Engineering Band Structure of SnO2 Nanoparticles via Coupling with g-C3N4 Nanosheet for the Detection of Ethanolamine
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals and Reagents
2.2. Preparation of g-C3N4
2.3. Synthesis of SnO2 and g-C3N4/SnO2 Materials
2.4. Characterization of g-C3N4/SnO2 Materials
2.5. Fabrication of Sensors and VOCs Detection
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lv, D.; Lu, S.; Tan, X.; Shao, M.; Wang, L. Source profiles, emission factors and associated contributions to secondary pollution of volatile organic compounds (VOCs) emitted from a local petroleum refinery in Shandong. Environ. Pollut. 2021, 3, 116589. [Google Scholar] [CrossRef] [PubMed]
- Hung, F.H.; Tsang, K.F.; Wu, C.K.; Liu, Y.; Wan, W.H. An Adaptive Indoor Air Quality Control Scheme for Minimizing Volatile Organic Compounds Density. IEEE Access 2020, 8, 22357–22365. [Google Scholar] [CrossRef]
- Qin, J.; Wang, X.; Yang, Y.; Qin, Y.; Shi, S.; Xu, P.; Chen, R.; Zhou, X.; Tan, J.; Wang, X. Source apportionment of VOCs in a typical medium-sized city in North China Plain and implications on control policy. J. Environ. Sci. 2021, 107, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Han, E.; Meng, F.; Zuo, K. Detection and identification of volatile organic compounds based on temperature-modulated ZnO sensors. IEEE Trans. Instrum. Meas. 2020, 69, 4533–4544. [Google Scholar] [CrossRef]
- Wang, X.; Chen, F.; Yang, M.; Guo, L.; Xie, N.; Kou, X.; Song, Y.; Wang, Q.; Sun, Y.; Lu, G. Dispersed WO3 nanoparticles with porous nanostructure for ultrafast toluene sensing. Sens. Actuators B Chem. 2019, 289, 195–206. [Google Scholar] [CrossRef]
- Meng, F.; Zheng, H.; Chang, Y.; Zhao, Y.; Li, M.; Wang, C.; Sun, Y.; Liu, J. One-stepsynthesis of Au/SnO2/RGO nanocomposites and their VOC sensing properties. IEEE Trans. Nanotechnol. 2018, 17, 212–219. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, L.; Xu, H.; Xing, Y.; Chen, J.; Bie, L. Ultrathin CeO2 nanosheets as bifunctional sensing materials for humidity and formaldehyde detection. Rare Met. 2021, 40, 1614–1621. [Google Scholar] [CrossRef]
- Bhat, P.; Kumar, S.N. Evaluation of IDE-based flexible thin film ZnO sensor for VOC sensing in a custom designed gas chamber at room temperature. J. Mater. Sci.-Mater. Electron. 2022, 33, 1529–1541. [Google Scholar] [CrossRef]
- Zhang, H.; Shi, W.; Gao, N.; Zhao, R.; Ahmed, M.; Li, J.; Du, J.; Asefa, T. Highly sensitive and selective gas-phase ethanolamine sensor by doping sulfur into nanostructured ZnO. Sens. Acutators B Chem. 2019, 296, 126633. [Google Scholar] [CrossRef]
- Zhang, K.; Xie, K.; Ahmed, M.; Chai, Z.; Zhao, R.; Li, J.; Du, J. Cr-doped SnO2 microrod adhering nanoparticles for enhanced triethylamine sensing performance. Mater. Lett. 2022, 312, 131684. [Google Scholar] [CrossRef]
- Shang, Y.; Shi, W.; Zhao, R.; Ahmed, M.; Li, J.; Du, J. Simple self-assembly of 3D laminated CuO/SnO2 hybrid for the detection of triethylamine. Chin. Chem. Lett. 2020, 31, 2055–2058. [Google Scholar] [CrossRef]
- Du, J.; Xie, Y.; Yao, H.; Zhao, R.; Li, J. Size-dependent gas sensing and selectivity of SnO2 quantum dots toward volatile compounds. Appl. Surf. Sci. 2015, 346, 256–262. [Google Scholar] [CrossRef]
- Acharyya, S.; Jana, B.; Nag, S.; Saha, G.; Guha, P.K. Single resistive sensor for selective detection of multiple VOCs employing SnO2 hollow spheres and machine learning algorithm: A proof of concept. Sens. Acutators B Chem. 2020, 321, 128484. [Google Scholar] [CrossRef]
- Meng, F.; Ji, H.; Yuan, Z.; Chen, Y.; Gao, H. Dynamic Measurement and Recognition Methods of SnO2 Sensor to VOCs under Zigzag-rectangular Wave Temperature Modulation. IEEE Sens. J. 2021, 21, 10915–10922. [Google Scholar] [CrossRef]
- Du, J.; He, S.; Zhao, R.; Chen, S.; Guo, T.; Wang, H. Facile self-assembly of SnO2 nanospheres for volatile amines gas sensing. Mater. Lett. 2017, 186, 318–321. [Google Scholar] [CrossRef]
- Zhang, R.; Xu, Z.; Zhou, T.; Fei, T.; Wang, R.; Zhang, T. Improvement of gas sensing performance for tin dioxide sensor through construction of nanostructures. J. Colloid Interface Sci. 2019, 557, 673–682. [Google Scholar] [CrossRef]
- Ma, X.; Gao, R.; Zhang, T.; Sun, X.; Li, T.; Gao, S.; Zhang, X.; Xu, Y.; Cheng, X.; Huo, L. Mesoporous SnO2 nanospheres sensor for fast detection of HCHO and its application in safety detection of aquatic products. Sens. Actuators B Chem. 2022, 374, 132844. [Google Scholar] [CrossRef]
- Din, S.U.; Ul Haq, M.; Sajid, M.; Khatoon, R.; Chen, X.; Li, L.; Zhang, M.; Zhu, L. Development of high-performance sensor based on NiO/SnO2 heterostructures to study sensing properties towards various reducing gases. Nanotechnology 2020, 31, 395502. [Google Scholar] [CrossRef]
- Dai, H.; Ding, J.; Chen, H.; Fu, H. Improvement of ethanolamine sensing performance based on Au-modified ZnO rod-like nanoflowers. Mater. Lett. 2023, 340, 134183. [Google Scholar] [CrossRef]
- Zou, Z.; Zhao, Z.; Zhang, Z.; Tian, W.; Yang, C.; Jin, X.; Zhang, K. Room-temperature optoelectronic gas sensor based on core-shellg-C33N4@WO3 heterocomposites for efficient ammonia detection. Anal. Chem. 2023, 95, 2110–2118. [Google Scholar] [CrossRef]
- Bai, K.; Cui, Z.; Li, E.; Ding, Y.; Zheng, J.; Liu, C.; Zheng, Y. Adsorption of gas molecules on group III atoms adsorbed g-C3N4: A first-principles study. Vacuum 2020, 175, 109293. [Google Scholar] [CrossRef]
- Chen, M.; Guo, C.; Hou, S.; Lv, J.; Xu, J. A novel Z-scheme AgBr/P-g-C3N4 heterojunction photocatalyst: Excellent photocatalytic performance and photocatalytic mechanism for ephedrine degradation. Appl. Catal. B-Environ. 2020, 266, 118614. [Google Scholar] [CrossRef]
- Li, L.; Huang, Z.; Li, Z.; Li, H.; Wang, A. Defect-rich porous g-C3N4 nanosheets photocatalyst with enhanced photocatalytic activity. J. Mater. Sci.-Mater. Electron. 2021, 32, 6465–6474. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, Z.; Hao, R.; Huang, Y.; Liu, K. Ultra-highly stable zinc metal anode via 3D-printed g-C3N4 modulating interface for long life energy storage systems. Chem. Eng. J. 2020, 403, 126425. [Google Scholar] [CrossRef]
- Lin, Z. Preparation of ZnO/layered g-C3N4 and their n-butanol gas sensing properties. Mater. Sci. 2020, 10, 278–286. [Google Scholar]
- Yuan, B.; Wang, Y.; Elnaggar, A.Y.; Azab, I.H.E.; Huang, M.; Mahmoud, M.H.H.; El-Bahy, S.M.; Guo, M. Physical vapor deposition of graphitic carbon nitride (g-C3N4) films on biomass substrate: Optoelectronic performance evaluation and life cycle assessment. Adv. Compos. Hybrid. Mater. 2022, 5, 813–822. [Google Scholar] [CrossRef]
- Cao, J.; Qin, C.; Wang, Y.; Zhang, B.; Gong, Y.; Zhang, H.; Sun, G.; Bala, H.; Zhang, Z. Calcination method synthesis of SnO2/g-C3N4 composites for a high-performance ethanol gas sensing application. Nanomaterials 2017, 7, 98. [Google Scholar] [CrossRef]
- Wang, H.; Bai, J.; Dai, M.; Liu, K.; Liu, Y.; Zhou, L.; Liu, F.; Li, F.; Gao, Y.; Yan, X.; et al. Visible light activated excellent NO2 sensing based on 2D/2D ZnO/g-C3N4 heterojunction composites. Sens. Actuators B Chem. 2020, 304, 127287. [Google Scholar] [CrossRef]
- Niu, J.; Wang, L.; Xu, J.; Jin, H.; Hong, B.; Jin, D.; Peng, X.; Ge, H.; Wang, X. Mesoporous Co3O4 nanowires decorated with g-C3N4 nanosheets for high performance toluene gas sensors based on p-n heterojunction. Mater. Chem. Phys. 2023, 293, 126980. [Google Scholar] [CrossRef]
- Xie, K.; Wang, Y.; Zhang, K.; Zhao, R.; Chai, Z.; Du, J.; Li, J. Controllable band structure of ZnO/g-C3N4 aggregation to enhance gas sensing for the dimethylamine detection. Sens. Actuators Rep. 2022, 4, 100084. [Google Scholar] [CrossRef]
- Ni, J.; Wang, Y.; Liang, H.; Kang, Y.; Liu, B.; Zhao, R.; Wang, Y.; Shuai, X.; Shang, Y.; Guo, T.; et al. Facile template-free preparation of hierarchically porous graphitic carbon nitrides as high-performance photocatalyst for degradation of methyl violet dye. ChemistrySelect 2021, 6, 7130–7135. [Google Scholar] [CrossRef]
- Stefan, K.; Chris, B. Atomistic Descriptions of gas–surface interactions on tin dioxide. Chemosensors 2021, 9, 270. [Google Scholar]
- Wang, V.; Xu, N.; Liu, J.C. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Computer Phys. Commun. 2021, 267, 108033. [Google Scholar] [CrossRef]
- Liangruksa, M.; Sukpoonprom, P.; Junkaew, A.; Photaram, W.; Siriwong, C. Gas sensing properties of palladium-modified zinc oxide nanofilms: A DFT study. Appl. Surf. Sci. 2021, 544, 148868. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Xie, K.; Wang, Y.; Zhao, R.; Shang, Y.; Du, J. Engineering Band Structure of SnO2 Nanoparticles via Coupling with g-C3N4 Nanosheet for the Detection of Ethanolamine. Chemosensors 2023, 11, 296. https://doi.org/10.3390/chemosensors11050296
Li J, Xie K, Wang Y, Zhao R, Shang Y, Du J. Engineering Band Structure of SnO2 Nanoparticles via Coupling with g-C3N4 Nanosheet for the Detection of Ethanolamine. Chemosensors. 2023; 11(5):296. https://doi.org/10.3390/chemosensors11050296
Chicago/Turabian StyleLi, Jiuyu, Kerui Xie, Yating Wang, Ruihua Zhao, Yangyang Shang, and Jianping Du. 2023. "Engineering Band Structure of SnO2 Nanoparticles via Coupling with g-C3N4 Nanosheet for the Detection of Ethanolamine" Chemosensors 11, no. 5: 296. https://doi.org/10.3390/chemosensors11050296
APA StyleLi, J., Xie, K., Wang, Y., Zhao, R., Shang, Y., & Du, J. (2023). Engineering Band Structure of SnO2 Nanoparticles via Coupling with g-C3N4 Nanosheet for the Detection of Ethanolamine. Chemosensors, 11(5), 296. https://doi.org/10.3390/chemosensors11050296