González-Alonso, S.; Petrovic, M.; Barceló, D.; Valcárcel, Y. Monitoring endocrine disrupting compounds and estrogenic activity in tap water from Central Spain. Environ. Sci. Pollut. Res. 2014, 21, 9297–9310. [Google Scholar] [CrossRef]
- Santhi, V.; Sakai, N.; Ahmad, E.; Mustafa, A. Occurrence of bisphenol A in surface water, drinking water and plasma from Malaysia with exposure assessment from consumption of drinking water. Sci. Total Environ. 2012, 427, 332–338. [Google Scholar] [CrossRef]
Parameter | Optimized Value |
---|---|
Type of nanoparticle | AgNPS, spherical |
Quantity of NPs | 1.6 × 10−5 mol L−1 * |
Size | 34.1 nm |
pH | 9.0 |
Ammonia solution | 4.5 × 10−6 mol L−1 |
Temperature | 25 °C |
Reaction time | 20.0 min |
Parameter | Optimized Value |
---|---|
Linear range (nmol L−1) | 10–120 |
Limit of detection (nmol L−1) | 2.0 |
Correlation coefficient (R2) | 0.997 |
Calibration equation | (Ao−A) = 1.2 × 106 [BPA] + 0.009 |
Intermediate precision (%) | 2.5 |
Potential Interferent | Final Dispersion Concentration (µ mol L−1) | Signal Variation (%) |
---|---|---|
Mg2+ | 5.0 | 2.8 |
Ca2+ | 5.0 | 2.5 |
Ni2+ | 5.0 | 2.6 |
Na+ | 5.0 | 2.4 |
K+ | 3.0 | 2.3 |
Hg2+ | 5.0 | 2.8 |
Fe2+ | 2.0 | 2.5 |
Cu2+ | 2.0 | 3.2 |
Cd2+ | 2.5 | 3.5 |
Pb2+ | 1.0 | 3.0 |
NO3− | 2.0 | 3.0 |
SO42− | 5.0 | 2.5 |
Cl− | 5.0 | 2.3 |
Sample | Added Quantity (nmol L−1) | Detected (nmol L−1) | Recovery (%) |
---|---|---|---|
Tap water | 40.0 | 41.0 ± 0.4 | 103 ± 1.2 |
60.0 | 66.0 ± 0.8 | 111.0 ± 1.3 | |
80.0 | 74.0 ± 1.2 | 93.0 ± 1.5 | |
Stream water | 40.0 | 34.0 ± 0.7 | 85.0 ± 1.4 |
60.0 | 54.0 ± 0.7 | 90.0 ± 0.7 | |
80.0 | 71.0 ±1.2 | 89.0 ± 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaibi; Shah, Z.A.; Ullah, R.; Ali, E.A.; Toloza, C.A.T.; Hauser-Davis, R.A.; Muhammad, U.; Khan, S. Ammonia Mediated Silver Nanoparticles Based Detection of Bisphenol A, an Endocrine Disruptor, in Water Samples after Vortex-Assisted Liquid–Liquid Microextraction. Chemosensors 2023, 11, 434. https://doi.org/10.3390/chemosensors11080434
Zaibi, Shah ZA, Ullah R, Ali EA, Toloza CAT, Hauser-Davis RA, Muhammad U, Khan S. Ammonia Mediated Silver Nanoparticles Based Detection of Bisphenol A, an Endocrine Disruptor, in Water Samples after Vortex-Assisted Liquid–Liquid Microextraction. Chemosensors. 2023; 11(8):434. https://doi.org/10.3390/chemosensors11080434
Chicago/Turabian StyleZaibi, Zafar Ali Shah, Riaz Ullah, Essam A. Ali, Carlos A. T. Toloza, Rachel Ann Hauser-Davis, Uzair Muhammad, and Sarzamin Khan. 2023. "Ammonia Mediated Silver Nanoparticles Based Detection of Bisphenol A, an Endocrine Disruptor, in Water Samples after Vortex-Assisted Liquid–Liquid Microextraction" Chemosensors 11, no. 8: 434. https://doi.org/10.3390/chemosensors11080434
APA StyleZaibi, Shah, Z. A., Ullah, R., Ali, E. A., Toloza, C. A. T., Hauser-Davis, R. A., Muhammad, U., & Khan, S. (2023). Ammonia Mediated Silver Nanoparticles Based Detection of Bisphenol A, an Endocrine Disruptor, in Water Samples after Vortex-Assisted Liquid–Liquid Microextraction. Chemosensors, 11(8), 434. https://doi.org/10.3390/chemosensors11080434