Layer-by-Layer Films of Silsesquioxane and Nickel(II) Tetrasulphophthalocyanine as Glucose Oxidase Platform Immobilization: Amperometric Determination of Glucose in Kombucha Beverages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Enzyme and Chemicals
2.2. Film Assembly
2.3. Enzyme Immobilization on (SiPy+Cl−/NiTsPc)5.5/FTO Modified Electrode
2.4. Characterization of the Biosensors Obtained by Different Techniques
2.5. Determination of Glucose in Kombucha Beverages Samples
3. Results and Discussion
3.1. Characterization of GOx/(SiPy+Cl−/NiTsPc)5.5 Films
3.2. Studies of Different Methods of GOx Immobilization on LbL Modified Electrodes
3.3. Electrochemical Performance of the Glucose Biosensor Nafion/GOx/(SiPy+Cl−/NiTsPc)5.5/FTO
3.4. Reproducibility and Storage Stability of Nafion/GOx/(SiPy+Cl−/NiTsPc)5.5/FTO
3.5. Determination of Glucose Content in Kombucha Beverages
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jayabalan, R.; Malbaša, R.V.; Lončar, E.S.; Vitas, J.S.; Sathishkumar, M. A Review on Kombucha Tea-Microbiology, Composition, Fermentation, Beneficial Effects, Toxicity, and Tea Fungus. Compr. Rev. Food Sci. Food Saf. 2014, 13, 538–550. [Google Scholar] [CrossRef] [PubMed]
- Neffe-Skocińska, K.; Sionek, B.; Ścibisz, I.; Kołożyn-Krajewska, D. Contenido de Ácido y Efectos de Las Condiciones de Fermentación En Las Propiedades Fisicoquímicas, Microbiológicas y Sensoriales de Bebidas de Té de Kombucha. CYTA—J. Food 2017, 15, 601–607. [Google Scholar] [CrossRef] [Green Version]
- Villarreal-Soto, S.A.; Beaufort, S.; Bouajila, J.; Souchard, J.-P.; Taillandier, P. Understanding Kombucha Tea Fermentation: A Review. J. Food Sci. 2018, 83, 580–588. [Google Scholar] [CrossRef] [PubMed]
- Applegate, K.B.; Cheek, P.R.; Inlow, J.K. Analysis of Kombucha to Teach Biochemical Concepts and Techniques to Undergraduate Students. Biochem. Mol. Biol. Educ. 2019, 47, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Bollella, P. Enzyme-Based Amperometric Biosensors: 60 Years Later … Quo Vadis? Anal. Chim. Acta 2022, 1234, 340517. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yue, W.; Cui, Y. Development of an Amperometric Biosensor on a Toothbrush for Glucose. Sens. Actuators Rep. 2023, 5, 100133. [Google Scholar] [CrossRef]
- Nemiwal, M.; Zhang, T.C.; Kumar, D. Enzyme Immobilized Nanomaterials as Electrochemical Biosensors for Detection of Biomolecules. Enzyme Microb. Technol. 2022, 156, 110006. [Google Scholar] [CrossRef] [PubMed]
- Theyagarajan, K.; Kim, Y.J. Recent Developments in the Design and Fabrication of Electrochemical Biosensors Using Functional Materials and Molecules. Biosensors 2023, 13, 424. [Google Scholar] [CrossRef]
- Sassolas, A.; Blum, L.J.; Leca-Bouvier, B.D. Immobilization Strategies to Develop Enzymatic Biosensors. Biotechnol. Adv. 2012, 30, 489–511. [Google Scholar] [CrossRef] [PubMed]
- Liébana, S.; Drago, G.A. Bioconjugation and Stabilisation of Biomolecules in Biosensors. Essays Biochem. 2016, 60, 59–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashraf, G.; Chen, W.; Asif, M.; Aziz, A.; Zhong, Z.T.; Iftikhar, T.; Zhao, Y.D. Topical Advancements in Electrochemical and Optical Signal Amplification for Biomolecules Detection: A Comparison. Mater. Today Chem. 2022, 26, 101119. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, T.; Wu, T.; Xie, L.; Ma, Y.; Sha, J. Strategy Based on Multiplexed Brush Architectures for Regulating the Spatiotemporal Immobilization of Biomolecules. Biomater. Adv. 2022, 141, 213092. [Google Scholar] [CrossRef]
- Chen, N.; Chang, B.; Shi, N.; Yan, W.; Lu, F.; Liu, F. Cross-Linked Enzyme Aggregates Immobilization: Preparation, Characterization, and Applications. Crit. Rev. Biotechnol. 2023, 43, 369–383. [Google Scholar] [CrossRef]
- Santos, C.S.; Mossanha, R.; Pessôa, C.A. Biosensor for Carbaryl Based on Gold Modified with PAMAM-G4 Dendrimer. J. Appl. Electrochem. 2015, 45, 325–334. [Google Scholar] [CrossRef]
- Dopierała, K.; Kołodziejczak-Radzimska, A.; Prochaska, K.; Jesionowski, T. Immobilization of Lipase in Langmuir—Blogett Film of Cubic Silsesquioxane on the Surface of Zirconium Dioxide. Appl. Surf. Sci. 2022, 573, 151184. [Google Scholar] [CrossRef]
- Rex, A.; dos Santos, J.H.Z. The Use of Sol–Gel Processes in the Development of Supported Catalysts. J. Sol-Gel Sci. Technol. 2023, 105, 30–49. [Google Scholar] [CrossRef]
- Vesoloski, J.F.; Todero, A.S.; Macieski, R.J.; de Oliveira Pereira, F.; Dallago, R.M.; Mignoni, M.L. Immobilization of Lipase from Candida Antarctica B (CALB) by Sol–Gel Technique Using Rice Husk Ash as Silic Source and Ionic Liquid as Additive. Appl. Biochem. Biotechnol. 2022, 194, 6270–6286. [Google Scholar] [CrossRef]
- Hemin, F.U.; Oxidase, G.; Yoshida, K.; Kashimura, Y.; Kamijo, T.; Ono, T.; Dairaku, T. Decomposition of Glucose-Sensitive Layer-by-Layer Films Using Hemin, DNA, and Glucose Oxidase. Polymers 2020, 12, 319. [Google Scholar]
- Scotto, J.; Piccinini, E.; von Bilderling, C.; Coria-Oriundo, L.L.; Battaglini, F.; Knoll, W.; Marmisolle, W.A.; Azzaroni, O. Flexible Conducting Platforms Based on PEDOT and Graphite Nanosheets for Electrochemical Biosensing Applications. Appl. Surf. Sci. 2020, 525, 146440. [Google Scholar] [CrossRef]
- David, M.; Barsan, M.M.; Brett, C.M.A.; Florescu, M. Improved Glucose Label-Free Biosensor with Layer-by-Layer Architecture and Conducting Polymer Poly(3,4-Ethylenedioxythiophene). Sens. Actuators B Chem. 2018, 255, 3227–3234. [Google Scholar] [CrossRef]
- Guan, H.; Gong, D.; Song, Y.; Han, B.; Zhang, N. Biosensor Composed of Integrated Glucose Oxidase with Liposome Microreactors/Chitosan Nanocomposite for Amperometric Glucose Sensing. Colloids Surfaces A Physicochem. Eng. Asp. 2019, 574, 260–267. [Google Scholar] [CrossRef]
- Ma, J.; Yuan, J.; Xu, Y.; Jiang, Y.; Bai, W.; Zheng, J. Ultrasensitive Electrochemical Determination of Bisphenol A in Food Samples Based on a Strategy for Activity Enhancement of Enzyme: Layer-by-Layer Self-Assembly of Tyrosinase between Two-Dimensional Porphyrin Metal–Organic Framework Nanofilms. Chem. Eng. J. 2022, 446, 137001. [Google Scholar] [CrossRef]
- Liu, T.; Yin, Y.; Yang, Y.; Russell, T.P.; Shi, S. Layer-by-Layer Engineered All-Liquid Microfluidic Chips for Enzyme Immobilization. Adv. Mater. 2022, 34, 2105386. [Google Scholar] [CrossRef] [PubMed]
- Crocomo, P.Z.; Winiarski, J.P.; de Barros, M.R.; Latocheski, E.; Nagurniak, G.R.; Parreira, R.L.T.; Siebert, D.A.; Micke, G.A.; Magosso, H.A.; Jost, C.L. Silver Nanoparticles-Silsesquioxane Nanomaterial Applied to the Determination of 4-Nitrophenol as a Biomarker. Electroanalysis 2019, 31, 2319–2329. [Google Scholar] [CrossRef]
- de Barros, M.R.; Bittencourt, O.R.; Crocomo, P.Z.; Mafra, G.; Carasek, E.; Magosso, H.A.; Jost, C.L.; Winiarski, J.P. Adsorption of Hazardous and Noxious 4-Nitrophenol by a Silsesquioxane Organic-Inorganic Hybrid Material. J. Sol-Gel Sci. Technol. 2021, 99, 402–412. [Google Scholar] [CrossRef]
- Ribeiro, I.A.L.; Yotsumoto-Neto, S.; Dos Santos, W.T.P.; Fernandes, R.N.; Goulart, M.O.F.; Damos, F.S.; Luz, R.D.C.S. Improved NADH Electroanalysis on Nickel(II) Phthalocyanine Tetrasulfonic Acid/Calf Thymus Deoxyribonucleic Acid/Reduced Graphene Oxide Composite. J. Braz. Chem. Soc. 2017, 28, 1768–1778. [Google Scholar] [CrossRef]
- Ribicki, A.C.; Chemin, B.G.; Van Haandel, V.J.; Winiarski, J.P.; de Castro Rozada, T.; Pessoa, C.A.; Estrada, R.A.; Fiorin, B.C.; Fujiwara, S.T. Sol Gel Synthesis of 3-n-Propyl(4-Aminomethyl)Pyridinium Silsesquioxane Chloride and the Enhanced Electrocatalytic Activity of LbL Films. J. Sol-Gel Sci. Technol. 2018, 87, 216–229. [Google Scholar] [CrossRef]
- Ghosh, T.; Sarkar, P.; Turner, A.P.F. A Novel Third Generation Uric Acid Biosensor Using Uricase Electro-Activated with Ferrocene on a Nafion Coated Glassy Carbon Electrode. Bioelectrochemistry 2015, 102, 1–9. [Google Scholar] [CrossRef] [PubMed]
- De Jesus, C.G.; Lima, D.; Dos Santos, V.; Wohnrath, K.; Pessôa, C.A. Glucose Biosensor Based on the Highly Efficient Immobilization of Glucose Oxidase on Layer-by-Layer Films of Silsesquioxane Polyelectrolyte. Sens. Actuators B Chem. 2013, 186, 44–51. [Google Scholar] [CrossRef]
- Goularte, R.B.; Winiarski, J.P.; Latocheski, E.; Jost, C.L. Novel Analytical Sensing Strategy Using a Palladium Nanomaterial-Based Electrode for Nimesulide Electrochemical Reduction. J. Electroanal. Chem. 2022, 920, 116622. [Google Scholar] [CrossRef]
- Bankar, S.B.; Bule, M.V.; Singhal, R.S.; Ananthanarayan, L. Glucose Oxidase—An Overview. Biotechnol. Adv. 2009, 27, 489–501. [Google Scholar] [CrossRef]
- de Campos Intema, R.; Wrobel, E.C.; Fujiwara, S.T.; Garcia, J.R.; Pessôa, C.A.; Wohnrath, K. The Effect of Surfactants in the Silsesquioxane Solution for LbL Films Assembly. J. Mater. Sci. 2017, 52, 7647–7663. [Google Scholar] [CrossRef]
- Palanisamy, S.; Ezhil Vilian, A.T.; Chen, S.M. Direct Electrochemistry of Glucose Oxidase at Reduced Graphene Oxide/Zinc Oxide Composite Modified Electrode for Glucose Sensor. Int. J. Electrochem. Sci. 2012, 7, 2153–2163. [Google Scholar]
- Wang, H.; Ohnuki, H.; Endo, H.; Izumi, M. Impedimetric and Amperometric Bifunctional Glucose Biosensor Based on Hybrid Organic-Inorganic Thin Films. Bioelectrochemistry 2015, 101, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, S.; Flamini, A.; Fares, V.; Adachi, M. On the Extraordinary Spectral Similarity of Nickel(II) Phthalocyanine and Bis(.Beta.-Diiminotetracyanopyrrolizinato)Nickel(II). J. Phys. Chem. 1992, 96, 8351–8356. [Google Scholar] [CrossRef]
- Grobosch, M.; Schmidt, C.; Kraus, R.; Knupfer, M. Electronic Properties of Transition Metal Phthalocyanines: The Impact of the Central Metal Atom (D5-D10). Org. Electron. 2010, 11, 1483–1488. [Google Scholar] [CrossRef]
- Zhou, K.; Zhu, Y.; Yang, X.; Li, C. Electrocatalytic Oxidation of Glucose by the Glucose Oxidase Immobilized in Graphene-Au-Nafion Biocomposite. Electroanalysis 2010, 22, 259–264. [Google Scholar] [CrossRef]
- Galhardo, K.S.; Torresi, R.M.; De Torresi, S.I.C. Improving the Performance of a Glucose Biosensor Using an Ionic Liquid for Enzyme Immobilization. on the Chemical Interaction between the Biomolecule, the Ionic Liquid and the Cross-Linking Agent. Electrochim. Acta 2012, 73, 123–128. [Google Scholar] [CrossRef]
- Siqueira, J.R.; Caseli, L.; Crespilho, F.N.; Zucolotto, V.; Oliveira, O.N. Immobilization of Biomolecules on Nanostructured Films for Biosensing. Biosens. Bioelectron. 2010, 25, 1254–1263. [Google Scholar] [CrossRef] [PubMed]
- Villalba, P.; Ram, M.K.; Gomez, H.; Kumar, A.; Bhethanabotla, V.; Kumar, A. GOX-Functionalized Nanodiamond Films for Electrochemical Biosensor. Mater. Sci. Eng. C 2011, 31, 1115–1120. [Google Scholar] [CrossRef]
- Portaccio, M.; Della Ventura, B.; Mita, D.G.; Manolova, N.; Stoilova, O.; Rashkov, I.; Lepore, M. FT-IR Microscopy Characterization of Sol-Gel Layers Prior and after Glucose Oxidase Immobilization for Biosensing Applications. J. Sol-Gel Sci. Technol. 2011, 57, 204–211. [Google Scholar] [CrossRef]
- Liu, H.; Hu, N. Study on Direct Electrochemistry of Glucose Oxidase Stabilized by Cross-Linking and Immobilized in Silica Nanoparticle Films. Electroanalysis 2007, 19, 884–892. [Google Scholar] [CrossRef]
- Liang, Z.; Chen, W.; Liu, J.; Wang, S.; Zhou, Z.; Li, W.; Sun, G.; Xin, Q. FT-IR Study of the Microstructure of Nafion® Membrane. J. Memb. Sci. 2004, 233, 39–44. [Google Scholar] [CrossRef]
- Gupta, U.; Gupta, V.; Arun, R.K.; Chanda, N. Recent Advances in Enzymatic Biosensors for Point-of-Care Detection of Biomolecules. Biotechnol. Bioeng. 2022, 119, 3393–3407. [Google Scholar] [CrossRef]
- Shen, F.; Arshi, S.; Magner, E.; Ulstrup, J.; Xiao, X. One-Step Electrochemical Approach of Enzyme Immobilization for Bioelectrochemical Applications. Synth. Met. 2022, 291, 117205. [Google Scholar] [CrossRef]
- Kadam, A.A.; Saratale, G.D.; Ghodake, G.S.; Saratale, R.G.; Shahzad, A.; Magotra, V.K.; Kumar, M.; Palem, R.R.; Sung, J.S. Recent Advances in the Development of Laccase-Based Biosensors via Nano-Immobilization Techniques. Chemosensors 2022, 10, 58. [Google Scholar] [CrossRef]
- Maghraby, Y.R.; El-Shabasy, R.M.; Ibrahim, A.H.; Azzazy, H.M.E.S. Enzyme Immobilization Technologies and Industrial Applications. ACS Omega 2023, 8, 5184–5196. [Google Scholar] [CrossRef] [PubMed]
- Caseli, L.; dos Santos, D.S.; Foschini, M.; Gonçalves, D.; Oliveira, O.N. Control of Catalytic Activity of Glucose Oxidase in Layer-by-Layer Films of Chitosan and Glucose Oxidase. Mater. Sci. Eng. C 2007, 27, 1108–1110. [Google Scholar] [CrossRef]
- Caseli, L.; dos Santos, D.S.; Foschini, M.; Gonçalves, D.; Oliveira, O.N. The Effect of the Layer Structure on the Activity of Immobilized Enzymes in Ultrathin Films. J. Colloid Interface Sci. 2006, 303, 326–331. [Google Scholar] [CrossRef] [PubMed]
- López-Gallego, F.; Betancor, L.; Mateo, C.; Hidalgo, A.; Alonso-Morales, N.; Dellamora-Ortiz, G.; Guisán, J.M.; Fernández-Lafuente, R. Enzyme Stabilization by Glutaraldehyde Crosslinking of Adsorbed Proteins on Aminated Supports. J. Biotechnol. 2005, 119, 70–75. [Google Scholar] [CrossRef]
- Komathi, S.; Gopalan, A.I.; Lee, K.P. Fabrication of a Novel Layer-by-Layer Film Based Glucose Biosensor with Compact Arrangement of Multi-Components and Glucose Oxidase. Biosens. Bioelectron. 2009, 24, 3131–3134. [Google Scholar] [CrossRef] [PubMed]
- Chinnadayyala, S.R.; Santhosh, M.; Singh, N.K.; Goswami, P. Alcohol Oxidase Protein Mediated In-Situ Synthesized and Stabilized Gold Nanoparticles for Developing Amperometric Alcohol Biosensor. Biosens. Bioelectron. 2015, 69, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.; Zhang, S.; Lang, Q.; Song, J.; Han, L.; Liu, A. Amperometric L-Glutamate Biosensor Based on Bacterial Cell-Surface Displayed Glutamate Dehydrogenase. Anal. Chim. Acta 2015, 884, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Miao, Z.; Wang, P.; Zhong, A.M.; Yang, M.; Xu, Q.; Hao, S.; Hu, X. Development of a Glucose Biosensor Based on Electrodeposited Gold Nanoparticles-Polyvinylpyrrolidone-Polyaniline Nanocomposites. J. Electroanal. Chem. 2015, 756, 153–160. [Google Scholar] [CrossRef]
- García-González, R.; Fernández-Abedul, M.T.; Costa-García, A. Nafion® Modified-Screen Printed Gold Electrodes and Their Carbon Nanostructuration for Electrochemical Sensors Applications. Talanta 2013, 107, 376–381. [Google Scholar] [CrossRef]
- Eastman, S.A.; Kim, S.; Page, K.A.; Rowe, B.W.; Kang, S.; Soles, C.L.; Yager, K.G. Effect of Confinement on Structure, Water Solubility, and Water Transport in Nafion Thin Films. Macromolecules 2012, 45, 7920–7930. [Google Scholar] [CrossRef]
- Thomson, M. Recommendations for the Definition, Estimation and Use of the Detection Limit. Analyst 1987, 112, 199–204. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Fan, Y.J.; Cheng, L.; Fan, L.L.; Wang, Z.Y.; Zhong, J.P.; Wu, L.N.; Shen, X.C.; Shi, Z.J. A Novel Glucose Biosensor Based on the Immobilization of Glucose Oxidase on Layer-by-Layer Assembly Film of Copper Phthalocyanine Functionalized Graphene. Electrochim. Acta 2013, 104, 178–184. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, W.; Liu, X.; Zeng, X. Carbon Nanotube/Chitosan/Gold Nanoparticles-Based Glucose Biosensor Prepared by a Layer-by-Layer Technique. Mater. Sci. Eng. C 2009, 29, 50–54. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, H.; Sun, C. Amperometric Glucose Biosensor Based on Layer-by-Layer Covalent Attachment of AMWNTs and IO4--Oxidized GOx. Biosens. Bioelectron. 2008, 24, 22–28. [Google Scholar] [CrossRef]
- Mascagni, D.B.T.; Miyazaki, C.M.; da Cruz, N.C.; de Moraes, M.L.; Riul, A.; Ferreira, M. Layer-by-Layer Assembly of Functionalized Reduced Graphene Oxide for Direct Electrochemistry and Glucose Detection. Mater. Sci. Eng. C 2016, 68, 739–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barsan, M.M.; David, M.; Florescu, M.; Ţugulea, L.; Brett, C.M.A. A New Self-Assembled Layer-by-Layer Glucose Biosensor Based on Chitosan Biopolymer Entrapped Enzyme with Nitrogen Doped Graphene. Bioelectrochemistry 2014, 99, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Kallel, L.; Desseaux, V.; Hamdi, M.; Stocker, P.; Ajandouz, E.H. Insights into the Fermentation Biochemistry of Kombucha Teas and Potential Impacts of Kombucha Drinking on Starch Digestion. Food Res. Int. 2012, 49, 226–232. [Google Scholar] [CrossRef]
LbL Modified Electrode | Electrochemical Technique | Applied Potential | Linear Range mmol L−1 | LOD mmol L−1 | Ref. |
---|---|---|---|---|---|
Nafion/GOx/(SiPy+Cl−/CuTsPc)2.5/FTO | AMP | −0.1 V vs. Ag/AgCl | 1.0–10.0 | 0.16 | [29] |
GOx/Nafion/(LbL)3.5/ABS/GCE | CV | - | 0.1–8.0 | 0.05 | [58] |
GOx/(CNT/CS/GNp)8/GCE | AMP | +0.6 V vs. SCE | 0.006–5.0 | 0.003 | [59] |
(GOx/AMWNTs)4/CA/Au | AMP | −0.3 vs. SCE | 0.1–7.0 | 0.008 | [60] |
(GPDDA-GOx)2/(GPDDA/GPSS)1//ITO | AMP | −0.3 vs. SCE | 0.14–0.95 | 0.134 | [61] |
(CS/GLM)7/GCE | CV | -- | 0.01–10.0 | 0.00132 | [21] |
CS+(NG+GOx)/PSS−/CS+(NG+GOx)/AuQC | AMP | −0.2 vs. Ag/AgCl | 0.2–1.8 | 0.064 | [62] |
Nafion/GOx/(SiPy+Cl−/NiTsPc)5.5/FTO | AMP | −0.1 vs. Ag/AgCl | 0.2–1.6 | 0.022 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winiarski, J.P.; de Melo, D.J.; Santana, E.R.; Santos, C.S.; de Jesus, C.G.; Fujiwara, S.T.; Wohnrath, K.; Pessôa, C.A. Layer-by-Layer Films of Silsesquioxane and Nickel(II) Tetrasulphophthalocyanine as Glucose Oxidase Platform Immobilization: Amperometric Determination of Glucose in Kombucha Beverages. Chemosensors 2023, 11, 346. https://doi.org/10.3390/chemosensors11060346
Winiarski JP, de Melo DJ, Santana ER, Santos CS, de Jesus CG, Fujiwara ST, Wohnrath K, Pessôa CA. Layer-by-Layer Films of Silsesquioxane and Nickel(II) Tetrasulphophthalocyanine as Glucose Oxidase Platform Immobilization: Amperometric Determination of Glucose in Kombucha Beverages. Chemosensors. 2023; 11(6):346. https://doi.org/10.3390/chemosensors11060346
Chicago/Turabian StyleWiniarski, João Paulo, Douglas José de Melo, Edson Roberto Santana, Cleverson Siqueira Santos, Cliciane Guadalupe de Jesus, Sérgio Toshio Fujiwara, Karen Wohnrath, and Christiana Andrade Pessôa. 2023. "Layer-by-Layer Films of Silsesquioxane and Nickel(II) Tetrasulphophthalocyanine as Glucose Oxidase Platform Immobilization: Amperometric Determination of Glucose in Kombucha Beverages" Chemosensors 11, no. 6: 346. https://doi.org/10.3390/chemosensors11060346
APA StyleWiniarski, J. P., de Melo, D. J., Santana, E. R., Santos, C. S., de Jesus, C. G., Fujiwara, S. T., Wohnrath, K., & Pessôa, C. A. (2023). Layer-by-Layer Films of Silsesquioxane and Nickel(II) Tetrasulphophthalocyanine as Glucose Oxidase Platform Immobilization: Amperometric Determination of Glucose in Kombucha Beverages. Chemosensors, 11(6), 346. https://doi.org/10.3390/chemosensors11060346