Experimental-Theoretical Approach for the Chemical Detection of Glyphosate and Its Potential Interferents Using a Copper Complex Fluorescent Probe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of the [nBu4N]2[Cu(opba)]
2.3. Structural Characterizations and Herbicide Fluorescence Detection
3. Results and Discussion
3.1. Fluorescent Detection of GLY and Interference of AMPA and NNG
3.2. Theoretical Calculations
3.2.1. Computational Details
3.2.2. Absorption Spectra
Self-Consistent Reaction Field (SCRF-SMD)
Micro-Solvation Approach
Emission Spectra
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gillezeau, C.; van Gerwen, M.; Shaffer, R.M.; Rana, I.; Zhang, L.; Sheppard, L.; Taioli, E. The Evidence of Human Exposure of Glyphosate: A Review. J. Environ. Health 2019, 18, 2–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinruck, H.C.; Amrhein, N. The Herbicide Glyphosate is a Potent Inhibitor of 5-Enolpyruvyl-Shikimic Acid-3-Phoshate Synthase. Biochem. Biophys. Res. Comm. 1980, 94, 1207–1212. [Google Scholar] [CrossRef] [PubMed]
- Dill, G.M.; Sammons, R.D.; Feng, P.C.C.; Kohn, F.; Kretzmer, K.; Mehrsheikh, A.; Bleeke, M.; Honegger, J.L.; Farmer, D.; Wright, D.; et al. Glyphosate: Discovery, Development, Applications and Properties. In Glyphosate Resistance in Crops and Weeds: History, Development and Management, 1st ed.; Nandula, V.K., Ed.; Wiley: Hoboken, NJ, USA, 2010; pp. 1–66. [Google Scholar]
- Ghisi, N.C.; Zuanazzi, N.R.; Fabrin, T.M.C.; Oliveira, E.C. Glyphosate and its Toxicology: A Scientometric Review. Sci. Total Environ. 2020, 733, 139359. [Google Scholar] [CrossRef] [PubMed]
- Valle, A.L.; Mello, F.C.C.; Alves-Balvedi, R.P.; Rodrigues, L.P.; Goulart, L.R. Glyphosate Detection: Methods, Needs and Challenges. Environ. Chem. Lett. 2019, 17, 291–317. [Google Scholar] [CrossRef]
- Fang, F.; Wei, R.; Liu, X. Novel Pre-Column Derivatization Reagent for Glyphosate by High-Performance Liquid Chromatography and Ultraviolet Detection. Int. J. Environ. Anal. Chem. 2014, 94, 661–667. [Google Scholar] [CrossRef]
- Suna, L.; Kong, D.; Gu, W.; Guo, X.; Tao, W.; Shan, Z.; Wang, Y.; Wang, N. Determination of Glyphosate in Soil/Sludge by High Performance Liquid Chromatography. J. Chromatogr. A 2017, 1502, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Tiago, J.P.F.; Sucupira, L.C.; Barros, R.E.; de Pinho, G.P.; Silvério, F.O. Simultaneous and Direct Determination of Glyphosate and AMPA in Water Samples from the Hydroponic Cultivation of Eucalyptus Seedlings Using HPLC-ICP-MS/MS. J. Environ. Sci. Health B 2020, 55, 558–565. [Google Scholar] [CrossRef]
- Crocoli, L.C.; Ortiz, R.S.; Moura, S. Development and Validation of q-NMR Method for Analyses of Legal and Illegal Formulations of Glyphosate. Anal. Methods 2019, 11, 4052–4059. [Google Scholar] [CrossRef]
- Zhao, J.; Pacenka, S.; Wu, J.; Richards, B.K.; Steenhuis, T.; Simpson, K.; Hay, A.G. Detection of Glyphosate Residues in Companion Animal Feeds. Environ. Poll. 2018, 243, 1113–1118. [Google Scholar] [CrossRef]
- Clegg, B.S.; Stephenson, G.R.; Hall, J.C. Development of an Enzyme-Linked Immunosorbent Assay for the Detection of Glyphosate. J. Agric. Food Chem. 1999, 47, 5031–5037. [Google Scholar] [CrossRef]
- Tu, Q.; Yang, T.; Qu, Y.; Gao, S.; Zhang, Z.; Zhang, Q.; Wang, Y.; Wang, J.; He, L. In Situ Colorimetric Detection of Glyphosate on Plant Tissues Using Cysteamine-Modified Gold Nanoparticles. Analyst 2019, 144, 2017–2025. [Google Scholar] [CrossRef] [PubMed]
- Moraes, F.C.; Mascaro, L.H.; Machado, S.A.S.; Brett, C.M.A. Direct Electrochemical Determination of Glyphosate at Copper Phthalocyanine/Multiwalled Carbon Nanotube Film Electrodes. Electroanalysis 2010, 22, 1586–1591. [Google Scholar] [CrossRef]
- Congur, G. An Up-to-Date Review About (Bio)Sensor Systems Developed for Detection of Glyphosate. Int. J. Environ. Anal. Chem. 2021, 1–13. [Google Scholar] [CrossRef]
- Prerna, Y.; Zelder, F. Detection of Glyphosate with a Copper(II)-Pyrocatechol Violet Based GlyPKit. Anal. Methods 2021, 13, 4354–4360. [Google Scholar]
- Wang, L.; Bi, Y.; Hou, J.; Li, H.; Xu, Y.; Wang, B.; Ding, H.; Ding, L. Facile, Green and Clean One-Step Synthesis of Carbon Dots from Wool: Application as a Sensor for Glyphosate Detection Based on the Inner Filter Effect. Talanta 2016, 160, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Jiang, J.; Liu, S.; Yang, J.; Zhang, H.; Yan, J.; Hu, X. Fluorescent Carbon Dots for Glyphosate Determination Based on Fluorescence Resonance Energy Transfer and Logic Gate Operation. Sens. Actuators B Chem. 2017, 242, 545–553. [Google Scholar] [CrossRef]
- Jiménez-López, J.; Llorent-Martínez, E.J.; Ortega-Barrales, P.; Ruiz-Medina, A. Graphene Quantum Dots-Silver Nanoparticles as a Novel Sensitive and Selective Luminescence Probe for the Detection of Glyphosate in Food Samples. Talanta 2020, 207, 120344. [Google Scholar] [CrossRef]
- Fang, H.; Zhang, X.; Gao, D.; Xiao, Y.; Ma, L.; Yang, H.; Zhou, Y. Fluorescence Determination of Glyphosate Based on a DNA-Templated Copper Nanoparticle Biosensor. Microchim. Acta. 2022, 189, 158. [Google Scholar] [CrossRef]
- Wang, D.; Lin, B.; Cao, Y.; Guo, M.; Yu, Y. A Highly Selective and Sensitive Fluorescence Detection Method of Glyphosate Based on an Immune Reaction Strategy of Carbon Dot Labeled Antibody and Antigen Magnetic Beads. J. Agric. Food Chem. 2016, 64, 6042–6050. [Google Scholar] [CrossRef]
- Gui, M.; Jiang, J.; Wang, X.; Yan, Y.; Li, S.; Xiao, X.; Liu, T.; Feng, Y. Copper Ion-Mediated Glyphosate Detection with N-Heterocycle Based Polyacetylene as a Sensing Platform. Sens. Actuators B Chem. 2017, 243, 696–703. [Google Scholar] [CrossRef]
- Sun, F.; Ye, X.L.; Wang, Y.B.; Yue, M.L.; Li, P.; Yang, L.; Liu, Y.L.; Fu, Y. NPA-Cu2+ Complex as a Fluorescent Sensing Platform for the Selective and Sensitive Detection of Glyphosate. Int. J. Mol. Sci. 2021, 22, 9816. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Sakinati, M.; Yang, Y.; Ma, Y.; Yang, M.; Luo, H.; Houa, C.; Huo, D. The construction of a CND/Cu2+ fluorescence sensing system for the ultrasensitive detection of glyphosate. Anal. Methods 2020, 12, 520–527. [Google Scholar] [CrossRef]
- Coutinho, C.F.B.; Mazo, L.H. Metallic Complexes with Glyphosate: A Review. Química Nova 2005, 28, 1038–1045. [Google Scholar] [CrossRef]
- Hance, R.J. Herbicide Usage and Soil Properties. Plant Soil 1976, 45, 291–293. [Google Scholar] [CrossRef]
- Arroyave, J.M.; Waiman, C.C.; Zanini, G.P.; Avena, M.J. Effect of Humic Acid on the Adsorption/Desorption Behavior of Glyphosate on Goethite. Isotherms and Kinetics. Chemosphere 2016, 145, 34–41. [Google Scholar] [CrossRef]
- McNaughton, D.A.; Fares, M.; Picci, G.; Gale, P.A.; Caltagiron, C. Advances in Fluorescent and Colorimetric Sensors for Anionic Species. Coord. Chem. Rev. 2021, 427, 213573. [Google Scholar] [CrossRef]
- Abdulmalic, M.A.; Aliabadi, A.; Petr, A.; Kataev, V.; Rüffer, T. The Formation of Overlooked Compounds in The Reaction of Methyl Amine with the Diethyl Ester of o-Phenylenebis(oxamic acid) in MeOH. Dalton Trans. 2013, 42, 1798–1809. [Google Scholar] [CrossRef]
- Weheabby, S.; Al-Shewiki, R.K.; Hildebrandt, A.; Abdulmalic, M.A.; Lang, H.; Rüffer, T. Electrochemical Studies of the MI/II and MII/III (M = Ni, Cu) Couples in Mono- to Tetranuclear Complexes with Oxamato/Oxamidato Ligands. Electrochim. Acta 2019, 318, 181–193. [Google Scholar] [CrossRef]
- Cervera, B.; Sanz, J.L.; Ibáñez, M.J.; Vila, G.; Loret, F.L.; Julve, M.; Ruiz, R.; Ottenwaelder, X.; Aukauloo, A.; Poussereau, S.; et al. Stabilization of Copper(III) Complexes by Substituted Oxamate Ligands. J. Chem. Soc. Dalton Trans. 1998, 781–790. [Google Scholar] [CrossRef]
- do Nascimento, G.M.; do Pim, W.; Reis, D.O.; Simões, T.R.G.; Pradie, N.A.; Stumpf, H.O. Characterization of Compounds Derived from Copper-Oxamate and Imidazolium by X-Ray Absorption and Vibrational Spectroscopies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 142, 303–310. [Google Scholar] [CrossRef]
- Lupi, L.; Miglioranza, K.S.B.; Aparicio, V.C.; Marino, D.; Bedmar, F.; Wunderlin, D.A. Occurrence of Glyphosate and AMPA in an Agricultural Watershed from the Southeastern Region of Argentina. Sci. Total Environ. 2015, 536, 687–694. [Google Scholar] [CrossRef] [PubMed]
- Dourado, C.S.; Lins, E.S.; Dias, A.C.B. Development of a Sequential Injection System with Online Photo-Cleavage Coupled to SPE for Spectrophotometric Determination of N-Nitrosoglyphosate. Microchem. J. 2019, 147, 1061–1067. [Google Scholar] [CrossRef]
- Becke, A.D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phy. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunning, T.; Hay, P. Modern Theoretical Chemistry; Schaefer, H.F., Ed.; Plenum Press: New York, NY, USA, 1976; ISBN 978-1-4757-0889-9. [Google Scholar]
- Marenich, A.V.; Olson, R.M.; Kelly, C.P.; Cramer, C.J.; Truhlar, D.G. Self-Consistent Reaction Field Model for Aqueous and Nonaqueous Solutions Based on Accurate Polarized Partial Charges. J. Chem. Theory Comput. 2007, 3, 2011–2033. [Google Scholar] [CrossRef] [PubMed]
- Lipparini, F.; Mennucci, B. Perspective: Polarizable Continuum Models for Quantum-Mechanical Descriptions. J. Chem. Phys. 2016, 144, 160901. [Google Scholar] [CrossRef] [Green Version]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Stewart, J.J.P. Optimization of Parameters for Semiempirical Methods V: Modification of NDDO Approximations and Application to 70 Elements. J. Mol. Model. 2007, 13, 1173–1213. [Google Scholar] [CrossRef] [Green Version]
- Maitra, N.T.; Wasserman, A.; Burke, K. What is Time-Dependent Density Functional Theory? Successes and Challenges. In Electron Correlations and Materials Properties 2; Springer: New York, NY, USA, 2003; pp. 285–298. ISBN 978-0-306-47446-0. [Google Scholar]
- Wang, J.; Durbeej, B. How Accurate Are TD-DFT Excited-State Geometries Compared to DFT Ground-State Geometries? J. Comput. Chem. 2020, 41, 1718–1729. [Google Scholar] [CrossRef]
- Zamora, J.L.; Vargas, D.R.; Hernández-Gómez, Y.K.; Álvarez-Botero, G.A. Improvement the Permittivity Determination in Glyphosate-Water Mixture Using CSRR as Sensor. In Proceedings of the 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Houston, TX, USA, 14–17 May 2018; pp. 1–5. [Google Scholar]
- Costa, I.A.; Gross, M.A.; Alves, E.D.O.; Fonseca, F.J.; Paterno, L.G. An Impedimetric E-Tongue Based on CeO2-Graphene Oxide Chemical Sensors for Detection of Glyphosate and Its Potential Interferents. J. Electroanal. Chem. 2022, 922, 116719. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16; revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- del Valle, J.C.; Catalan, J. Kasha’s Rule: A Reappraisal. Phys. Chem. Chem. Phys. 2019, 21, 10061–10069. [Google Scholar] [CrossRef] [PubMed]
Probe | Linear Range (µM) | LOD (nM) | Reference |
---|---|---|---|
C-dot/Anti-GLY | 0.06–473 | 47 | [16] |
C-dots | 0.02–2.0 | 600 | [17] |
GQD-AgNP | 0.177–11.829 | 53.23 | [18] |
DNA-CuNP | 1–18 | 470 | [19] |
C-dots/AgNP | 0.148–14.8 | 71 | [20] |
PAc/Cu2+ | - | 80 | [21] |
NPA/Cu2+ | 10–100 | 1870 | [22] |
CND/Cu2+ | 0.12–8.87 | 10.8 | [23] |
[Cu(opba)]2− | 0.7–5.5 | 489 | This work |
Complex | SCRF | MS | MS+SCRF | Exp./Others |
---|---|---|---|---|
[Cu(opba)]2− + ACN | ε = 35.69 | [Cu(opba)]2−-ACN6 | [Cu(opba)]2−-ACN6 + ε | |
Absorption | 266.5(0.11); 344.0(0.20) | 335.9(0.13) | 288.0(0.01); 340.9(0.19) | 330.0 |
Emission | 349.2; 420.3 | 368.0; 400.0 | ||
[Cu(opba)]2− + GLY | ε = 108.9 | [Cu(opba)]2−-GLY4 | [Cu(opba)]2−-GLY4 + ε | |
Absorption | 273.6(0.07); 361.0(0.27) | 331.9(0.04) | 291.9; 347.6 | |
Emission | 329.6; 415.4 | 375.0; 410 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, G.; Oliveira, K.V.; Weheabby, S.; Al-Hamry, A.; Kanoun, O.; Rüffer, T.; Cabral, B.J.C.; Paterno, L.G. Experimental-Theoretical Approach for the Chemical Detection of Glyphosate and Its Potential Interferents Using a Copper Complex Fluorescent Probe. Chemosensors 2023, 11, 194. https://doi.org/10.3390/chemosensors11030194
Martins G, Oliveira KV, Weheabby S, Al-Hamry A, Kanoun O, Rüffer T, Cabral BJC, Paterno LG. Experimental-Theoretical Approach for the Chemical Detection of Glyphosate and Its Potential Interferents Using a Copper Complex Fluorescent Probe. Chemosensors. 2023; 11(3):194. https://doi.org/10.3390/chemosensors11030194
Chicago/Turabian StyleMartins, Guilherme, Karolyne V. Oliveira, Saddam Weheabby, Ammar Al-Hamry, Olfa Kanoun, Tobias Rüffer, Benedito J. C. Cabral, and Leonardo G. Paterno. 2023. "Experimental-Theoretical Approach for the Chemical Detection of Glyphosate and Its Potential Interferents Using a Copper Complex Fluorescent Probe" Chemosensors 11, no. 3: 194. https://doi.org/10.3390/chemosensors11030194
APA StyleMartins, G., Oliveira, K. V., Weheabby, S., Al-Hamry, A., Kanoun, O., Rüffer, T., Cabral, B. J. C., & Paterno, L. G. (2023). Experimental-Theoretical Approach for the Chemical Detection of Glyphosate and Its Potential Interferents Using a Copper Complex Fluorescent Probe. Chemosensors, 11(3), 194. https://doi.org/10.3390/chemosensors11030194