Rhodamine Derivative-Linked Silica-Coated Upconverting Nanophosphor (NaYF4: Yb3+/Er3+@SiO2-RBDA) for Ratiometric, Ultrasensitive Chemosensing of Pb2+ Ions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Equipment and Characterizations
2.3. Synthesis of Rhodamine-B Derivative (RBDA)
2.4. Synthesis of Upconverting Nanophosphors (NaYF4: Yb3+/Er3+)
2.5. Synthesis of Silica Coated UCNP (NaYF4: Yb3+/Er3+@SiO2)
2.6. Synthesis of UCNP@SiO2-RBDA
2.7. Detection of Lead Ions
2.8. Real-Samples Analysis
3. Results and Discussions
3.1. Synthesis and ET-Based Sensing Mechanism
3.2. Structural and Morphological Characterization
3.3. Luminescence Studies of UCNP and RBDA
3.4. Selectivity of RBDA Chemosensor towards Pb2+ Ions
3.5. Sensitivity and Response Time of RBDA Chemosensor
3.6. ET-Based Sensing of Pb2+ by NIR Excited Chemosensor (UCNP@SiO2-RBDA)
3.7. pH-Dependent Sensitivity
3.8. Selectivity and Interference Test of NIR-Excited Chemosensor
3.9. Real Sample Analysis of NIR-Excited Chemosensor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef]
- Pratush, A.; Kumar, A.; Hu, Z. Adverse Effect of Heavy Metals (As, Pb, Hg, and Cr) on Health and Their Bioremediation Strategies: A Review. Int. Microbiol. 2018, 21, 97–106. [Google Scholar] [CrossRef]
- Vardhan, K.H.; Kumar, P.S.; Panda, R.C. A Review on Heavy Metal Pollution, Toxicity and Remedial Measures: Current Trends and Future Perspectives. J. Mol. Liq. 2019, 290, 111197. [Google Scholar] [CrossRef]
- Mondal, B.; Bairagi, D.; Nandi, N.; Hansda, B.; Das, K.S.; Edwards-Gayle, C.J.C.; Castelletto, V.; Hamley, I.W.; Banerjee, A. Peptide-Based Gel in Environmental Remediation: Removal of Toxic Organic Dyes and Hazardous Pb2+ and Cd2+ ions from Wastewater and Oil Spill Recovery. Langmuir 2020, 36, 12942–12953. [Google Scholar] [CrossRef]
- Wani, A.L.; Ara, A.; Usmani, J.A. Lead Toxicity: A Review. Interdiscip. Toxicol. 2015, 8, 55. [Google Scholar] [CrossRef]
- Schileo, G.; Grancini, G. Lead or No Lead? Availability, Toxicity, Sustainability and Environmental Impact of Lead-Free Perovskite Solar Cells. J. Mater. Chem. C 2021, 9, 67–76. [Google Scholar] [CrossRef]
- Niu, X.; Zhong, Y.; Chen, R.; Wang, F.; Liu, Y.; Luo, D. A “Turn-on” Fluorescence Sensor for Pb2+ Detection Based on Graphene Quantum Dots and Gold Nanoparticles. Sens. Actuators B Chem. 2018, 255, 1577–1581. [Google Scholar] [CrossRef]
- Ochsenkühn-Petropoulou, M.; Ochsenkühn, K.M. Comparison of Inductively Coupled Plasma–Atomic Emission Spectrometry, Anodic Stripping Voltammetry and Instrumental Neutron-Activation Analysis for the Determination of Heavy Metals in Airborne Particulate Matter. Fresenius’ J. Anal. Chem. 2001, 369, 629–632. [Google Scholar] [CrossRef]
- Tarley, C.R.T.; Andrade, F.N.; de Oliveira, F.M.; Corazza, M.Z.; de Azevedo, L.F.M.; Segatelli, M.G. Synthesis and Application of Imprinted Polyvinylimidazole-Silica Hybrid Copolymer for Pb2+ Determination by Flow-Injection Thermospray Flame Furnace Atomic Absorption Spectrometry. Anal. Chim. Acta 2011, 703, 145–151. [Google Scholar] [CrossRef]
- Rosolina, S.M.; Chambers, J.Q.; Lee, C.W.; Xue, Z.L. Direct Determination of Cadmium and Lead in Pharmaceutical Ingredients Using Anodic Stripping Voltammetry in Aqueous and DMSO/Water Solutions. Anal. Chim. Acta 2015, 893, 25–33. [Google Scholar] [CrossRef]
- Li, J.; Lu, Y. A Highly Sensitive and Selective Catalytic DNA Biosensor for Lead Ions. J. Am. Chem. Soc. 2000, 122, 10466–10467. [Google Scholar] [CrossRef]
- Shi, X.; Gu, W.; Zhang, C.; Zhao, L.; Li, L.; Peng, W.; Xian, Y. Construction of a Graphene/Au-Nanoparticles/Cucurbit[7]Uril-Based Sensor for Pb2+ Sensing. Chem A Eur. J. 2016, 22, 5643–5648. [Google Scholar] [CrossRef]
- Yang, X.; Xu, J.; Tang, X.; Liu, H.; Tian, D. A Novel Electrochemical DNAzyme Sensor for the Amplified Detection of Pb2+ Ions. Chem. Commun. 2010, 46, 3107–3109. [Google Scholar] [CrossRef]
- Zhan, S.; Wu, Y.; Luo, Y.; Liu, L.; He, L.; Xing, H.; Zhou, P. Label-Free Fluorescent Sensor for Lead Ion Detection Based on Lead(II)-Stabilized G-Quadruplex Formation. Anal. Biochem. 2014, 462, 19–25. [Google Scholar] [CrossRef]
- Beqa, L.; Singh, A.K.; Khan, S.A.; Senapati, D.; Arumugam, S.R.; Ray, P.C. Gold Nanoparticle-Based Simple Colorimetric and Ultrasensitive Dynamic Light Scattering Assay for the Selective Detection of Pb(II) from Paints, Plastics, and Water Samples. ACS Appl. Mater. Interfaces 2011, 3, 668–673. [Google Scholar] [CrossRef]
- Yang, D.; Liu, X.; Zhou, Y.; Luo, L.; Zhang, J.; Huang, A.; Mao, Q.; Chen, X.; Tang, L. Aptamer-Based Biosensors for Detection of Lead(Ii) Ion: A Review. Anal. Methods 2017, 9, 1976–1990. [Google Scholar] [CrossRef]
- Na Kim, H.; Xiu Ren, W.; Seung Kim, J.; Yoon, J. Fluorescent and Colorimetric Sensors for Detection of Lead, Cadmium, and Mercury Ions. Chem. Soc. Rev. 2012, 41, 3210–3244. [Google Scholar] [CrossRef]
- Singh, H.; Bamrah, A.; Bhardwaj, S.K.; Deep, A.; Khatri, M.; Brown, R.J.C.; Bhardwaj, N.; Kim, K.H. Recent Advances in the Application of Noble Metal Nanoparticles in Colorimetric Sensors for Lead Ions. Environ. Sci. Nano 2021, 8, 863–889. [Google Scholar] [CrossRef]
- Aksuner, N. Development of a New Fluorescent Sensor Based on a Triazolo-Thiadiazin Derivative Immobilized in Polyvinyl Chloride Membrane for Sensitive Detection of Lead(II) Ions. Sens. Actuators B Chem. 2011, 157, 162–168. [Google Scholar] [CrossRef]
- Wee, S.S.; Ng, Y.H.; Ng, S.M. Synthesis of Fluorescent Carbon Dots via Simple Acid Hydrolysis of Bovine Serum Albumin and Its Potential as Sensitive Sensing Probe for Lead (II) Ions. Talanta 2013, 116, 71–76. [Google Scholar] [CrossRef]
- Liu, J.; Lv, G.; Gu, W.; Li, Z.; Tang, A.; Mei, L. A Novel Luminescence Probe Based on Layered Double Hydroxides Loaded with Quantum Dots for Simultaneous Detection of Heavy Metal Ions in Water. J. Mater. Chem. C 2017, 5, 5024–5030. [Google Scholar] [CrossRef]
- Lo, M.; Diaw, A.K.D.; Gningue-Sall, D.; Oturan, M.A.; Chehimi, M.M.; Aaron, J.J. A Novel Fluorescent Sensor Based on Electrosynthesized Benzene Sulfonic Acid-Doped Polypyrrole for Determination of Pb(II) and Cu(II). Luminescence 2019, 34, 489–499. [Google Scholar] [CrossRef]
- Kuo, S.Y.; Li, H.H.; Wu, P.J.; Chen, C.P.; Huang, Y.C.; Chan, Y.H. Dual Colorimetric and Fluorescent Sensor Based on Semiconducting Polymer Dots for Ratiometric Detection of Lead Ions in Living Cells. Anal. Chem. 2015, 87, 4765–4771. [Google Scholar] [CrossRef]
- Anand, T.; Sivaraman, G.; Mahesh, A.; Chellappa, D. Aminoquinoline Based Highly Sensitive Fluorescent Sensor for Lead(II) and Aluminum(III) and Its Application in Live Cell Imaging. Anal. Chim. Acta 2015, 853, 596–601. [Google Scholar] [CrossRef]
- Cai, Y.; Wei, Z.; Song, C.; Tang, C.; Han, W.; Dong, X. Optical Nano-Agents in the Second near-Infrared Window for Biomedical Applications. Chem. Soc. Rev. 2019, 48, 22–37. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, Q.; Huang, S.; Ma, D. Recent Advances of near Infrared Inorganic Fluorescent Probes for Biomedical Applications. J. Mater. Chem. B 2020, 8, 7856–7879. [Google Scholar] [CrossRef]
- Lin, Q.; Li, Z.; Yuan, Q. Recent Advances in Autofluorescence-Free Biosensing and Bioimaging Based on Persistent Luminescence Nanoparticles. Chin. Chem. Lett. 2019, 30, 1547–1556. [Google Scholar] [CrossRef]
- Chen, G.; Roy, I.; Yang, C.; Prasad, P.N. Nanochemistry and Nanomedicine for Nanoparticle-Based Diagnostics and Therapy. Chem. Rev. 2016, 116, 2826–2885. [Google Scholar] [CrossRef]
- Wen, S.; Zhou, J.; Zheng, K.; Bednarkiewicz, A.; Liu, X.; Jin, D. Advances in Highly Doped Upconversion Nanoparticles. Nat. Commun. 2018, 9, 2415. [Google Scholar] [CrossRef]
- Chen, G.; Ågren, H.; Ohulchanskyy, T.Y.; Prasad, P.N. Light Upconverting Core–Shell Nanostructures: Nanophotonic Control for Emerging Applications. Chem. Soc. Rev. 2015, 44, 1680–1713. [Google Scholar] [CrossRef]
- Wang, J.; Sheng, T.; Zhu, X.; Li, Q.; Wu, Y.; Zhang, J.; Liu, J.; Zhang, Y. Spectral Engineering of Lanthanide-Doped Upconversion Nanoparticles and Their Biosensing Applications. Mater. Chem. Front. 2021, 5, 1743–1770. [Google Scholar] [CrossRef]
- Zhang, Z.; Shikha, S.; Liu, J.; Zhang, J.; Mei, Q.; Zhang, Y. Upconversion Nanoprobes: Recent Advances in Sensing Applications. Anal. Chem. 2019, 91, 548–568. [Google Scholar] [CrossRef]
- Idris, N.M.; Jayakumar, M.K.G.; Bansal, A.; Zhang, Y. Upconversion Nanoparticles as Versatile Light Nanotransducers for Photoactivation Applications. Chem. Soc. Rev. 2015, 44, 1449–1478. [Google Scholar] [CrossRef]
- Ansari, A.A.; Thakur, V.K.; Chen, G. Functionalized Upconversion Nanoparticles: New Strategy towards FRET-Based Luminescence Bio-Sensing. Coord. Chem. Rev. 2021, 436, 213821. [Google Scholar] [CrossRef]
- Chen, G.; Qiu, H.; Prasad, P.N.; Chen, X. Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics. Chem. Rev. 2014, 114, 5161–5214. [Google Scholar] [CrossRef]
- Kumar, J.; Roy, I. Highly Selective and Sensitive Ratiometric Detection of Sn2+Ions Using NIR-Excited Rhodamine-B-Linked Upconversion Nanophosphors. ACS Omega 2022, 7, 29840–29849. [Google Scholar] [CrossRef]
- Liu, Q.; Peng, J.; Sun, L.; Li, F. High-Efficiency Upconversion Luminescent Sensing and Bioimaging of Hg(II) by Chromophoric Ruthenium Complex-Assembled Nanophosphors. ACS Nano 2011, 5, 8040–8048. [Google Scholar] [CrossRef]
- Han, Q.; Dong, Z.; Tang, X.; Wang, L.; Ju, Z.; Liu, W. A Ratiometric Nanoprobe Consisting of Up-Conversion Nanoparticles Functionalized with Cobalt Oxyhydroxide for Detecting and Imaging Ascorbic Acid. J. Mater. Chem. B 2016, 5, 167–172. [Google Scholar] [CrossRef]
- Han, J.; Zhang, C.; Liu, F.; Liu, B.; Han, M.; Zou, W.; Yang, L.; Zhang, Z. Upconversion Nanoparticles for Ratiometric Fluorescence Detection of Nitrite. Analyst 2014, 139, 3032–3038. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, H.; Song, D.; Wang, Z. An Upconversion Nanoparticle-Based Fluorescence Resonance Energy Transfer System for Effectively Sensing Caspase-3 Activity. Analyst 2018, 143, 761–767. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, S.; Li, X.; Zhang, J.; Sun, J.; Tong, L.; Zhong, H.; Xia, H.; Hua, R.; Chen, B. Improved LRET-Based Detection Characters of Cu2+ Using Sandwich Structured NaYF4@NaYF4:Er3+/Yb3+@NaYF4 Nanoparticles as Energy Donor. Sens. Actuators B Chem. 2018, 257, 829–838. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, L.; Guo, R.; Xiang, T.; Wu, C.; Zheng, Z.; Yang, F. A Highly Sensitive and Selective Colorimetric and off–on Fluorescent Chemosensor for Cu2+ Based on Rhodamine B Derivative. Sens. Actuators B Chem. 2011, 156, 546–552. [Google Scholar] [CrossRef]
- Cui, S.; Chen, H.; Gu, Y. Comparison of Two Strategies for the Synthesis of Upconverting Nanoparticles as Biological Labels. J. Phys. Conf. Ser. 2011, 277, 012006. [Google Scholar] [CrossRef]
- Han, R.; Shi, J.; Liu, Z.; Wang, H.; Wang, Y. Fabrication of Mesoporous-Silica-Coated Upconverting Nanoparticles with Ultrafast Photosensitizer Loading and 808 Nm NIR-Light-Triggering Capability for Photodynamic Therapy. Chem. Asian J. 2017, 12, 2197–2201. [Google Scholar] [CrossRef]
- Park, Y.I.; Nam, S.H.; Kim, J.H.; Bae, Y.M.; Yoo, B.; Kim, H.M.; Jeon, K.S.; Park, H.S.; Choi, J.S.; Lee, K.T.; et al. Comparative Study of Upconverting Nanoparticles with Various Crystal Structures, Core/Shell Structures, and Surface Characteristics. J. Phys. Chem. C 2013, 117, 2239–2244. [Google Scholar] [CrossRef]
- Radunz, S.; Schavkan, A.; Wahl, S.; Würth, C.; Tschiche, H.R.; Krumrey, M.; Resch-Genger, U. Evolution of Size and Optical Properties of Upconverting Nanoparticles during High-Temperature Synthesis. J. Phys. Chem. C 2018, 122, 28958–28967. [Google Scholar] [CrossRef]
- Lu, D.; Mao, C.; Cho, S.K.; Ahn, S.; Park, W. Experimental Demonstration of Plasmon Enhanced Energy Transfer Rate in NaYF4:Yb3+,Er3+ Upconversion Nanoparticles. Sci. Rep. 2016, 6, 18894. [Google Scholar] [CrossRef]
- Tian, L.; Xu, Z.; Zhao, S.; Cui, Y.; Liang, Z.; Zhang, J.; Xu, X. The Upconversion Luminescence of Er3+/Yb3+/Nd3+ Triply-Doped β-NaYF4 Nanocrystals under 808-Nm Excitation. Materials 2014, 7, 7289–7303. [Google Scholar] [CrossRef]
- Guidelines for Drinking-Water Quality. Vol. 2, Health Criteria and Other Supporting Information. Available online: https://apps.who.int/iris/handle/10665/38551 (accessed on 14 October 2022).
- Li, L.; Chen, Q.; Niu, Z.; Zhou, X.; Yang, T.; Huang, W. Lanthanide Metal–Organic Frameworks Assembled from a Fluorene-Based Ligand: Selective Sensing of Pb2+ and Fe3+ Ions. J. Mater. Chem. C 2016, 4, 1900–1905. [Google Scholar] [CrossRef]
- Tian, Y.; Kelarakis, A.; Li, L.; Zhao, F.; Wang, Y.; Wang, W.; Yang, Q.; Ye, Z.; Guo, X. Facile Fluorescence “Turn on” Sensing of Lead Ions in Water via Carbon Nanodots Immobilized in Spherical Polyelectrolyte Brushes. Front. Chem. 2018, 6, 470. [Google Scholar] [CrossRef]
- Ji, G.; Liu, J.; Gao, X.; Sun, W.; Wang, J.; Zhao, S.; Liu, Z. A Luminescent Lanthanide MOF for Selectively and Ultra-High Sensitively Detecting Pb2+ Ions in Aqueous Solution. J. Mater. Chem. A 2017, 5, 10200–10205. [Google Scholar] [CrossRef]
- Algarra, M.; Campos, B.B.; Alonso, B.; Miranda, M.S.; Martínez, Á.M.; Casado, C.M.; Esteves Da Silva, J.C.G. Thiolated DAB Dendrimers and CdSe Quantum Dots Nanocomposites for Cd(II) or Pb(II) Sensing. Talanta 2012, 88, 403–407. [Google Scholar] [CrossRef]
- Yang, L.R.; Song, S.; Zhang, H.M.; Zhang, W.; Bu, Z.W.; Ren, T.G. Synthesis, Structure of 3D Lanthanide (La(III), Pr(III)) Nanoporous Coordination Polymers Containing 1D Channels as Selective Luminescent Probes of Pb2+, Ca2+ and Cd2+ Ions. Synth. Met. 2011, 161, 2230–2240. [Google Scholar] [CrossRef]
- Shamsipur, M.; Sadeghi, M.; Alizadeh, K.; Bencini, A.; Valtancoli, B.; Garau, A.; Lippolis, V. Novel Fluorimetric Bulk Optode Membrane Based on 5,8-Bis((5′-Chloro-8′-Hydroxy-7′-Quinolinyl)Methyl)-2,11-Dithia-5,8-Diaza-2,6-Pyridinophane for Selective Detection of Lead(II) Ions. Talanta 2010, 80, 2023–2033. [Google Scholar] [CrossRef]
- Ranyuk, E.; Douaihy, C.M.; Bessmertnykh, A.; Denat, F.; Averin, A.; Beletskaya, I.; Guilard, R. Diaminoanthraquinone-Linked Polyazamacrocycles: Efficient and Simple Colorimetric Sensor for Lead Ion in Aqueous Solution. Org. Lett. 2009, 11, 987–990. [Google Scholar] [CrossRef]
- Wei, H.; Li, B.; Li, J.; Dong, S.; Wang, E. DNAzyme-Based Colorimetric Sensing of Lead(Pb2+) Using Unmodified Gold Nanoparticle Probes. Nanotechnology 2008, 19, 095501. [Google Scholar] [CrossRef]
- Ma, L.; Li, H.; Wu, Y. A Pyrene-Containing Fluorescent Sensor with High Selectivity for Lead(II) Ion in Water with Dual Illustration of Ground-State Dimer. Sens. Actuators B Chem. 2009, 143, 25–29. [Google Scholar] [CrossRef]
S.No. | Probes | Media | Sensing Method | Sensitivity | LOD | References |
---|---|---|---|---|---|---|
1. | [Ln2(FDC)3DMA(H2O)3]DMA 4.5H2O MOFs | Tris-HCl solution | Fluorescence | 0.02–0.1 mM | 8.2 µM | [50] |
2. | N-CQDs | PBS Buffer | SAXS | 0–1.67 mM | 22.8 µM | [51] |
3. | [Tb(L)(H2O)5]n MOFs | water | Fluorescence | 35 µM–0.8 mM | 0.29 µM | [52] |
4. | CQDs | Water | Fluorescence | 0–6 mM | 5.05 µM | [20] |
5. | ZnS QDs | Buffer | Fluorescence | 1 µM–1 mM | 0.9 µM | [21] |
6. | CdSe QDs | Water | Fluorescence | 0.01–0.15 mM | 0.06 mM | [53] |
7. | [La2(PDA)3 (H2O)4] H2O and [Pr2(PDA)3 (H2O)3]⋅H2O | DMF | Emission | 0.02–0.1 mM | 8.2 µM | [54] |
8. | L2 immobilized on PVC | Acetate Buffer | Fluorescence | 0.3 µM–25 mM | 0.2 µM | [55] |
9. | Diaminoanthraquinone-Linked Polyazamacrocycles | Methanol/Water | Colorimetry | 10 µM | [56] | |
10. | DNAzymes | Tris-HCl solution | colorimetric | 0.5–1000 µM | 0.5 µM | [57] |
11. | PLE N-[4(1-pyrene)-butyroyl]-L-glutamic acid | Water/DMSO | Fluorescence | 0–106.7 µM | 1.5 µM | [58] |
12. | UCNP@SiO2-RBDA | Water | ET | 0–72 µM | 0.02 µM | This work |
Sample | Added Concentration of Pb2+ (µM) | Pb2+ Ions Found Concentration (µM) | Average Recovery (%) | RSD (n = 3) % |
---|---|---|---|---|
Tap water | 10 | 9.53 | 95.3 | 1.30 |
20 | 19.32 | 96.6 | 0.91 | |
30 | 29.04 | 96.8 | 1.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, J.; Roy, I. Rhodamine Derivative-Linked Silica-Coated Upconverting Nanophosphor (NaYF4: Yb3+/Er3+@SiO2-RBDA) for Ratiometric, Ultrasensitive Chemosensing of Pb2+ Ions. Chemosensors 2023, 11, 305. https://doi.org/10.3390/chemosensors11050305
Kumar J, Roy I. Rhodamine Derivative-Linked Silica-Coated Upconverting Nanophosphor (NaYF4: Yb3+/Er3+@SiO2-RBDA) for Ratiometric, Ultrasensitive Chemosensing of Pb2+ Ions. Chemosensors. 2023; 11(5):305. https://doi.org/10.3390/chemosensors11050305
Chicago/Turabian StyleKumar, Jitender, and Indrajit Roy. 2023. "Rhodamine Derivative-Linked Silica-Coated Upconverting Nanophosphor (NaYF4: Yb3+/Er3+@SiO2-RBDA) for Ratiometric, Ultrasensitive Chemosensing of Pb2+ Ions" Chemosensors 11, no. 5: 305. https://doi.org/10.3390/chemosensors11050305
APA StyleKumar, J., & Roy, I. (2023). Rhodamine Derivative-Linked Silica-Coated Upconverting Nanophosphor (NaYF4: Yb3+/Er3+@SiO2-RBDA) for Ratiometric, Ultrasensitive Chemosensing of Pb2+ Ions. Chemosensors, 11(5), 305. https://doi.org/10.3390/chemosensors11050305