Recent Advance in Cortisol Immunosensing Technologies and Devices
Abstract
:1. Introduction
2. Fundamental Detection Methods
2.1. Optical Detection
2.1.1. Colorimetric Method
2.1.2. Fluorescence Analytical Method
2.1.3. SPR-Based Method
2.2. Electrochemical Detection
2.2.1. Voltammetry Method
2.2.2. Impedance Method
2.2.3. Amperometric Method
2.2.4. Other Methods
3. Developed Immunosensor Systems
3.1. Antibody Based Recognition and Sensing
3.2. Aptamer Based Recognition and Sensing
3.3. MIP Based Recognition and Sensing
4. Advanced Immunosensing Devices
4.1. Portable Devices
4.2. Wearable Devices
5. Conclusions and Future Perspective
- 1.
- According to the analysis mentioned above, the property of binding site is the most significant factor that limits the realization of real-time monitoring with immunosensors. At first, irreversible binding between the recognition sites with cortisol or other molecules will cause an unpredictable response, limiting the lifetime of a sensor after long-term usage. Apparently, strong binding might not be suitable for the design of continuous sensing systems. However, if bonding is too weak, a long incubation time will be required for equilibrium process. In addition, this will contradict real-time monitoring. Moreover, if an MIP system is utilized, as the spatial structure in the organic film is the source of specific binding, the structure stability should be considered. Hence, a meticulous design or a novel system with long-term stability should be developed.
- 2.
- As it can be seen in Table 1 and Table 2, the correlation between signal and concentration is fickle and puzzling. The signal can be either linearly related to concentration, the logarithm of concentration, or other forms of concentration in different works. Clearly, the correlation should depend on the sensing mechanism of a particular system, but studies on such mechanism are rare. This might cause a lack of uniformity in cortisol detection and a difficulty to summarize the difference between various studies. The incomprehension of fundamental principle in sensing might lead to a misinterpretation of obtained data under actual conditions and can cause serious misdiagnosis. Thus, this aspect should be considered carefully in future studies.
- 3.
- Apart from immunosensing methods, some nonimmune electrochemical sensing methods for cortisol detection have gradually emerged. Compared with immunosensing, immune recognition elements are eliminated in this technique, and the current change originated from the redox reaction of C=O and C-OH group is directly measured. Thus, this method has high selectivity for cortisol detection. Although the response signal might not be as obvious as that in immunosensors, this technique has already exhibited potential in real-time cortisol monitoring owing to the developments in high-performance electrode materials and electrochemistry.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zea, M.; Bellagambi, F.G.; Halima, H.B.; Zine, N.; Jaffrezic-Renault, N.; Villa, R.; Gabriel, G.; Errachid, A. Electrochemical sensors for cortisol detections: Almost there. TrAC Trends Anal. Chem. 2020, 132, 116058. [Google Scholar] [CrossRef]
- Yeager, M.P.; Pioli, P.A.; Collins, J.; Barr, F.; Metzler, S.; Sites, B.D.; Guyre, P.M. Glucocorticoids enhance the in vivo migratory response of human monocytes. Brain, Behav. Immun. 2016, 54, 86–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kidson, C. Cortisol in the regulation of RNA and protein synthesis. Nature 1967, 213, 779–782. [Google Scholar] [CrossRef] [PubMed]
- Goiato, M.C.; Da Silva, E.V.F.; Cândido, N.B.; Nóbrega, A.S.; De Medeiros, R.A.; Sumida, D.H.; Chiba, F.Y.; Dos Santos, D.M. Evaluation of the level of cortisol, capillary blood glucose, and blood pressure in response to anxiety of patients rehabilitated with complete dentures. BMC Oral Health 2019, 19, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Schmidt-Reinwald, A.; Pruessner, J.; Hellhammer, D.; Federenko, I.; Rohleder, N.; Schürmeyer, T.; Kirschbaum, C. The cortisol response to awakening in relation to different challenge tests and a 12-hour cortisol rhythm. Life Sci. 1999, 64, 1653–1660. [Google Scholar] [CrossRef]
- Ganguly, A.; Lin, K.C.; Muthukumar, S.; Prasad, S. Autonomous, real-time monitoring electrochemical aptasensor for circadian tracking of cortisol hormone in sub-microliter volumes of passively eluted human sweat. ACS Sens. 2020, 6, 63–72. [Google Scholar] [CrossRef]
- Grosser, L.; Knayfati, S.; Yates, C.; Dorrian, J.; Banks, S. Cortisol and shiftwork: A scoping review. Sleep Med. Rev. 2022, 64, 101581. [Google Scholar] [CrossRef]
- Arya, S.K.; Chornokur, G.; Venugopal, M.; Bhansali, S. Dithiobis (succinimidyl propionate) modified gold microarray electrode based electrochemical immunosensor for ultrasensitive detection of cortisol. Biosens. Bioelectron. 2010, 25, 2296–2301. [Google Scholar] [CrossRef] [Green Version]
- Gaudl, A.; Kratzsch, J.; Bae, Y.J.; Kiess, W.; Thiery, J.; Ceglarek, U. Liquid chromatography quadrupole linear ion trap mass spectrometry for quantitative steroid hormone analysis in plasma, urine, saliva and hair. J. Chromatogr. A 2016, 1464, 64–71. [Google Scholar] [CrossRef]
- Ray, P.; Steckl, A.J. Label-free optical detection of multiple biomarkers in sweat, plasma, urine, and saliva. ACS Sens. 2019, 4, 1346–1357. [Google Scholar] [CrossRef]
- Quinete, N.; Bertram, J.; Reska, M.; Lang, J.; Kraus, T. Highly selective and automated online SPE LC–MS3 method for determination of cortisol and cortisone in human hair as biomarker for stress related diseases. Talanta 2015, 134, 310–316. [Google Scholar] [CrossRef]
- Estrada-Y-Martin, R.M.; Orlander, P.R. Salivary cortisol can replace free serum cortisol measurements in patients with septic shock. Chest 2011, 140, 1216–1222. [Google Scholar] [CrossRef] [Green Version]
- Villa, J.E.; Garcia, I.; de Aberasturi, D.J.; Pavlov, V.; Sotomayor, M.D.; Liz-Marzán, L.M. SERS-based immunoassay for monitoring cortisol-related disorders. Biosens. Bioelectron. 2020, 165, 112418. [Google Scholar] [CrossRef]
- Mohammad-Andashti, P.; Ramezani, Z.; Zare-Shahabadi, V.; Torabi, P. Rapid and green synthesis of highly luminescent MoS2 quantum dots via microwave exfoliation of MoS2 powder and its application as a fluorescence probe for cortisol detection in human saliva. Colloids Surf. A Physicochem. Eng. 2022, 647, 129048. [Google Scholar] [CrossRef]
- Torrente-Rodríguez, R.M.; Tu, J.; Yang, Y.; Min, J.; Wang, M.; Song, Y.; Yu, Y.; Xu, C.; Ye, C.; IsHak, W.W.; et al. Investigation of cortisol dynamics in human sweat using a graphene-based wireless mHealth system. Matter 2020, 2, 921–937. [Google Scholar] [CrossRef]
- Holsboer, F. The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 2000, 23, 477–501. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.; Kim, S.; Yoon, T.; Joo, C.; Jung, H.I. Smart Fatigue Phone: Real-time estimation of driver fatigue using smartphone-based cortisol detection. Biosens. Bioelectron. 2019, 136, 106–111. [Google Scholar] [CrossRef]
- Tomiyama, A.J. Stress and obesity. Annu. Rev. Psychol. 2019, 70, 703–718. [Google Scholar] [CrossRef] [Green Version]
- Newell-Price, J.; Bertagna, X.; Grossman, A.B.; Nieman, L.K. Cushing’s syndrome. Lancet 2006, 367, 1605–1617. [Google Scholar] [CrossRef]
- Ten, S.; New, M.; Maclaren, N. Addison’s disease 2001. J. Clin. Endocrinol. Metab. 2001, 86, 2909–2922. [Google Scholar]
- Mohd Azmi, N.A.S.; Juliana, N.; Azmani, S.; Mohd Effendy, N.; Abu, I.F.; Mohd Fahmi Teng, N.I.; Das, S. Cortisol on circadian rhythm and its effect on cardiovascular system. Int. J. Environ. Res. Public Health 2021, 18, 676. [Google Scholar] [CrossRef] [PubMed]
- Baron-Cohen, S.; Auyeung, B.; Nørgaard-Pedersen, B.; Hougaard, D.M.; Abdallah, M.W.; Melgaard, L.; Cohen, A.S.; Chakrabarti, B.; Ruta, L.; Lombardo, M.V. Elevated fetal steroidogenic activity in autism. Mol. Psychiatry 2015, 20, 369–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabra, P.M.; Tsai, L.; Marton, L. Improved liquid-chromatographic method for determination of serum cortisol. Clin. Chem. 1979, 25, 1293–1296. [Google Scholar] [CrossRef] [PubMed]
- Oka, K.; Noguchi, M.; Kitamura, T.; Shima, S. Liquid chromatography and radioimmunoassay compared for determination of cortisol and corticosterone in plasma after a dexamethasone suppression test. Clin. Chem. 1987, 33, 1639–1642. [Google Scholar] [CrossRef]
- Kämäräinen, S.; Mäki, M.; Tolonen, T.; Palleschi, G.; Virtanen, V.; Micheli, L.; Sesay, A.M. Disposable electrochemical immunosensor for cortisol determination in human saliva. Talanta 2018, 188, 50–57. [Google Scholar] [CrossRef]
- Small, B.C.; Davis, K.B. Validation of a time-resolved fluoroimmunoassay for measuring plasma cortisol in channel catfish Ictalurus punctatus. J. World Aquac. Soc. 2002, 33, 184–187. [Google Scholar] [CrossRef]
- Franco-Martinez, L.; Tvarijonaviciute, A.; Martinez-Subiela, S.; Teles, M.; Tort, L. Chemiluminescent assay as an alternative to radioimmunoassay for the measurement of cortisol in plasma and skin mucus of Oncorhynchus mykiss. Ecol. Indic. 2019, 98, 634–640. [Google Scholar] [CrossRef]
- Goyal, R.N.; Chatterjee, S.; Rana, A.R.S. A comparison of edge-and basal-plane pyrolytic graphite electrodes towards the sensitive determination of hydrocortisone. Talanta 2010, 83, 149–155. [Google Scholar] [CrossRef]
- Sonawane, A.; Mujawar, M.A.; Bhansali, S. Atmospheric plasma treatment enhances the biosensing properties of graphene oxide-silver nanoparticle composite. J. Electrochem. Soc. 2019, 166, B3084. [Google Scholar] [CrossRef] [Green Version]
- Rison, S.; Rajeev, R.; Bhat, V.S.; Mathews, A.T.; Varghese, A.; Hegde, G. Non-enzymatic electrochemical determination of salivary cortisol using ZnO-graphene nanocomposites. RSC Adv. 2021, 11, 37877–37885. [Google Scholar] [CrossRef]
- Sharma, N.; Reddy, A.S.; Yun, K. Electrochemical detection of hydrocortisone using green-synthesized cobalt oxide nanoparticles with nafion-modified glassy carbon electrode. Chemosphere 2021, 282, 131029. [Google Scholar] [CrossRef]
- Gevaerd, A.; Watanabe, E.; Belli, C.; Marcolino-Junior, L.; Bergamini, M. A complete lab-made point of care device for non-immunological electrochemical determination of cortisol levels in salivary samples. Sens. Actuators B Chem. 2021, 332, 129532. [Google Scholar] [CrossRef]
- Urizar, G.G., Jr.; Hernandez, H.S.; Rayo, J.; Bhansali, S. Validation of an electrochemical sensor to detect cortisol responses to the trier social stress test. Neurobiol. Stress 2020, 13, 100263. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, Q.; Seth, A.; Kolla, S.; Luan, J.; Jiang, Q.; Rathi, P.; Gupta, P.; Morrissey, J.J.; Naik, R.R.; et al. Plasmonically-enhanced competitive assay for ultrasensitive and multiplexed detection of small molecules. Biosens. Bioelectron. 2022, 200, 113918. [Google Scholar] [CrossRef]
- Tu, E.; Pearlmutter, P.; Tiangco, M.; Derose, G.; Begdache, L.; Koh, A. Comparison of colorimetric analyses to determine cortisol in human sweat. ACS Omega 2020, 5, 8211–8218. [Google Scholar] [CrossRef]
- Oh, H.K.; Kim, K.; Park, J.; Jang, H.; Kim, M.G. Advanced trap lateral flow immunoassay sensor for the detection of cortisol in human bodily fluids. Sci. Rep. 2021, 11, 22580. [Google Scholar] [CrossRef]
- Kim, H.T.; Jin, E.; Lee, M.H. Portable chemiluminescence-based lateral flow assay platform for the detection of cortisol in human serum. Biosensors 2021, 11, 191. [Google Scholar] [CrossRef]
- Vinitha, T.; Ghosh, S.; Milleman, A.; Nguyen, T.; Ahn, C.H. A new polymer lab-on-a-chip (LOC) based on a microfluidic capillary flow assay (MCFA) for detecting unbound cortisol in saliva. Lab A Chip 2020, 20, 1961–1974. [Google Scholar]
- Soares, M.S.; Silva, L.C.; Vidal, M.; Loyez, M.; Fac ao, M.; Caucheteur, C.; Segatto, M.E.; Costa, F.M.; Leit ao, C.; Pereira, S.O.; et al. Label-free plasmonic immunosensor for cortisol detection in a D-shaped optical fiber. Biomed. Opt. Express 2022, 13, 3259–3274. [Google Scholar] [CrossRef]
- Leit ao, C.; Pereira, S.O.; Alberto, N.; Lobry, M.; Loyez, M.; Costa, F.M.; Pinto, J.L.; Caucheteur, C.; Marques, C. Cortisol in-fiber ultrasensitive plasmonic immunosensing. IEEE Sens. J. 2020, 21, 3028–3034. [Google Scholar] [CrossRef]
- Mitchell, J.S.; Lowe, T.E.; Ingram, J.R. Rapid ultrasensitive measurement of salivary cortisol using nano-linker chemistry coupled with surface plasmon resonance detection. Analyst 2009, 134, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Frasconi, M.; Mazzarino, M.; Botrè, F.; Mazzei, F. Surface plasmon resonance immunosensor for cortisol and cortisone determination. Anal. Bioanal. Chem. 2009, 394, 2151–2159. [Google Scholar] [CrossRef] [PubMed]
- Tahara, Y.; Huang, Z.; Kiritoshi, T.; Onodera, T.; Toko, K. Development of indirect competitive immuno-assay method using SPR detection for rapid and highly sensitive measurement of salivary cortisol levels. Front. Bioeng. Biotechnol. 2014, 2, 15. [Google Scholar] [CrossRef] [PubMed]
- Leit ao, C.; Leal-Junior, A.; Almeida, A.R.; Pereira, S.O.; Costa, F.M.; Pinto, J.L.; Marques, C. Cortisol AuPd plasmonic unclad POF biosensor. Biotechnol. Rep. 2021, 29, e00587. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, L.; Cui, D. Surface plasmon resonance immunoassay for cortisol determination with a self-assembling denaturalised bovine serum albumin layer on surface plasmon resonance chip. Micro Nano Lett. 2016, 11, 20–23. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, H.J.; Lee, J.; Lee, T.; Yun, J.; Lee, G.; Hong, Y. Hand-held Raman spectrometer-based dual detection of creatinine and cortisol in human sweat using silver nanoflakes. Anal. Chem. 2021, 93, 14996–15004. [Google Scholar] [CrossRef]
- Moore, T.J.; Sharma, B. Direct surface enhanced Raman spectroscopic detection of cortisol at physiological concentrations. Anal. Chem. 2019, 92, 2052–2057. [Google Scholar] [CrossRef]
- Oktavius, A.K.; Gu, Q.; Wihardjo, N.; Winata, O.; Sunanto, S.W.; Li, J.; Gao, P. Fully-conformable porous polyethylene nanofilm sweat sensor for sports fatigue. IEEE Sens. J. 2021, 21, 8861–8867. [Google Scholar] [CrossRef]
- Manickam, P.; Madhu, S.; Fernandez, R.E.; Viswanathan, C.; Bhansali, S. Fabric based wearable biosensor for continuous monitoring of steroids. ECS Trans. 2017, 77, 1841. [Google Scholar] [CrossRef]
- Manickam, P.; Fernandez, R.E.; Umasankar, Y.; Gurusamy, M.; Arizaleta, F.; Urizar, G.; Bhansali, S. Salivary cortisol analysis using metalloporphyrins and multi-walled carbon nanotubes nanocomposite functionalized electrodes. Sens. Actuators B Chem. 2018, 274, 47–53. [Google Scholar] [CrossRef]
- Nong, C.; Yang, B.; Li, X.; Feng, S.; Cui, H. An ultrasensitive electrochemical immunosensor based on in-situ growth of CuWO4 nanoparticles on MoS2 and chitosan-gold nanoparticles for cortisol detection. Microchem. J. 2022, 179, 107434. [Google Scholar] [CrossRef]
- Chavan, S.G.; Yagati, A.K.; Koyappayil, A.; Go, A.; Yeon, S.; Lee, M.H. Recombinant histidine-tagged nano-protein-based highly sensitive electro-sensing device for salivary cortisol. Bioelectrochemistry 2022, 144, 108046. [Google Scholar] [CrossRef]
- Yu, C.; Li, L.; Ding, Y.; Liu, H.; Cui, H. Molecularly imprinted electrochemical aptasensor based on functionalized graphene and nitrogen-doped carbon quantum dots for trace cortisol assay. Analyst 2022, 147, 744–752. [Google Scholar] [CrossRef]
- Pali, M.; Jagannath, B.; Lin, K.C.; Upasham, S.; Sankhalab, D.; Upashama, S.; Muthukumar, S.; Prasad, S. CATCH (Cortisol Apta WATCH):‘Bio-mimic alarm’to track Anxiety, Stress, Immunity in human sweat. Electrochim. Acta 2021, 390, 138834. [Google Scholar] [CrossRef]
- Roushani, M.; Hosseini, H.; Hajinia, Z.; Rahmati, Z. Rationally designed of hollow nitrogen doped carbon nanotubes double shelled with hierarchical nickel hydroxide nanosheet as a high performance surface substrate for cortisol aptasensing. Electrochim. Acta 2021, 388, 138608. [Google Scholar] [CrossRef]
- Khan, M.S.; Dighe, K.; Wang, Z.; Srivastava, I.; Schwartz-Duval, A.S.; Misra, S.K.; Pan, D. Electrochemical-digital immunosensor with enhanced sensitivity for detecting human salivary glucocorticoid hormone. Analyst 2019, 144, 1448–1457. [Google Scholar] [CrossRef]
- Mori, M.; Aoyagi, K.; Tomoda, T.; Ishikawara, F.; Sakamoto, S.; Myochin, H.; Kuga, M.; Kozaki, D.; Ohshima, N.; Izumi, T.; et al. Simultaneous capillary electrophoresis of anions and cations in a single injection using an anion exchanger-modified capillary for determination of salivary ions in combination with statistical analyses. J. Chromatogr. A 2021, 1635, 461647. [Google Scholar] [CrossRef]
- Ito, T.; Aoki, N.; Kaneko, S.; Suzuki, K. Highly sensitive and rapid sequential cortisol detection using twin sensor QCM. Anal. Methods 2014, 6, 7469–7474. [Google Scholar] [CrossRef]
- Kim, Y.; Yang, J.; Hur, H.; Oh, S.; Lee, H.H. Highly sensitive colorimetric assay of cortisol using cortisol antibody and aptamer sandwich assay. Biosensors 2021, 11, 163. [Google Scholar] [CrossRef]
- Dalirirad, S.; Han, D.; Steckl, A.J. Aptamer-based lateral flow biosensor for rapid detection of salivary cortisol. ACS Omega 2020, 5, 32890–32898. [Google Scholar] [CrossRef]
- Panfilova, E. Development of a prototype lateral flow immunoassay of cortisol in saliva for daily monitoring of stress. Biosensors 2021, 11, 146. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wu, B.; Tanyi, E.K.; Yeasmin, S.; Cheng, L.J. Label-free sensitive detection of steroid hormone cortisol based on target-induced fluorescence quenching of quantum dots. Langmuir 2020, 36, 7781–7788. [Google Scholar] [CrossRef]
- Moghadam, F.M.; Bigdeli, M.; Tamayol, A.; Shin, S.R. TISS nanobiosensor for salivary cortisol measurement by aptamer Ag nanocluster SAIE supraparticle structure. Sens. Actuators B Chem. 2021, 344, 130160. [Google Scholar] [CrossRef]
- Weng, X.; Fu, Z.; Zhang, C.; Jiang, W.; Jiang, H. A portable 3D microfluidic origami biosensor for cortisol detection in human sweat. Anal. Chem. 2022, 94, 3526–3534. [Google Scholar] [CrossRef] [PubMed]
- Bhaskar, S.; Singh, A.K.; Das, P.; Jana, P.; Kanvah, S.; Bhaktha BN, S.; Ramamurthy, S.S. Superior resonant nanocavities engineering on the photonic crystal-coupled emission platform for the detection of femtomolar iodide and zeptomolar cortisol. ACS Appl. Mater. Interfaces 2020, 12, 34323–34336. [Google Scholar] [CrossRef]
- Yılmaz, G.E.; Saylan, Y.; Göktürk, I.; Yılmaz, F.; Denizli, A. Selective amplification of plasmonic sensor signal for cortisol detection using gold nanoparticles. Biosensors 2022, 12, 482. [Google Scholar] [CrossRef]
- Wu, T.; Ding, L.; Zhang, Y.; Fang, W. A simple cortisol biosensor based on AuNPs-DNA aptamer conjugate. IEEE Sens. J. 2022, 22, 12485–12492. [Google Scholar] [CrossRef]
- Jo, S.; Lee, W.; Park, J.; Kim, W.; Kim, W.; Lee, G.; Lee, H.J.; Hong, J.; Park, J. Localized surface plasmon resonance aptasensor for the highly sensitive direct detection of cortisol in human saliva. Sens. Actuators B Chem. 2020, 304, 127424. [Google Scholar] [CrossRef]
- Fan, L.; Wang, Z.; Zhang, Y.; Song, Y.; Yang, H.; Wang, F. Molecularly imprinted Monolithic column-based SERS sensor for selective detection of cortisol in dog saliva. Talanta 2022, 249, 123609. [Google Scholar] [CrossRef]
- Mugo, S.M.; Alberkant, J.; Bernstein, N.; Zenkina, O.V. Flexible electrochemical aptasensor for cortisol detection in human sweat. Anal. Methods 2021, 13, 4169–4173. [Google Scholar] [CrossRef]
- Sekar, M.; Pandiaraj, M.; Bhansali, S.; Ponpandian, N.; Viswanathan, C. Carbon fiber based electrochemical sensor for sweat cortisol measurement. Sci. Rep. 2019, 9, 403. [Google Scholar] [CrossRef] [Green Version]
- Goyal, A.; Sakata, T. Development of a redox-label-doped molecularly imprinted polymer on β-cyclodextrin/reduced graphene oxide for electrochemical detection of a stress biomarker. ACS Omega 2022, 7, 33491–33499. [Google Scholar] [CrossRef]
- Mugo, S.M.; Alberkant, J. Flexible molecularly imprinted electrochemical sensor for cortisol monitoring in sweat. Anal. Bioanal. Chem. 2020, 412, 1825–1833. [Google Scholar] [CrossRef]
- Liu, Q.; Shi, W.; Tian, L.; Su, M.; Jiang, M.; Li, J.; Gu, H.; Yu, C. Preparation of nanostructured PDMS film as flexible immunosensor for cortisol analysis in human sweat. Anal. Chim. Acta 2021, 1184, 339010. [Google Scholar] [CrossRef]
- Liu, J.; Xu, N.; Men, H.; Li, S.; Lu, Y.; Low, S.S.; Li, X.; Zhu, L.; Cheng, C.; Xu, G.; et al. Salivary cortisol determination on smartphone-based differential pulse voltammetry system. Sensors 2020, 20, 1422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Z.; Chen, H.; Ye, H.; Chen, Z.; Jaffrezic-Renault, N.; Guo, Z. An ultrasensitive aptamer–antibody sandwich cortisol sensor for the noninvasive monitoring of stress state. Biosens. Bioelectron. 2021, 190, 113451. [Google Scholar] [CrossRef]
- Rezapoor-Fashtali, Z.; Ganjali, M.R.; Faridbod, F. A novel electrochemical aptasensor based on a new platform of Samarium molybdate flower-like nanoparticles@ Poly(pyrrole) for non-invasive determination of saliva cortisol. Biosensors 2022, 12, 720. [Google Scholar] [CrossRef]
- Singh, N.K.; Chung, S.; Sveiven, M.; Hall, D.A. Cortisol detection in undiluted human serum using a sensitive electrochemical structure-switching aptamer over an antifouling nanocomposite layer. ACS Omega 2021, 6, 27888–27897. [Google Scholar] [CrossRef]
- Duan, D.; Lu, H.; Li, L.; Ding, Y.; Ma, G. A molecularly imprinted electrochemical sensors based on bamboo-like carbon nanotubes loaded with nickel nanoclusters for highly selective detection of cortisol. Microchem. J. 2022, 175, 107231. [Google Scholar] [CrossRef]
- Cui, X.; Han, J.; Chen, G.; Wang, L.; Luo, Z.; Chang, C.; Zhang, J.; Fu, Q. Development of a highly sensitive imprinted electrochemical sensor for the detection of hydrocortisone in wastewater. J. Electrochem. Soc. 2021, 168, 057508. [Google Scholar] [CrossRef]
- Yeasmin, S.; Wu, B.; Liu, Y.; Ullah, A.; Cheng, L.J. Nano gold-doped molecularly imprinted electrochemical sensor for rapid and ultrasensitive cortisol detection. Biosens. Bioelectron. 2022, 206, 114142. [Google Scholar] [CrossRef] [PubMed]
- Uygun, H.D.E.; Uygun, Z.O.; Canbay, E.; Sağın, F.G.; Sezer, E. Non-invasive cortisol detection in saliva by using molecularly cortisol imprinted fullerene-acrylamide modified screen printed electrodes. Talanta 2020, 206, 120225. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Kannan, P.; Natarajan, B.; Maiyalagan, T.; Subramanian, P.; Jiang, Z.; Mao, S. MnO2 cacti-like nanostructured platform powers the enhanced electrochemical immunobiosensing of cortisol. Sens. Actuators B Chem. 2020, 317, 128134. [Google Scholar] [CrossRef]
- San Nah, J.; Barman, S.C.; Zahed, M.A.; Sharifuzzaman, M.; Yoon, H.; Park, C.; Yoon, S.; Zhang, S.; Park, J.Y. A wearable microfluidics-integrated impedimetric immunosensor based on Ti3C2Tx MXene incorporated laser-burned graphene for noninvasive sweat cortisol detection. Sens. Actuators B Chem. 2021, 329, 129206. [Google Scholar]
- Mahmoodi, S.R.; Xie, P.; Zachs, D.P.; Peterson, E.J.; Graham, R.S.; Kaiser, C.R.; Lim, H.H.; Allen, M.G.; Javanmard, M. Single-step label-free nanowell immunoassay accurately quantifies serum stress hormones within minutes. Sci. Adv. 2021, 7, eabf4401. [Google Scholar] [CrossRef]
- Pusomjit, P.; Teengam, P.; Thepsuparungsikul, N.; Sanongkiet, S.; Chailapakul, O. Impedimetric determination of cortisol using screen-printed electrode with aptamer-modified magnetic beads. Microchim. Acta 2021, 188, 1–8. [Google Scholar] [CrossRef]
- Lee, H.B.; Meeseepong, M.; Trung, T.Q.; Kim, B.Y.; Lee, N.E. A wearable lab-on-a-patch platform with stretchable nanostructured biosensor for non-invasive immunodetection of biomarker in sweat. Biosens. Bioelectron. 2020, 156, 112133. [Google Scholar] [CrossRef]
- Tang, W.; Yin, L.; Sempionatto, J.R.; Moon, J.M.; Teymourian, H.; Wang, J. Touch-based stressless cortisol sensing. Adv. Mater. 2021, 33, 2008465. [Google Scholar] [CrossRef]
- Naik, A.R.; Zhou, Y.; Dey, A.A.; Arellano, D.L.G.; Okoroanyanwu, U.; Secor, E.B.; Hersam, M.C.; Morse, J.; Rothstein, J.P.; Carter, K.R.; et al. Printed microfluidic sweat sensing platform for cortisol and glucose detection. Lab A Chip 2022, 22, 156–169. [Google Scholar] [CrossRef]
- Wang, X.; Walt, D.R. Simultaneous detection of small molecules, proteins and microRNAs using single molecule arrays. Chem. Sci. 2020, 11, 7896–7903. [Google Scholar] [CrossRef]
- Yang, S.; Dai, F.; Lu, L.; Yin, M.; Xue, L.; Feng, W.; Li, B.; Jiao, J.; Chen, Q. All-in-one calcium nanoflowers for dual outputs biosensor: A simultaneous strategy for depression drug evaluation and non-invasive stress assessment. Biosens. Bioelectron. 2022, 216, 114655. [Google Scholar] [CrossRef]
- Vargas, E.; Povedano, E.; Krishnan, S.; Teymourian, H.; Tehrani, F.; Campuzano, S.; Dassau, E.; Wang, J. Simultaneous cortisol/insulin microchip detection using dual enzyme tagging. Biosens. Bioelectron. 2020, 167, 112512. [Google Scholar] [CrossRef]
- Dong, J.; Miyake, C.; Yasuda, T.; Oyama, H.; Morita, I.; Tsukahara, T.; Takahashi, M.; Jeong, H.J.; Kitaguchi, T.; Kobayashi, N.; et al. PM Q-probe: A fluorescent binding protein that converts many antibodies to a fluorescent biosensor. Biosens. Bioelectron. 2020, 165, 112425. [Google Scholar] [CrossRef]
- Madhu, S.; Anthuuvan, A.J.; Ramasamy, S.; Manickam, P.; Bhansali, S.; Nagamony, P.; Chinnuswamy, V. ZnO nanorod integrated flexible carbon fibers for sweat cortisol detection. ACS Appl. Electron. Mater. 2020, 2, 499–509. [Google Scholar] [CrossRef]
- Santiago, E.; Poudyal, S.S.; Shin, S.Y.; Yoon, H.J. Graphene oxide functionalized biosensor for detection of stress-related biomarkers. Sensors 2022, 22, 558. [Google Scholar] [CrossRef]
- van Smeden, L.; Saris, A.; Sergelen, K.; de Jong, A.M.; Yan, J.; Prins, M.W. Reversible immunosensor for the continuous monitoring of cortisol in blood plasma sampled with microdialysis. ACS Sens. 2022, 7, 3041–3048. [Google Scholar] [CrossRef]
- Buskermolen, A.D.; Lin, Y.T.; van Smeden, L.; van Haaften, R.B.; Yan, J.; Sergelen, K.; de Jong, A.M.; Prins, M.W. Continuous biomarker monitoring with single molecule resolution by measuring free particle motion. Nat. Commun. 2022, 13, 1–12. [Google Scholar] [CrossRef]
- Martin, J.A.; Chávez, J.L.; Chushak, Y.; Chapleau, R.R.; Hagen, J.; Kelley-Loughnane, N. Tunable stringency aptamer selection and gold nanoparticle assay for detection of cortisol. Anal. Bioanal. Chem. 2014, 406, 4637–4647. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, M.; Peng, Y.; Li, S.; Han, D.; Ren, S.u.; Qin, K.; Li, S.; Han, T.; Wang, Y.; et al. Exploring the performance of multi-channel tetrahedral nucleic acid tweezers platforms for efficient and sensitive biosensing. Chem. Eng. J. 2022, 448, 137635. [Google Scholar] [CrossRef]
- Karuppaiah, G.; Velayutham, J.; Hansda, S.; Narayana, N.; Bhansali, S.; Manickam, P. Towards the development of reagent-free and reusable electrochemical aptamer-based cortisol sensor. Bioelectrochemistry 2022, 145, 108098. [Google Scholar] [CrossRef]
- Yuan, Y.; Bali, A.; White, R.J.; Heikenfeld, J. Solution-phase electrochemical aptamer-based sensors. IEEE Trans. Biomed. Eng. 2022. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhao, C.; Wang, Z.; Yang, K.A.; Cheng, X.; Liu, W.; Yu, W.; Lin, S.; Zhao, Y.; Cheung, K.M.; et al. Wearable aptamer-field-effect transistor sensing system for noninvasive cortisol monitoring. Sci. Adv. 2022, 8, eabk0967. [Google Scholar] [CrossRef]
- Hayashi, H.; Toyama, R.; Takibuchi, R.; Hideshima, S.; Kuroiwa, S.; Kaneko, N.; Horii, K.; Ohashi, K.; Momma, T.; Osaka, T. Immobilization of target-bound aptamer on field effect transistor biosensor to improve sensitivity for detection of uncharged cortisol. Electrochemistry 2021, 89, 134–137. [Google Scholar] [CrossRef]
- Jeon, J.; Uthaman, S.; Lee, J.; Hwang, H.; Kim, G.; Yoo, P.J.; Hammock, B.D.; Kim, C.S.; Park, Y.S.; Park, I.K. In-direct localized surface plasmon resonance (LSPR)-based nanosensors for highly sensitive and rapid detection of cortisol. Sens. Actuators B Chem. 2018, 266, 710–716. [Google Scholar] [CrossRef]
- Villa, J.E.; Khan, S.; Neres, L.; Sotomayor, M.D. Preparation of a magnetic molecularly imprinted polymer for non-invasive determination of cortisol. J. Polym. Res. 2021, 28, 1–9. [Google Scholar] [CrossRef]
- Dykstra, G.; Reynolds, B.; Smith, R.; Zhou, K.; Liu, Y. Electropolymerized molecularly imprinted polymer synthesis guided by an integrated data-driven framework for cortisol detection. ACS Appl. Mater. Interfaces 2022, 14, 25972–25983. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, L.; Liu, L.; Kuang, H.; Xu, L.; Xu, C. Ultrasensitive detection of seventeen chemicals simultaneously using paper-based sensors. Mater. Chem. Front. 2018, 2, 1900–1910. [Google Scholar] [CrossRef]
- Khelifa, L.; Hu, Y.; Jiang, N.; Yetisen, A.K. Lateral flow assays for hormone detection. Lab A Chip 2022, 22, 2451–2475. [Google Scholar] [CrossRef]
- Park, J.H.; Park, E.K.; Cho, Y.K.; Shin, I.S.; Lee, H. Normalizing the optical signal enables robust assays with lateral flow biosensors. ACS Omega 2022, 7, 17723–17731. [Google Scholar] [CrossRef]
- Aerathupalathu Janardhanan, J.; Chen, Y.L.; Liu, C.T.; Tseng, H.S.; Wu, P.I.; She, J.W.; Hsiao, Y.S.; Yu, H.h. Sensitive detection of sweat cortisol using an organic electrochemical transistor featuring nanostructured Poly(3, 4-Ethylenedioxythiophene) derivatives in the channel layer. Anal. Chem. 2022, 94, 7584–7593. [Google Scholar] [CrossRef]
- Park, H.; Baek, S.; Sen, A.; Jung, B.; Shim, J.; Park, Y.C.; Lee, L.P.; Kim, Y.J.; Kim, S. Ultrasensitive and selective field-effect transistor-based biosensor created by rings of MoS2 nanopores. ACS Nano 2021, 16, 1826–1835. [Google Scholar] [CrossRef]
- Ku, M.; Kim, J.; Won, J.E.; Kang, W.; Park, Y.G.; Park, J.; Lee, J.H.; Cheon, J.; Lee, H.H.; Park, J.U. Smart, soft contact lens for wireless immunosensing of cortisol. Sci. Adv. 2020, 6, eabb2891. [Google Scholar] [CrossRef]
- Demuru, S.; Kim, J.; El Chazli, M.; Bruce, S.; Dupertuis, M.; Binz, P.A.; Saubade, M.; Lafaye, C.; Briand, D. Antibody-coated wearable organic electrochemical transistors for cortisol detection in human sweat. ACS Sens. 2022, 7, 2721–2731. [Google Scholar] [CrossRef]
Technique b | Transducer c | Detection Range d | LOD | Sample e | Ref. |
---|---|---|---|---|---|
CM | Ab&Apt/Au NPs | 1.00 pM–1.00 M (-) | 100 fM | STDS | [59] |
Apt/Au NPs | 1.38–41.4 nM (non-Linear) | 1.02 nM | Saliva | [60] | |
Ab/Au NPs | 2.76–276 nM (non-Linear) | 2.76 nM | Saliva | [61] | |
FL | Cu/MoS QDs | 0.28–1.38 M (S-C Linear) | 44.2 nM | STDS | [14] |
Apt/QDs/MNPs | 0.40–400 nM (S-lgC Linear) | 1.00 nM | STDS | [62] | |
Apt/Ag NCs | 1.00–900 nM (S-C Linear) | 1.00 nM | Saliva | [63] | |
FAM-Apt/MoS | 27.6 nM–2.76 M (S-C Linear) | 18.7 nM | Sweat | [64] | |
SPR | Ab/Au NRs/FLPs | 0.28 pM–0.28 M (S-lgC Sigmate) | 5.52 pM | Saliva | [34] |
Ag NRs/NdO | 10–10/10–10 nM (S-lgC Linear) | 10.0 zM | RhB-C | [65] | |
MIP/Au NPs | 27.6 pM–276 nM (S-C Linear) | 22.6 pM | STDS | [66] | |
Apt/Au NPs | 1.00 nM–1.00 M (S-lgC Linear) | - | STDS | [67] | |
LSPR | Apt/Au NPs | 0.10 nM–1 M (S-lgC Linear) | 0.10 nM | STDS | [68] |
SERs | Ab/Au nanostars | 34.5 nM–1.10 M (S-e Linear) | 19.3 nM | Se/Ur | [13] |
MIMC/Ag NPs | 100 nM–1.00 mM (S-lgC Linear) | 100 nM | STDS | [69] |
Technique | Transducer b | Detection Range c | LOD | Sample d | Ref. |
---|---|---|---|---|---|
CV | Apt/PDMS/CNC&CNT | 6.90–96.67 nM (S-C Linear) | 4.97 nM | STDS | [70] |
Ab/FeO/CCY | 2.76 fM–2.76 M (S-lgC linear) | 13.8 aM | STDS | [71] | |
MIP/CD-rGO/GCE | 13.8 pM–13.8 M (S-lgC linear) | 19.3 pM | STDS | [72] | |
MIP/CNC-CNT/PDMS | 27.6–182 nM (S-C linear) | 5.52 nM | Sweat | [73] | |
DPV | Ab/R-AFTN/GCE | 2.76 pM–2.76 M (S-lgC Linear) | 3.29 nM | Saliva | [52] |
MIP-Apt/N-CQDs-FG/GCE | 1.00 pM–10.0 nM (S-lgC linear) | 0.33 pM | STDS | [53] | |
Ab/Au NPs/MWCNTs/PDMS | 2.76 fM–2.76 M (S-lgC linear) | 0.83 fM | STDS | [74] | |
Ab/Au NPs/MoS/Au NPs/SPE | 0.50–200 nM (S-lgC linear) | 0.11 nM | STDS | [75] | |
Apt/MWCNTs/CMK-3/Ag NPs | 0.28 pM–27.6 nM (S-lgC linear) | 0.25 pM | STDS | [76] | |
Apt/rGO/SmM NPs@PP/GCE | 0.05–15.0 pM (S-lgC linear) | 0.45 pM | STDS | [77] | |
MB-Apt/Au NW | 1.00–1000 nM (S-lgC linear) | 0.68 nM | Serum | [78] | |
MIP/NiNCs-N-CNTs/GCE | 10.0 fM–1.00 nM (S-lgC linear) | 2.37 fM | STDS | [79] | |
MIP/PDA-ERGO/GCE | 1.00 nM–50.0 M (S-lgC linear) | 6.00 pM | Waste | [80] | |
SWV | Cortisol-AP/Ab/SPE | 1.38–152.2 nM (S-lgC linear) | 4.70 nM | Saliva | [25] |
Ab/Chit-Au/CuWO@MoS/GCE | 0.28 fM–2.76 M (S-lgC linear) | 38.7 aM | STDS | [51] | |
MIP/Au NPs | 1.00 pM–500 nM (S-lgC linear) | 200 fM | STDS | [81] | |
EIS | Apt/ZnO/polyamide | 2.76–707 nM (S-C logistic) | 2.76 nM | Sweat | [54] |
Apt/Ni(OH)@N-C NTs | 1.00–80.0 pM/0.10–25.0 nM (S-C linear) | 0.30 pM | STDS | [55] | |
MIP/CE | 0.50–64.0 nM (S-C linear) | 0.14 nM | STDS | [82] | |
Ab/-MnO CNs/GCE | 0.10–1.00/100–1500 pM (S-C linear) | 23.0 fM | STDS | [83] | |
Ab/TiCT MXene/LBG/PDMS | 0.01–100 nM (S-lgC linear) | 3.88 pM | Sweat | [84] | |
Ab/Au nanowell | 0.28–4.14 M (S-C linear) | 0.14 M | STDS | [85] | |
Apt/Magnetic beads | 0.28–276 nM (S-lgC linear) | 0.58 pM | Sweat | [86] | |
Ab/Au electrode | 2.76 pM–2.76 M (S-lgC linear) | 2.76 pM | Sweat | [87] | |
CA | Ni/SPE | 0.25–25.0 M (S-C linear) | 74.0 nM | STDS | [32] |
MIP/SPE | 10.0 nM–1.00 M (S-lgC linear) | 0.20 nM | Sweat | [88] | |
Ab/Au NPs/graphene electrode | 10.0 pM–100 nM (S-lgC linear) | 10.0 pM | STDS | [89] |
No. | Sequence 5-3 | Ref. |
---|---|---|
1 | 5-GGA ATG GAT CCA CAT CCA TGG ATG GGC AAT GCG GGG TGG AGA ATG GTT GCC GCA CTT CGG CTT CAC TGC AGA CTT GAC GAA GCT T-3 | [99] |
2 | 5-ATG GGC AAT GCG GGG TGG AGA ATG GTT GCC GCA CTT CGG C-3 | [100] |
3 | 5-CTC TCG GGA CGA CGC CCG CAT GTT CCA TGG ATA GTC TTG ACT AGT CGT CCC-3 | [101] |
4 | 5-AG CAG CAC AGA GGT CAG ATG CAA ACC ACA CCT GAG TGG TTA GCG TAT GTC ATT TAC GGA CC-3 | [55] |
5 | 5-CGA CCG GTC TGG GGA CCC TGT CTG GGT GTG TGG GTA GTA GGT CG-3 | [102] |
6 | 5-ACC TCT GTG GGT GGG AGG GTC GGG CCC TCA GAG GTC TCT TTG CCC GTG AAC TCT G-3 | [103] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Lai, Q.; Chen, W.; Zhang, C.; Mo, L.; Liu, Z. Recent Advance in Cortisol Immunosensing Technologies and Devices. Chemosensors 2023, 11, 90. https://doi.org/10.3390/chemosensors11020090
Zhang Y, Lai Q, Chen W, Zhang C, Mo L, Liu Z. Recent Advance in Cortisol Immunosensing Technologies and Devices. Chemosensors. 2023; 11(2):90. https://doi.org/10.3390/chemosensors11020090
Chicago/Turabian StyleZhang, Yanke, Qingteng Lai, Wei Chen, Chi Zhang, Long Mo, and Zhengchun Liu. 2023. "Recent Advance in Cortisol Immunosensing Technologies and Devices" Chemosensors 11, no. 2: 90. https://doi.org/10.3390/chemosensors11020090
APA StyleZhang, Y., Lai, Q., Chen, W., Zhang, C., Mo, L., & Liu, Z. (2023). Recent Advance in Cortisol Immunosensing Technologies and Devices. Chemosensors, 11(2), 90. https://doi.org/10.3390/chemosensors11020090