Perovskite-Structured NiTiO3 Modified NiO Gas Sensor for Xylene Detection
Abstract
:1. Introduction
2. Materials and Experimental Details
2.1. Materials Overview
2.2. Synthesis Methods
2.3. Summary of Characterization Methods
2.4. Gas Sensing Performance Data Test Platform
3. Characterization Results and Data Analysis
3.1. Characterizations
3.2. Gas Sensing Properties
3.3. Gas Sensing Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, M.; Varma, R.; Venables, D.S.; Zhou, W.; Chen, J. A Demonstration of Broadband Cavity-Enhanced Absorption Spectroscopy at Deep-Ultraviolet Wavelengths: Application to Sensitive Real-Time Detection of the Aromatic Pollutants Benzene, Toluene, and Xylene. Anal. Chem. 2022, 94, 4286–4293. [Google Scholar] [CrossRef]
- Yang, F.; Ma, J.Z.; Zhu, Q.; Ma, Z.L.; Wang, J. Aggregation-Induced Luminescence Based UiO-66: Highly Selective Fast-Response Styrene Detection. ACS Appl. Mater. Interfaces 2022, 14, 22510–22520. [Google Scholar] [CrossRef]
- Wang, D.; Cheng, Y.; Wan, K.C.; Yang, J.L.; Xu, J.C.; Wang, X.Y. High efficiency xylene detection based on porous MoO3 nanosheets. Vacuum 2020, 179, 109487. [Google Scholar] [CrossRef]
- Kim, B.Y.; Ahn, J.H.; Yoon, J.W.; Lee, C.S.; Kang, Y.C.; Abdel-Hady, F.; Wazzan, A.A.; Lee, J.H. Highly Selective Xylene Sensor Based on NiO/NiMoO4 Nanocomposite Hierarchical Spheres for Indoor Air Monitoring. ACS Appl. Mater. Interfaces 2016, 8, 34603–34611. [Google Scholar] [CrossRef]
- Gao, H.Y.; Guo, J.; Li, Y.W.; Xie, C.L.; Li, X.; Liu, L.; Chen, Y.; Sun, P.; Liu, F.M.; Yan, X.; et al. Highly selective and sensitive xylene gas sensor fabricated from NiO/NiCr2O4 p-p nanoparticles. Sens. Actuators B Chem. 2019, 284, 305–315. [Google Scholar] [CrossRef]
- Wang, H.; Chen, M.; Rong, Q.; Zhang, Y.; Hu, J.; Zhang, D.; Zhou, S.; Zhao, X.; Zhang, J.; Zhu, Z.; et al. Ultrasensitive xylene gas sensor based on flower-like SnO2/Co3O4 nanorods composites prepared by facile two-step synthesis method. Nanotechnology 2020, 31, 255501. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.Y.; Yu, Q.; Chen, K.; Sun, P.; Liu, F.M.; Yan, X.; Liu, F.M.; Lu, G.Y. Ultrasensitive gas sensor based on hollow tungsten trioxide-nickel oxide (WO3-NiO) nanoflowers for fast and selective xylene detection. J. Colloid Interface Sci. 2019, 535, 458–468. [Google Scholar] [CrossRef]
- Guo, M.M.; Luo, N.; Chen, Y.; Fan, Y.; Wang, X.H.; Xu, J.Q. Fast-response MEMS xylene gas sensor based on CuO/WO3 hierarchical structure. J. Hazard. Mater. 2022, 429, 127471. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Wei, D.; Lin, P.; Liu, C.; Sun, P.; Shimanoe, K.; Yamazoe, N.; Lu, G. The design of excellent xylene gas sensor using Sn-doped NiO hierarchical nanostructure. Sens. Actuators B Chem. 2017, 253, 1152–1162. [Google Scholar] [CrossRef]
- Li, D.K.; He, B.Y.; Chen, K.Q.; Pi, M.Y.; Cui, Y.T.; Zhang, D.K. Xylene gas sensing performance of Au nanoparticles loaded WO3 nanoflowers. Acta Phys. Sin. 2019, 68, 198101. [Google Scholar] [CrossRef]
- Wang, Q.J.; Li, C.Y.; Sun, P.; Liu, F.M.; Lu, G.Y.; Li, X. Hydrothermal and sintering synthesis of porous sheet-like NiO for xylene gas sensor. Mater. Res. Express 2019, 6, 1150e6. [Google Scholar] [CrossRef]
- Meng, F.; Wang, H.; Yuan, Z.; Zhang, R.; Li, J. Ppb-Level Triethylamine Gas Sensors Based on Palladium Nanoparticles Modified Flower-Like In2O3 Grown on rGO Nanosheets Operating at Low Temperature. IEEE Trans. Instrum. Meas. 2022, 71, 9507909. [Google Scholar] [CrossRef]
- Ji, H.; Qin, W.; Yuan, Z.; Meng, F. Qualitative and quantitative recognition method of drug-producing chemicals based on SnO2 gas sensor with dynamic measurement and PCA weak separation. Sens. Actuators B Chem. 2021, 348, 130698. [Google Scholar] [CrossRef]
- Meng, F.; Shi, X.; Yuan, Z.; Ji, H.; Qin, W.; Shen, Y.; Xing, C. Detection of four alcohol homologue gases by ZnO gas sensor in dynamic interval temperature modulation mode. Sens. Actuators B Chem. 2022, 350, 130867. [Google Scholar] [CrossRef]
- Meng, F.L.; Qi, T.Y.; Zhang, J.J.; Zhu, H.M.; Yuan, Z.Y.; Liu, C.Y.; Qin, W.B.; Ding, M.N. MoS2-Templated Porous Hollow MoO3 Microspheres for Highly Selective Ammonia Sensing via a Lewis Acid-Base Interaction. IEEE Trans. Ind. Electron. 2022, 69, 960–970. [Google Scholar] [CrossRef]
- Singh, K.J.; Singh, R.C. Enhanced toluene sensing performance of nanostructured aluminium-doped nickel oxide gas sensor. Appl. Phys. A Mater. Sci. Process. 2023, 129, 263. [Google Scholar] [CrossRef]
- Gao, H.; Zhao, L.; Wang, L.; Sun, P.; Lu, H.; Liu, F.; Chuai, X.; Lu, G. Ultrasensitive and low detection limit of toluene gas sensor based on SnO2-decorated NiO nanostructure. Sens. Actuators B Chem. 2018, 255, 3505–3515. [Google Scholar] [CrossRef]
- Bai, G.; Dai, H.; Deng, J.; Liu, Y.; Ji, K. Porous NiO nanoflowers and nanourchins: Highly active catalysts for toluene combustion. Catal. Commun. 2012, 27, 148–153. [Google Scholar] [CrossRef]
- Shang, W.; Wang, D.; Zhang, B.; Jiang, C.; Qu, F.; Yang, M. Aliovalent Fe(III)-doped NiO microspheres for enhanced butanol gas sensing properties. Dalton Trans. 2018, 47, 15181–15188. [Google Scholar] [CrossRef]
- Wang, S.; Huang, D.; Xu, S.; Jiang, W.; Wang, T.; Hu, J.; Hu, N.; Su, Y.; Zhang, Y.; Yang, Z. Two-dimensional NiO nanosheets with enhanced room temperature NO2 sensing performance: Via Al doping. Phys. Chem. Chem. Phys. 2017, 19, 19043–19049. [Google Scholar] [CrossRef]
- Zhou, L.; Zeng, W.; Li, Y. A facile one-step hydrothermal synthesis of a novel NiO/ZnO nanorod composite and its enhanced ethanol sensing property. Mater. Lett. 2019, 254, 92–95. [Google Scholar] [CrossRef]
- Wang, C.; Cui, X.B.; Liu, J.Y.; Zhou, X.; Cheng, X.Y.; Sun, P.; Hu, X.L.; Li, X.W.; Zheng, J.; Lu, G.Y. Design of Superior Ethanol Gas Sensor Based on Al-Doped NiO Nanorod-Flowers. ACS Sens. 2016, 1, 131–136. [Google Scholar] [CrossRef]
- Bai, G.; Dai, H.; Deng, J.; Liu, Y.; Qiu, W.; Zhao, Z.; Li, X.; Yang, H. The microemulsion preparation and high catalytic performance of mesoporous NiO nanorods and nanocubes for toluene combustion. Chem. Eng. J. 2013, 219, 200–208. [Google Scholar] [CrossRef]
- Park, S.; Kim, S.; Sun, G.J.; Lee, C. NO2 Gas Sensing Performance of Co-Doped NiO Thin Film Sensors. Nanosci. Nanotechnol. Lett. 2015, 7, 713–717. [Google Scholar] [CrossRef]
- Park, J.Y.; Choi, S.W.; Jung, S.H.; Kim, S.S. Synthesis of NiO Nanofibers and Their Gas Sensing Properties. J. Nanosci. Nanotechnol. 2012, 12, 1288–1291. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.H.; Wang, C.; Zhang, H.; Li, X.; Wang, C.; Cheng, P.F.; Ma, J.; Sun, P.; Gao, Y.; Zhang, H.; et al. Enhanced sensitive and selective xylene sensors using W-doped NiO nanotubes. Sens. Actuators B Chem. 2015, 221, 1475–1482. [Google Scholar] [CrossRef]
- Chen, H.; Ao, S.R.; Li, G.D.; Gao, Q.; Zou, X.X.; Wei, C.D. Enhanced sensing performance to toluene and xylene by constructing NiGa2O4-NiO heterostructures. Sens. Actuators B Chem. 2019, 282, 331–338. [Google Scholar] [CrossRef]
- Cao, J.; Wang, Z.Y.; Wang, R.; Zhang, T. Electrostatic sprayed Cr-loaded NiO core-in-hollow-shell structured micro/nanospheres with ultra-selectivity and sensitivity for xylene. Crystengcomm 2014, 16, 7731–7737. [Google Scholar] [CrossRef]
- Wang, D.Y.; Mi, Q.; Zhang, H.; Li, G.L.; Zhang, D.Z. Sensitive Xylene Gas Sensor Based on NiO-NiCo2O4 Hierarchical Spherical Structure Constructed with Nanorods. IEEE Sens. J. 2022, 22, 10346–10352. [Google Scholar] [CrossRef]
- Qin, W.; Yuan, Z.; Gao, H.; Zhang, R.; Meng, F. Perovskite-structured LaCoO3 modified ZnO gas sensor and investigation on its gas sensing mechanism by first principle. Sens. Actuators B Chem. 2021, 341, 130015. [Google Scholar] [CrossRef]
- Wang, F.; Bai, S.; Tress, W.; Hagfeldt, A.; Gao, F. Defects engineering for high-performance perovskite solar cells. Npj Flex. Electron. 2018, 2, 22. [Google Scholar] [CrossRef]
- Park, N.G. Perovskite solar cells: An emerging photovoltaic technology. Mater. Today 2015, 18, 65–72. [Google Scholar] [CrossRef]
- Zhang, H.; Nazeeruddin, M.K.; Choy, W.C.H. Perovskite Photovoltaics: The Significant Role of Ligands in Film Formation, Passivation, and Stability. Adv. Mater. 2019, 31, 1805702. [Google Scholar] [CrossRef]
- Pham, T.T.; Shin, E.W. Influence of g-C3N4 Precursors in g-C3N4/NiTiO3 Composites on Photocatalytic Behavior and the Interconnection between g-C3N4 and NiTiO3. Langmuir 2018, 34, 13144–13154. [Google Scholar] [CrossRef]
- Jin, Y.M.; Shen, X.F.; Liu, Z.X.; Wang, Z.J.; Zhu, B.; Xu, P.F.; Luo, L.; Zhang, L. Synthesis of NiTiO3-Bi2MoO6 core-shell fiber-shaped heterojunctions as efficient and easily recyclable photocatalysts. New J. Chem. 2018, 42, 411–419. [Google Scholar] [CrossRef]
- Wang, J.; Liu, A.; Wang, C.; You, R.; Liu, F.; Li, S.; Yang, Z.; He, J.; Yan, X.; Sun, P.; et al. Solid state electrolyte type gas sensor using stabilized zirconia and MTiO3 (M: Zn, Co and Ni)-SE for detection of low concentration of SO2. Sens. Actuators B Chem. 2019, 296, 126644. [Google Scholar] [CrossRef]
- Li, F.; Guo, S.J.; Shen, J.L.; Shen, L.; Sun, D.M.; Wang, B.; Chen, Y.; Ruan, S.P. Xylene gas sensor based on Au-loaded WO3 center dot H2O nanocubes with enhanced sensing performance. Sens. Actuators B Chem. 2017, 238, 364–373. [Google Scholar] [CrossRef]
- Xu, Y.; Tian, X.; Fan, Y.; Sun, Y. A formaldehyde gas sensor with improved gas response and sub-ppm level detection limit based on NiO/NiFe2O4 composite nanotetrahedrons. Sens. Actuators B Chem. 2020, 309, 127719. [Google Scholar] [CrossRef]
- Zhou, Q.; Zeng, W.; Chen, W.; Xu, L.; Kumar, R.; Umar, A. High sensitive and low-concentration sulfur dioxide (SO2) gas sensor application of heterostructure NiO-ZnO nanodisks. Sens. Actuators B Chem. 2019, 298, 126870. [Google Scholar] [CrossRef]
- Bai, S.; Zhang, K.; Zhao, Y.; Li, Q.; Luo, R.; Li, D.; Chen, A. rGO decorated NiO-BiVO4 heterojunction for detection of NO2 at low temperature. Sens. Actuators B Chem. 2021, 329, 128912. [Google Scholar] [CrossRef]
- Perrone, O.M.; Roveda, A.C.; de Moraes, D.A.; Volanti, D.P. The enhanced n-butanol sensing performance of In2O3 loaded NiO cuboid heterostructure. J. Alloys Compd. 2023, 930, 167483. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Bai, J.H.; Zhou, L.S.; Liu, D.Y.; Liu, F.M.; Liang, X.S.; Gao, Y.; Liu, F.M.; Yan, X.; Lu, G.Y. Preparation of silver-loaded titanium dioxide hedgehog-like architecture composed of hundreds of nanorods and its fast response to xylene. J. Colloid Interface Sci. 2019, 536, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.L.; Zeng, D.W.; Wu, J.; Song, W.L.; Xie, C.S. Synthesis and gas sensitivity of In-doped ZnO nanoparticles. J. Mater. Sci. Mater. Electron. 2003, 14, 521–526. [Google Scholar] [CrossRef]
- Jiang, D.; Wei, W.; Li, F.; Li, Y.; Liu, C.; Sun, D.; Feng, C.; Ruan, S. Xylene gas sensor based on α-MoO3/α-Fe2O3 heterostructure with high response and low operating temperature. RSC Adv. 2015, 5, 39442–39448. [Google Scholar] [CrossRef]
- Lin, Z.X.; Gong, J.M.; Fu, P. Hierarchical Fe2O3/Bi2WO6 nanoplates with enhanced xylene sensing performance. J. Mater. Sci. Mater. Electron. 2017, 28, 4424–4430. [Google Scholar] [CrossRef]
Materials | Concentration (ppm) | Temperature (°C) | Response (Rg/Ra) | Response Time/Recovery Time (s) | Reference |
---|---|---|---|---|---|
2 at% W-NiO | 200 | 375 | 8.7 | 178/152 | [26] |
NiGa2O4-NiO | 100 | 230 | 16.3 | - | [27] |
0.5 at% Ag/TiO2 | 100 | 375 | 6.5 | 5/2 | [42] |
In-doped ZnO | 100 | 420 | 10.1 | - | [43] |
α-MoO3/α-Fe2O3 | 100 | 206 | 6.9 | 87/190 | [44] |
10% α-Fe2O3/Bi2WO6 | 100 | 260 | 13.5 | 20/40 | [45] |
10% NiTiO3-NiO | 100 | 387 | 24 | 31/148 | this work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, L.; Gao, H.; Meng, F. Perovskite-Structured NiTiO3 Modified NiO Gas Sensor for Xylene Detection. Chemosensors 2023, 11, 264. https://doi.org/10.3390/chemosensors11050264
Qin L, Gao H, Meng F. Perovskite-Structured NiTiO3 Modified NiO Gas Sensor for Xylene Detection. Chemosensors. 2023; 11(5):264. https://doi.org/10.3390/chemosensors11050264
Chicago/Turabian StyleQin, Liyun, Hongliang Gao, and Fanli Meng. 2023. "Perovskite-Structured NiTiO3 Modified NiO Gas Sensor for Xylene Detection" Chemosensors 11, no. 5: 264. https://doi.org/10.3390/chemosensors11050264
APA StyleQin, L., Gao, H., & Meng, F. (2023). Perovskite-Structured NiTiO3 Modified NiO Gas Sensor for Xylene Detection. Chemosensors, 11(5), 264. https://doi.org/10.3390/chemosensors11050264