The Human Nose as a Chemical Sensor in the Perception of Coffee Aroma: Individual Variability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Olfactory Sensitivity Screening
2.3. Dynamic Headspace Sampling
2.4. Mass Spectrometry/Gas Chromatography–Olfactometry (MS/GC-O) Analysis
2.5. Statistical Analysis
3. Results
3.1. Volatile Compounds of Coffee Aroma
3.2. Olfactory Function and Odor-Active Compounds
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Croy, I.; Bojanowski, V.; Hummel, T. Men without a sense of smell exhibit a strongly reduced number of sexual relationships, women exhibit reduced partnership security—A reanalysis of previously published data. Biol. Psychol. 2013, 92, 292–294. [Google Scholar] [CrossRef]
- Landolt, P.J.; Heath, R.R.; Chambers, D.L. Oriented flight responses of female Mediterranean fruit flies to calling males, odor of calling males, and a synthetic pheromone blend. Entomol. Exp. Appl. 1992, 65, 259–266. [Google Scholar] [CrossRef]
- Lebreton, S.; Borrero-Echeverry, F.; Gonzalez, F.; Solum, M.; Wallin, E.A.; Hedenström, E.; Hansson, B.S.; Gustavsson, A.-L.; Bengtsson, M.; Birgersson, G.; et al. A Drosophila female pheromone elicits species-specific long-range attraction via an olfactory channel with dual specificity for sex and food. BMC Biol. 2017, 15, 88. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, P.; Zhang, L.; Xu, X.; Cao, Z.; Zhang, L. Expressions of Olfactory Proteins in Locust Olfactory Organs and a Palp Odorant Receptor Involved in Plant Aldehydes Detection. Front. Physiol. 2018, 9, 663. [Google Scholar] [CrossRef]
- Papadopoulos, N.T.; Shelly, T.E.; Niyazi, N.; Jang, E. Olfactory and Behavioral Mechanisms Underlying Enhanced Mating Competitiveness Following Exposure to Ginger Root Oil and Orange Oil in Males of the Mediterranean Fruit Fly, Ceratitis capitata (Diptera: Tephritidae). J. Insect Behav. 2006, 19, 403–418. [Google Scholar] [CrossRef]
- Sollai, G.; Biolchini, M.; Solari, P.; Crnjar, R. Chemosensory basis of larval performance of Papilio hospiton on different host plants. J. Insect Physiol. 2017, 99, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Sollai, G.; Solari, P.; Crnjar, R. Olfactory sensitivity to major, intermediate and trace components of sex pheromone in Ceratitis capitata is related to mating and circadian rhythm. J. Insect Physiol. 2018, 110, 23–33. [Google Scholar] [CrossRef]
- Su, C.Y.; Menuz, K.; Carlson, J.R. Olfactory perception: Receptors, cells, and circuits. Cell 2009, 139, 45–59. [Google Scholar] [CrossRef]
- Anton, S.; van Loon, J.J.; Meijerink, J.; Smid, H.M.; Takken, W.; Rospars, J.P. Central projections of olfactory receptor neurons from single antennal and palpal sensilla in mosquitoes. Arthropod Struct. Dev. 2003, 32, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Breer, H. Odor recognition and second messenger signaling in olfactory receptor neurons. Semin. Cell Biol. 1994, 5, 25–32. [Google Scholar] [CrossRef]
- Galizia, C.G.; Rössler, W. Parallel olfactory systems in insects: Anatomy and function. Annu. Rev. Entomol. 2010, 55, 399–420. [Google Scholar] [CrossRef] [PubMed]
- Martin, F.; Boto, T.; Gomez-Diaz, C.; Alcorta, E. Elements of olfactory reception in adult Drosophila melanogaster. Anat. Rec. 2013, 296, 1477–1488. [Google Scholar] [CrossRef]
- Mombaerts, P. Odorant receptor gene choice in olfactory sensory neurons: The one receptor-one neuron hypothesis revisited. Curr. Opin. Neurobiol. 2004, 14, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Schilling, B.; Kaiser, R.; Natsch, A.; Gautschi, M. Investigation of odors in the fragrance industry. Chemoecology 2010, 20, 135–147. [Google Scholar] [CrossRef]
- Croy, I.; Mohr, T.; Weidner, K.; Hummel, T.; Junge-Hoffmeister, J. Mother-child bonding is associated with the maternal perception of the child’s body odor. Physiol. Behav. 2019, 198, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Croy, I.; Nordin, S.; Hummel, T. Olfactory Disorders and Quality of Life—An Updated Review. Chem. Senses 2014, 39, 185–194. [Google Scholar] [CrossRef]
- Hummel, T.; Nordin, S. Olfactory disorders and their consequences for quality of life. Acta Oto-Laryngol. 2005, 125, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Sollai, G.; Crnjar, R. Age-Related Olfactory Decline Is Associated with Levels of Exercise and Non-exercise Physical Activities. Front. Aging Neurosci. 2021, 13, 695115. [Google Scholar] [CrossRef]
- Stevenson, R.J. An initial evaluation of the functions of human olfaction. Chem. Senses 2010, 35, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Velluzzi, F.; Deledda, A.; Onida, M.; Loviselli, A.; Crnjar, R.; Sollai, G. Relationship between Olfactory Function and BMI in Normal Weight Healthy Subjects and Patients with Overweight or Obesity. Nutrients 2022, 14, 1262. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V. Revisiting psychophysical work on the quantitative and qualitative odour properties of simple odour mixtures: A flavour chemistry view. Part 2: Qualitative aspects. A review. Flavour Fragr. J. 2012, 27, 201–215. [Google Scholar] [CrossRef]
- Frank, M.E.; Fletcher, D.B.; Hettinger, T.P. Recognition of the Component Odors in Mixtures. Chem. Senses 2017, 42, 537–546. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V. Revisiting psychophysical work on the quantitative and qualitative odour properties of simple odour mixtures: A flavour chemistry view. Part 1: Intensity and detectability. A review. Flavour Fragr. J. 2012, 27, 124–140. [Google Scholar] [CrossRef]
- d’Acampora Zellner, B.; Dugo, P.; Dugo, G.; Mondello, L. Gas chromatography-olfactometry in food flavour analysis. J. Chromatogr. A 2008, 1186, 123–143. [Google Scholar] [CrossRef] [PubMed]
- Delahunty, C.M.; Eyres, G.; Dufour, J.P. Gas chromatography-olfactometry. J. Sep. Sci. 2006, 29, 2107–2125. [Google Scholar] [CrossRef]
- Jordán, M.J.; Tandon, K.; Shaw, P.E.; Goodner, K.L. Aromatic profile of aqueous banana essence and banana fruit by gas chromatography-mass spectrometry (GC-MS) and gas chromatography-olfactometry (GC-O). J. Agric. Food Chem. 2001, 49, 4813–4817. [Google Scholar] [CrossRef]
- Nuzzi, M.; Scalzo, R.L.; Testoni, A.; Rizzolo, A. Evaluation of Fruit Aroma Quality: Comparison between Gas Chromatography–Olfactometry (GC–O) and Odour Activity Value (OAV) Aroma Patterns of Strawberries. Food Anal. Methods 2008, 1, 270–282. [Google Scholar] [CrossRef]
- Plutowska, B.; Wardencki, W. Application of gas chromatography–olfactometry (GC–O) in analysis and quality assessment of alcoholic beverages—A review. Food Chem. 2008, 107, 449–463. [Google Scholar] [CrossRef]
- El Kazzy, M.; Weerakkody, J.S.; Hurot, C.; Mathey, R.; Buhot, A.; Scaramozzino, N.; Hou, Y. An Overview of Artificial Olfaction Systems with a Focus on Surface Plasmon Resonance for the Analysis of Volatile Organic Compounds. Biosensors 2021, 11, 244. [Google Scholar] [CrossRef]
- Kim, C.; Lee, K.K.; Kang, M.S.; Shin, D.-M.; Oh, J.-W.; Lee, C.-S.; Han, D.-W. Artificial olfactory sensor technology that mimics the olfactory mechanism: A comprehensive review. Biomater. Res. 2022, 26, 40. [Google Scholar] [CrossRef]
- Pelosi, P.; Zhu, J.; Knoll, W. From Gas Sensors to Biomimetic Artificial Noses. Chemosensors 2018, 6, 32. [Google Scholar] [CrossRef]
- Nikolic, M.V.; Milovanovic, V.; Vasiljevic, Z.Z.; Stamenkovic, Z. Semiconductor Gas Sensors: Materials, Technology, Design, and Application. Sensors 2020, 20, 6694. [Google Scholar] [CrossRef]
- Saruhan, B.; Lontio Fomekong, R.; Nahirniak, S. Review: Influences of Semiconductor Metal Oxide Properties on Gas Sensing Characteristics. Front. Sens. 2021, 2, 657931. [Google Scholar] [CrossRef]
- Amoore, J.E.; Venstrom, D.; Davis, A.R. Measurement of specific anosmia. Percept. Mot. Ski. 1968, 26, 143–164. [Google Scholar] [CrossRef]
- O’Connell, R.J.; Stevens, D.A.; Akers, R.P.; Coppola, D.M.; Grant, A.J. Individual differences in the quantitative and qualitative responses of human subjects to various odors. Chem. Senses 1989, 14, 293–302. [Google Scholar] [CrossRef]
- Sollai, G.; Tomassini Barbarossa, I.; Usai, P.; Hummel, T.; Crnjar, R. Association between human olfactory performance and ability to detect single compounds in complex chemical mixtures. Physiol. Behav. 2020, 217, 112820. [Google Scholar] [CrossRef]
- Cain, W.S.; Gent, J.F. Olfactory sensitivity: Reliability, generality, and association with aging. J. Exp. Psychol. Hum. Percept. Perform. 1991, 17, 382–391. [Google Scholar] [CrossRef]
- Calderón-Garcidueñas, L.; Franco-Lira, M.; Henríquez-Roldán, C.; Osnaya, N.; González-Maciel, A.; Reynoso-Robles, R.; Villarreal-Calderon, R.; Herritt, L.; Brooks, D.; Keefe, S.; et al. Urban air pollution: Influences on olfactory function and pathology in exposed children and young adults. Exp. Toxicol. Pathol. Off. J. Ges. Fur Toxikol. Pathol. 2010, 62, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Feldmesser, E.; Bercovich, D.; Avidan, N.; Halbertal, S.; Haim, L.; Gross-Isseroff, R.; Goshen, S.; Lancet, D. Mutations in olfactory signal transduction genes are not a major cause of human congenital general anosmia. Chem. Senses 2007, 32, 21–30. [Google Scholar] [CrossRef]
- Hasin-Brumshtein, Y.; Lancet, D.; Olender, T. Human olfaction: From genomic variation to phenotypic diversity. Trends Genet. TIG 2009, 25, 178–184. [Google Scholar] [CrossRef]
- Jafek, B.W.; Gordon, A.S.; Moran, D.T.; Eller, P.M. Congenital anosmia. Ear Nose Throat J. 1990, 69, 331–337. [Google Scholar]
- Melis, M.; Tomassini Barbarossa, I.; Crnjar, R.; Sollai, G. Olfactory Sensitivity Is Associated with Body Mass Index and Polymorphism in the Voltage-Gated Potassium Channels Kv1.3. Nutrients 2022, 14, 4986. [Google Scholar]
- Melis, M.; Tomassini Barbarossa, I.; Hummel, T.; Crnjar, R.; Sollai, G. Effect of the rs2890498 polymorphism of the OBPIIa gene on the human ability to smell single molecules. Behav. Brain Res. 2021, 402, 113127. [Google Scholar] [CrossRef] [PubMed]
- Seo, H.S.; Guarneros, M.; Hudson, R.; Distel, H.; Min, B.C.; Kang, J.K.; Croy, I.; Vodicka, J.; Hummel, T. Attitudes toward Olfaction: A Cross-regional Study. Chem. Senses 2011, 36, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Silva Teixeira, C.S.; Cerqueira, N.M.; Silva Ferreira, A.C. Unravelling the Olfactory Sense: From the Gene to Odor Perception. Chem. Senses 2016, 41, 105–121. [Google Scholar] [CrossRef]
- Sollai, G.; Melis, M.; Magri, S.; Usai, P.; Hummel, T.; Tomassini Barbarossa, I.; Crnjar, R. Association between the rs2590498 polymorphism of Odorant Binding Protein (OBPIIa) gene and olfactory performance in healthy subjects. Behav. Brain Res. 2019, 372, 112030. [Google Scholar] [CrossRef]
- Sollai, G.; Melis, M.; Mastinu, M.; Paduano, D.; Chicco, F.; Magri, S.; Usai, P.; Hummel, T.; Barbarossa, I.T.; Crnjar, R. Olfactory Function in Patients with Inflammatory Bowel Disease (IBD) Is Associated with Their Body Mass Index and Polymorphism in the Odor Binding-Protein (OBPIIa) Gene. Nutrients 2021, 13, 703. [Google Scholar] [CrossRef]
- Sollai, G.; Melis, M.; Tomassini Barbarossa, I.; Crnjar, R. A polymorphism in the human gene encoding OBPIIa affects the perceived intensity of smelled odors. Behav. Brain Res. 2022, 427, 113860. [Google Scholar] [CrossRef]
- Sorokowska, A.; Sorokowski, P.; Hummel, T. Cross-Cultural Administration of an Odor Discrimination Test. Chemosens. Percept. 2014, 7, 85–90. [Google Scholar] [CrossRef]
- Velluzzi, F.; Deledda, A.; Lombardo, M.; Fosci, M.; Crnjar, R.; Grossi, E.; Sollai, G. Application of Artificial Neural Networks (ANN) to Elucidate the Connections among Smell, Obesity with Related Metabolic Alterations, and Eating Habit in Patients with Weight Excess. Metabolites 2023, 13, 206. [Google Scholar] [PubMed]
- Gerkin, R.C.; Castro, J.B. The number of olfactory stimuli that humans can discriminate is still unknown. eLife 2015, 4, e08127. [Google Scholar] [CrossRef] [PubMed]
- Le Fur, Y.; Mercurio, V.; Moio, L.; Blanquet, J.; Meunier, J.M. A new approach to examine the relationships between sensory and gas chromatography-olfactometry data using Generalized Procrustes analysis applied to six French Chardonnay wines. J. Agric. Food Chem. 2003, 51, 443–452. [Google Scholar] [CrossRef]
- Brattoli, M.; Cisternino, E.; Dambruoso, P.R.; de Gennaro, G.; Giungato, P.; Mazzone, A.; Palmisani, J.; Tutino, M. Gas chromatography analysis with olfactometric detection (GC-O) as a useful methodology for chemical characterization of odorous compounds. Sensors 2013, 13, 16759–16800. [Google Scholar] [CrossRef]
- Dussort, P.; Depretre, N.; Bou-Maroun, E.; Fant, C.; GUICHARD, E.; Brunerie, P.; Le Fur, Y.Y.; Le Quéré, J.-L. An original approach for gas chromatography-olfactometry detection frequency analysis: Application to gin. Food Res. Int. 2012, 49, 253–262. [Google Scholar] [CrossRef]
- Pollien, P.; Ott, A.; Montigon, F.; Baumgartner, M.; Muñoz-Box, R.; Chaintreau, A. Hyphenated Headspace-Gas Chromatography-Sniffing Technique: Screening of Impact Odorants and Quantitative Aromagram Comparisons. J. Agric. Food Chem. 1997, 45, 2630–2637. [Google Scholar] [CrossRef]
- Hummel, T.; Sekinger, B.; Wolf, S.R.; Pauli, E.; Kobal, G. ‘Sniffin’ sticks’: Olfactory performance assessed by the combined testing of odor identification, odor discrimination and olfactory threshold. Chem. Senses 1997, 22, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Hummel, T.; Kobal, G.; Gudziol, H.; Mackay-Sim, A. Normative data for the “Sniffin’ Sticks” including tests of odor identification, odor discrimination, and olfactory thresholds: An upgrade based on a group of more than 3,000 subjects. Eur. Arch. Otorhinolaryngol. 2007, 264, 237–243. [Google Scholar] [CrossRef]
- Fischer, M.; Zopf, Y.; Elm, C.; Pechmann, G.; Hahn, E.G.; Schwab, D.; Kornhuber, J.; Thuerauf, N.J. Subjective and objective olfactory abnormalities in Crohn’s disease. Chem. Senses 2014, 39, 529–538. [Google Scholar] [CrossRef]
- Rizzolo, A.; Polesello, A.; Polesello, S. Use of headspace capillary GC to study the development of volatile compounds in fresh fruit. J. High Resolut. Chromatogr. 1992, 15, 472–477. [Google Scholar] [CrossRef]
- van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas—Liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Akiyama, M.; Murakami, K.; Ohtani, N.; Iwatsuki, K.; Sotoyama, K.; Wada, A.; Tokuno, K.; Iwabuchi, H.; Tanaka, K. Analysis of volatile compounds released during the grinding of roasted coffee beans using solid-phase microextraction. J. Agric. Food Chem. 2003, 51, 1961–1969. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, N.; Whitworth, M.B.; Cui, C.; Fisk, I.D. Variability of single bean coffee volatile compounds of Arabica and robusta roasted coffees analysed by SPME-GC-MS. Food Res. Int. 2018, 108, 628–640. [Google Scholar] [CrossRef]
- Gloess, A.N.; Yeretzian, C.; Knochenmuss, R.; Groessl, M. On-line analysis of coffee roasting with ion mobility spectrometry–mass spectrometry (IMS–MS). Int. J. Mass Spectrom. 2018, 424, 49–57. [Google Scholar] [CrossRef]
- Lee, S.; Kim, M.; Lee, K.-G. Effect of reversed coffee grinding and roasting process on physicochemical properties including volatile compound profiles. Innov. Food Sci. Emerg. Technol. 2017, 44, 97–102. [Google Scholar] [CrossRef]
- López-Galilea, I.; Fournier, N.; Cid, C.; Guichard, E. Changes in headspace volatile concentrations of coffee brews caused by the roasting process and the brewing procedure. J. Agric. Food Chem. 2006, 54, 8560–8566. [Google Scholar] [CrossRef]
- Majcher, M.A.; Klensporf-Pawlik, D.; Dziadas, M.; Jeleń, H.H. Identification of aroma active compounds of cereal coffee brew and its roasted ingredients. J. Agric. Food Chem. 2013, 61, 2648–2654. [Google Scholar] [CrossRef] [PubMed]
- Sunarharum, W.; Williams, D.; Smyth, H. Complexity of coffee flavor: A compositional and sensory perspective. Food Res. Int. 2014, 62, 315–325. [Google Scholar] [CrossRef]
- Yang, N.; Liu, C.; Liu, X.; Degn, T.K.; Munchow, M.; Fisk, I. Determination of volatile marker compounds of common coffee roast defects. Food Chem. 2016, 211, 206–214. [Google Scholar] [CrossRef]
- Zapata, J.; Londoño, V.; Naranjo, M.; Osorio, J.; Lopez, C.; Quintero, M. Characterization of aroma compounds present in an industrial recovery concentrate of coffee flavour. CyTA—J. Food 2018, 16, 367–372. [Google Scholar] [CrossRef]
- Gonzalez-Kristeller, D.C.; do Nascimento, J.B.; Galante, P.A.; Malnic, B. Identification of agonists for a group of human odorant receptors. Front. Pharmacol. 2015, 6, 35. [Google Scholar] [CrossRef]
- van Ruth, S.M.; O’Connor, C.H. Evaluation of three gas chromatography-olfactometry methods: Comparison of odour intensity-concentration relationships of eight volatile compounds with sensory headspace data. Food Chem. 2001, 74, 341–347. [Google Scholar] [CrossRef]
- Ratner, B. The correlation coefficient: Its values range between +1/−1, or do they? J. Target. Meas. Anal. Mark. 2009, 17, 139–142. [Google Scholar] [CrossRef]
- Wu, S.; Wang, P.; Xie, D.; Jian, F. Correlation analysis of flow parameters in the olfactory cleft and olfactory function. Sci. Rep. 2022, 12, 20819. [Google Scholar] [CrossRef] [PubMed]
- Brattoli, M.; de Gennaro, G.; de Pinto, V.; Loiotile, A.D.; Lovascio, S.; Penza, M. Odour detection methods: Olfactometry and chemical sensors. Sensors 2011, 11, 5290–5322. [Google Scholar] [CrossRef]
- Goyert, H.F.; Frank, M.E.; Gent, J.F.; Hettinger, T.P. Characteristic component odors emerge from mixtures after selective adaptation. Brain Res. Bull. 2007, 72, 1–9. [Google Scholar] [CrossRef]
- Marshall, K.; Laing, D.G.; Jinks, A.; Hutchinson, I. The capacity of humans to identify components in complex odor-taste mixtures. Chem. Senses 2006, 31, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Mayol, A.R.; Acree, T.E. Advances in Gas Chromatography-Olfactometry. In Gas Chromatography-Olfactometry; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2001; Volume 782, pp. 1–10. [Google Scholar]
- Jadauji, J.B.; Djordjevic, J.; Lundström, J.N.; Pack, C.C. Modulation of olfactory perception by visual cortex stimulation. J. Neurosci. Off. J. Soc. Neurosci. 2012, 32, 3095–3100. [Google Scholar] [CrossRef]
N. | Compound | RT a | Odor Type b | Odor Descriptors b |
---|---|---|---|---|
1 | Octane, 3,5-dimethyl- | 8.10 | - | - |
2 | Oxalic acid, isobutyl nonyl ester | 8.33 | - | Bland, mild, caramellic |
3 | Toluene | 8.54 | Phenolic | Solventy, woody, roasted, coffee |
4 | β-Pinene | 10.20 | Terpenic | Sweet, fresh, pine, woody, hay, green |
5 | Ethylbenzene | 10.69 | - | Petroleum-like odor |
6 | p-Xylene | 10.90 | Aromatic | - |
7 | Oxalic acid, isobutyl pentyl ester | 11.85 | - | Bland, mild, caramellic |
8 | Pyridine * | 12.55 | Fishy | Sour, sickening, putrid, coffee |
9 | D-Limonene * | 12.81 | Citrus | Citrus, orange, fresh, sweet |
10 | Furan,2-pentyl- * | 13.30 | Fruity | Fruity, green, earthy, beany, vegetable, metallic |
11 | Pyrazine, methyl- * | 15.65 | Nutty | Coffee, cocoa, roasted, chocolate, peanut, green, nutty brown, musty, earthy |
12 | Acetoin | 16.50 | Buttery | Sweet, creamy, green, butter, dairy, milk, fatty, buttery, creamy, sour, fatty, vanilla |
13 | 2-Propanone, 1-hydroxy- | 17.28 | Sweet | Pungent, sweet, caramellic, ethereal |
14 | Pyrazine, 2,5-dimethyl- * | 18.11 | Chocolate | Cocoa, roasted nutty, beefy roasted, beefy, woody, grassy, medicinal |
15 | Pyrazine, ethyl- * | 18.67 | Nutty | Peanut, butter, musty, woody, roasted, cocoa, coffee |
16 | Pyrazine, 2,3-dimethyl- * | 19.30 | Nutty | Musty, nut skin, cocoa, powdery, caramellic, roasted, potato, coffee, peanut, butter, |
17 | DL-2,3-Butanediol * | 19.81 | Creamy | Fruity, creamy, buttery |
18 | Vinyl butyrate | 20.02 | - | Organic solvent |
19 | Hex-4-yn-3-one, 2,2-dimethyl- | 20.67 | Winey | Chemical, winey, fruity, fatty, terpenic, cauliflower |
20 | Pyrazine, 2-ethyl-6-methyl- * | 21.08 | Potato | Roasted, potato |
21 | Pyrazine, 2-ethyl-3-methyl- * | 22.09 | Nutty | Nutty, peanut, musty, corn, raw, coffee, bready |
22 | Pyrazine, 2-(n-propyl)- * | 22.89 | Green | Green, vegetable, nutty |
23 | Pyrazine, 2,6-diethyl- * | 23.59 | Nutty | Nutty, potato, cocoa, roasted, coffee |
24 | Pyrazine, 3-ethyl-2,5-dimethyl- * | 24.08 | Nutty | Potato, cocoa, roasted, nutty, coffee |
25 | 2-Propanone, 1-(acetyloxy)- | 24.70 | Fruity | Fruity, buttery dairy, nutty |
26 | Pyrazine, 2-ethyl-3,5-dimethyl- * | 25.01 | Nutty | Peanut, caramellic, coffee, cocoa |
27 | Furfural * | 25.27 | Bready | Sweet, brown, woody, caramellic, bread baked, coffee, almond |
28 | Pyrazine, tetramethyl- | 25.71 | Nutty | Nutty, musty, chocolate, coffee, cocoa, brown, lard, burnt, dry, vanilla |
29 | Pyrazine, 3,5-diethyl-2-methyl- * | 26.66 | Nutty | Nutty, meaty, vegetable |
30 | Pyrazine, 2-ethenyl-5-methyl- | 27.10 | Coffee | Coffee |
31 | Furan, 2-acetyl- * | 27.67 | Balsamic | Sweet, balsamic, almond, cocoa, coffee, caramellic, nutty, brown, toasted, milky, lactonic |
32 | 2,3-Pentanedione * | 28.21 | Buttery | Pungent, sweet, buttery, creamy, nutty, caramellic, cheesy, coffee |
33 | 2-Butanone, 1-(acetyloxy)- | 28.52 | - | - |
34 | 2-Furanmethanol, acetate * | 28.81 | Fruity | Coffee, sweet, fruity, banana, horseradish, roasted, cocoa |
35 | Pyrazine, 2-methyl-6-(2-propenyl)- | 29.37 | - | - |
36 | 2-Cyclopenten-1-one, 2,3-dimethyl- | 30.12 | - | - |
37 | Acetic acid, diethyl- * | 30.56 | Acidic | Acidic, fruity, whiskey, dry berry, dairy, tropical |
38 | Pentanoic acid, 4-oxo-, methyl ester | 31.05 | - | Caramellic, flavouring agent |
39 | 2-Furancarboxaldehyde, 5-methyl- * | 31.54 | Caramellic | Sweet, caramellic, bready, brown, coffee, spicy, maple |
40 | 2-Furanmethanol, propanoate * | 32.16 | Fruity | Sweet, fruity, green, banana, oily, coffee, spicy |
41 | Furan, 2,2′-methylenebis- * | 32.81 | Fruity | Rich, roasted, coffee |
42 | 2-Furanmethanol * | 34.17 | Bready | Sulfurous, estery, chemical, musty, sweet, brown, caramellic, bready, coffee, alcoholic |
43 | Butanoic acid, 3-methyl- * | 34.35 | Cheesy | Cheesy, dairy, acidic, sour, pungent, ripe, fatty, fruity, stinky feet, sweaty, tropical |
44 | Furan, 2-(2-furanylmethyl)-5-methyl- * | 34.68 | - | - |
45 | Pyrazine, 2-acetyl-6-methyl | 35.33 | Roasted | Roasted, coffee, cocoa, popcorn |
46 | 4(H)-Pyridine, N-acetyl- * | 35.76 | Fishy | Sour, fishy, putrid, ammoniacal |
47 | Octaethylene glycol monododecyl ether | 36.21 | - | - |
48 | 2-Hexadecanol | 36.38 | Waxy | Waxy, clean, greasy, floral, oily |
49 | N-Furfurylpyrrole * | 37.95 | Vegetable | Plastic, green, waxy, fruity, coffee, vegetable |
50 | 2-Acetylpyrrole * | 40.68 | Musty | Musty, nut, skin, cherry, maraschino, cherry, bready, coumarinic, licorice, walnut |
N. | Odor-Active Compound | Odor Description | df |
---|---|---|---|
1 | Octane, 3,5-dimethyl- | Woody, unknown | 2 |
2 | Oxalic acid, isobutyl nonyl ester | Burnt, unknown | 2 |
3 | Toluene | Coffee, smoked, solvent, roasted | 8 |
4 | β-Pinene | Sweet, floral, vanilla | 8 |
5 | Ethylbenzene | Petrol | 1 |
6 | p-Xylene | Vanilla, medicinal, floral | 5 |
7 | Oxalic acid, isobutyl pentyl ester | Floral, fruity, vanilla | 6 |
8 | Pyridine * | Coffee, smoked, roasted, cheese | 3 |
9 | D-Limonene * | Sweet, sour, citrus | 6 |
10 | Furan,2-pentyl- * | Smoked | 2 |
11 | Pyrazine, methyl- * | Coffee, nutty, roasted, smoke | 3 |
12 | Acetoin | Coffee, sweet, roasted, parfum | 10 |
13 | 2-Propanone, 1-hydroxy- | Sweet, pungent, fish, solvent, wet | 10 |
14 | Pyrazine, 2,5-dimethyl- * | Coffee, citrus, medicinal, sweet, cocoa | 7 |
15 | Pyrazine, ethyl- * | Coffee, nutty, egg | 3 |
16 | Pyrazine, 2,3-dimethyl- * | Coffee, burnt, caramellic, fruity | 5 |
17 | DL-2,3-Butanediol * | Sweet, caramellic, rose, wet | 5 |
18 | Vinyl butyrate | Floral, parfum, bitter, solvent, pungent | 7 |
19 | Hex-4-yn-3-one, 2,2-dimethyl- | Sweet, solvent | 4 |
20 | Pyrazine, 2-ethyl-6-methyl- * | Coffee, sweet, smoked, medicinal, solvent, parfum, roasted | 19 |
21 | Pyrazine, 2-ethyl-3-methyl- * | Coffee, cocoa, solvent, bitter, nutty, roasted | 25 |
22 | Pyrazine, 2-(n-propyl)- * | Green, musty, woody, earthy, wet, herbs, floral | 22 |
23 | Pyrazine, 2,6-diethyl- * | Coffee, roasted, earthy, musty, burnt, mushrooms | 25 |
24 | Pyrazine, 3-ethyl-2,5-dimethyl- * | Coffee, nutty, roasted, floral, bitter | 20 |
25 | 2-Propanone, 1-(acetyloxy)- | Pungent, parfum | 6 |
26 | Pyrazine, 2-ethyl-3,5-dimethyl- * | Coffee, musty, roasted, wet | 21 |
27 | Furfural * | Coffee, sweet, solvent, floral, pungent | 13 |
28 | Pyrazine, tetramethyl- | Coffee, roasted, burnt, vanilla | 13 |
29 | Pyrazine, 3,5-diethyl-2-methyl- * | Floral, musty, wet, solvent, fresh | 15 |
30 | Pyrazine, 2-ethenyl-5-methyl- | Coffee, nutty, bitter, plastic | 14 |
31 | Furan, 2-acetyl- * | Parfum | 2 |
32 | 2,3-Pentanedione * | Floral, herbs, earthy, sweat, musk, cheese, pungent | 24 |
34 | 2-Furanmethanol, acetate * | Roasted, fruit, earthy, herb, woody, coffee | 21 |
35 | Pyrazine, 2-methyl-6-(2-propenyl)- | Pungent, sour, bitter | 6 |
36 | 2-Cyclopenten-1-one, 2,3-dimethyl- | Sweet, floral, lavender | 4 |
37 | Acetic acid, diethyl- * | Roasted, solvent, rotten, musty, herbs, wet earth | 22 |
38 | Pentanoic acid, 4-oxo-, methyl ester | Sweet | 4 |
39 | 2-Furancarboxaldehyde, 5-methyl- * | Coffee, sweet, parfum | 4 |
40 | 2-Furanmethanol, propanoate * | Coffee, pungent, floral, musty, herb, sweet, burnt | 14 |
41 | Furan, 2,2′-methylenebis- * | Coffee, nutty, popcorn, roasted, fish, sour | 21 |
42 | 2-Furanmethanol * | Coffee, smoke, popcorn, nutty, roasted | 24 |
43 | Butanoic acid, 3-methyl- * | Cheese, smoke, stinky feet, acidic, fruity, putrid | 16 |
44 | Furan, 2-(2-furanylmethyl)-5-methyl- * | Unknown | 1 |
45 | Pyrazine, 2-acetyl-6-methyl | Putrid, musty, cheese | 6 |
46 | 4(H)-Pyridine, N-acetyl- * | Shoes, wet, sweat | 7 |
47 | Octaethylene glycol monododecyl ether | Sweat, acidic | 4 |
48 | 2-Hexadecanol | Cheese, musty, putrid, plastic | 29 |
49 | N-Furfurylpyrrole * | Solvent, cheese, musty | 15 |
50 | 2-Acetylpyrrole * | Coffee, roasted, almond, sweet, burnt, parfum, fresh | 29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crnjar, R.; Solari, P.; Sollai, G. The Human Nose as a Chemical Sensor in the Perception of Coffee Aroma: Individual Variability. Chemosensors 2023, 11, 248. https://doi.org/10.3390/chemosensors11040248
Crnjar R, Solari P, Sollai G. The Human Nose as a Chemical Sensor in the Perception of Coffee Aroma: Individual Variability. Chemosensors. 2023; 11(4):248. https://doi.org/10.3390/chemosensors11040248
Chicago/Turabian StyleCrnjar, Roberto, Paolo Solari, and Giorgia Sollai. 2023. "The Human Nose as a Chemical Sensor in the Perception of Coffee Aroma: Individual Variability" Chemosensors 11, no. 4: 248. https://doi.org/10.3390/chemosensors11040248
APA StyleCrnjar, R., Solari, P., & Sollai, G. (2023). The Human Nose as a Chemical Sensor in the Perception of Coffee Aroma: Individual Variability. Chemosensors, 11(4), 248. https://doi.org/10.3390/chemosensors11040248