Lighting Up the Heritage Sciences: The Past and Future of Laser-Induced Fluorescence Spectroscopy in the Field of Cultural Goods
Abstract
:1. Introduction
2. Aim
3. LIF Applications in Heritage Sciences
4. Laser Types
5. From Single to Hybrid Techniques
6. Enhancing LIF Analytical Capacity
7. Data Post-Processing
8. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Telle, H.H.; Gonzalez Urena, A.; Donovan, R.J. Laser-induced Fluorescence Spectroscopy. In Laser Chemistry: Spectroscopy, Dynamics and Applications; Chichester: West Sussex, UK, 2007; pp. 101–118. [Google Scholar]
- Jablonski, A. Über den Mechanisms des Photolumineszenz von Farbstoffphosphoren. Z. Phys. 1935, 94, 38–46. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, NY, USA, 2006. [Google Scholar]
- Giorgi, L.; Nevin, A.; Nodari, L.; Comelli, D.; Alberti, R.; Gironda, M.; Mosca, S.; Zendri, E.; Piccolo, M.; Izzo, F.C. In-situ technical study of modern paintings part 1: The evolution of artistic materials and painting techniques in ten paintings from 1889 to 1940 by Alessandro Milesi (1856–1945). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 219, 530–538. [Google Scholar] [CrossRef]
- Corcoran, T.C. Laser-induced fluorescence spectroscopy (LIF). In Laser Spectroscopy for Sensing: Fundamentals, Techniques and Applications; Woodhead Publishing: Cambridge, UK, 2014. [Google Scholar]
- Borisova, E.G.; Angelova, L.P.; Pavlova, E.P. Endogenous and Exogenous Fluorescence Skin Cancer Diagnostics for Clinical Applications. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 211–222. [Google Scholar] [CrossRef]
- Ghervase, L.; Carstea, E.; Borisova, E.; Forsea, A. Bringing Light into the Diagnosis of Skin Disorders-Short Review on Laser Induced Fluorescence Spectroscopy and Optical Coherence Tomography in Dermatology. Curr. Med Imaging Former. Curr. Med Imaging Rev. 2014, 10, 297–303. [Google Scholar] [CrossRef]
- Gabbarini, V.; Rossi, R.; Ciparisse, J.F.; Carestia, M.; Gaudio, P.; Malizia, A.; Divizia, A.; De Filippis, P.; Anselmi, M.; Palombi, L.; et al. Laser-induced fluorescence (LIF) as a smart method for fast environmental virological analyses: Validation on Picornaviruses. Sci. Rep. 2019, 9, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Rüttinger, S.; Spille, C.; Hoffmann, M.; Schlüter, M. Laser-Induced Fluorescence in Multiphase Systems. ChemBioEng Rev. 2018, 5, 253–269. [Google Scholar] [CrossRef]
- Grönlund, R.; Hällström, J.; Johansson, A.; Palombi, L.; Lognoli, D.; Raimondi, V.; Cecchi, G.; Barup, K.; Conti, C.; Brandt, O.; et al. Laser-Induced Fluorescence for Assessment of Cultural Heritage. In Proceedings of the 23rd International Laser Radar Conference, Nara, Japan, 24–28 July 2006. [Google Scholar]
- Spizzichino, V.; Angelini, F.; Caneve, L.; Colao, F.; Corrias, R.; Ruggiero, L. In Situ study of modern synthetic materials and pigments in contemporary paintings by laser-induced fluorescence scanning. Stud. Conserv. 2015, 60, S178–S184. [Google Scholar] [CrossRef]
- Ghervase, L.; Carstea, E.M.; Pavelescu, G.; Savastru, D. Laser induced fluorescence efficiency in water quality assessment. Rom. Rep. Phys. 2010, 62, 3. [Google Scholar]
- Fotakis, C.; Anglos, D.; Zafiropulos, V.; Georgiou, S.; Tornari, V. Lasers in the Preservation of Cultural Heritage: Principles and Applications; Taylor & Francis: New York, NY, USA, 2006. [Google Scholar]
- Caso, M.F.; Caneve, L.; Spizzichino, V. Intercalibration of Hyperspectral and Multispectral Systems for Laser Induced Fluorescence Imaging. 2019. Available online: https://hdl.handle.net/20.500.12079/54661 (accessed on 25 January 2023).
- Angheluta, L.; Striber, J.; Radvan, R.; Simileanu, M. Automated optoelectronic device for qualitative analysis of the artwork surfaces using the LIF technique. Rom. Rep. Phys. 2008, 60, 1053–1063. [Google Scholar]
- da Silva, J.M.; Utkin, A.B. Application of laser-induced fluorescence in functional studies of photosynthetic biofilms. Processes 2018, 6, 227. [Google Scholar] [CrossRef]
- Zare, R.N. My life with lIF: A personal account of developing laser-induced fluorescence. Annu. Rev. Anal. Chem. 2012, 5, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.T.; Lai, E.P.C. Current state of laser-induced fluorescence spectroscopy for designing biochemical sensors. Chemosensors 2021, 9, 275. [Google Scholar] [CrossRef]
- Dinesan, H.; Kumar, S.S. Laser-Induced Fluorescence (LIF) Spectroscopy of Trapped Molecular Ions in the Gas Phase. Appl. Spectrosc. 2022, 76, 1393–1411. [Google Scholar] [CrossRef]
- Zacharioudaki, D.-E.; Fitilis, I.; Kotti, M. Review of Fluorescence Spectroscopy in Environmental Quality Applications. Molecules 2022, 27, 4801. [Google Scholar] [CrossRef] [PubMed]
- Kwaśny, M.; Bombalska, A. Applications of Laser-Induced Fluorescence in Medicine. Sensors 2022, 22, 2956. [Google Scholar] [CrossRef]
- Nevin, A.; Spoto, G.; Anglos, D. Laser spectroscopies for elemental and molecular analysis in art and archaeology. Appl. Phys. A Mater. Sci. Process. 2012, 106, 339–361. [Google Scholar] [CrossRef]
- Anglos, D.; Balas, C.; Fotakis, C. Laser spectroscopic and optical imaging techniques in chemical and structural diagnostics of painted artwork. Am. Lab. 1999, 31, 60–67. [Google Scholar]
- Miyoshi, T. Fluorescence from resins for oil painting under N2 laser excitation. Jpn. J. Appl. Phys. 1990, 29, 1727–1728. [Google Scholar] [CrossRef]
- Anglos, D.; Couris, S.; Mavromanolakis, A.; Zergioti, I.; Solomidou, M.; Liu, W.; Papazoglou, T.; Zafiropulos, V.; Fotakis, C.; Doulgeridis, M.; et al. Artwork diagnostics laser induced breakdown spectroscopy (LIBS) and laser induced fluorescence (LIF) spectroscopy. In Proceedings of the Lasers in the Conservation of Artworks: LACONA I Proceedings, Heraklion, Greece, 4–6 October 1995; Mayer: Vienna, Austria, 1997; pp. 113–118. [Google Scholar]
- Borgia, I.; Fantoni, R.; Flamini, C.; Di Palma, T.M.; Guidoni, A.G.; Mele, A. Luminescence from pigments and resins for oil paintings induced by laser excitation. Appl. Surf. Sci. 1998, 127–129, 95–100. [Google Scholar] [CrossRef]
- Cecchi, G.; Pantani, L.; Raimondi, V.; Tomaselli, L.; Lamenti, G.; Tiano, P.; Chiari, R. Fluorescence lidar technique for the remote sensing of stone monuments. J. Cult. Heritage 2000, 1, 29–36. [Google Scholar] [CrossRef]
- Castillejo, M.; Martín, M.; Oujja, M.; Silva, D.; Torres, R.; Domingo, C.; Garcia-Ramos, J.; Sanchez-Cortes, S. Spectroscopic analysis of pigments and binding media of polychromes by the combination of optical laser-based and vibrational techniques. Appl. Spectrosc. 2001, 55, 992–998. [Google Scholar] [CrossRef]
- Lognoli, D.; Lamenti, G.; Pantani, L.; Tirelli, D.; Tiano, P.; Tomaselli, L. Detection and characterization of biodeteriogens on stone cultural heritage by fluorescence lidar. Appl. Opt. 2002, 41, 1780–1787. [Google Scholar] [CrossRef]
- Colao, F.; Fiorani, L.; Fantoni, R.; Palucci, A.; Striber, J. Diagnostics of stone samples by laser induced fluorescence. In Proceedings of the SPIE 5581: ROMOPTO 2003: Seventh Conference on Optics, Constantat, Romania, 8–11 September 2003; Volume 5581, pp. 455–464. [Google Scholar]
- Lognoli, D.; Cecchi, G.; Mochi, I.; Pantani, L.; Raimondi, V.; Chiari, R.; Johansson, T.; Weibring, P.; Edner, H.; Svanberg, S. Fluorescence lidar imaging of the cathedral and baptistery of Parma. Appl. Phys. B Laser Opt. 2002, 76, 457–465. [Google Scholar] [CrossRef]
- Pantani, L.; Cecchi, G.; Lognoli, D.; Mochi, I.; Raimondi, V.; Tirelli, D.; Trambusti, M.; Valmori, G.; Weibring, P.K.A.; Edner, H.; et al. Lithotypes characterization with a fluorescence lidar imaging system using a multi-wavelength excitation source. In Proceedings of the Remote Sensing for Environmental Monitoring, GIS Applications, and Geology II, Barcelona, Spain, 9–11 September 2003; pp. 151–159. [Google Scholar] [CrossRef]
- Comelli, D.; D’Andrea, C.; Valentini, G.; Cubeddu, R.; Colombo, C.; Toniolo, L. Fluorescence lifetime imaging and spectroscopy as tools for nondestructive analysis of works of art. Appl. Optics 2004, 43, 2175–2183. [Google Scholar] [CrossRef]
- Nevin, A.; Cather, S.; Anglos, D.; Fotakis, C. Laser-induced fluorescence analysis of protein-binding media, in the conservation of artworks. In Proceedings of the Lasers in the Conservation of Artworks: LACONA VI Proceedings, Vienna, Austria, 21–25 September 2005; Springer: Berlin, Germany, 2007; pp. 399–406. [Google Scholar] [CrossRef]
- Bozlee, B.J.; Misra, A.K.; Sharma, S.K.; Ingram, M. Remote Raman and fluorescence studies of mineral samples. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 2005, 61, 2342–2348. [Google Scholar] [CrossRef]
- Aristipini, P.; Colao, F.; Fantoni, R.; Fiorani, L.; Palucci, A. Compact scanning lidar fluorosensor for cultural heritage diagnostics. In Advanced Laser Technologies; Laser Technology Co., Ltd.: Hong Kong, 2004; pp. 196–203. [Google Scholar] [CrossRef]
- Colao, F.; Fantoni, R.; Fiorani, L.; Palucci, A.; Gomoiu, I. Compact scanning lidar fluorosensor for investigations of biodegradation on ancient painted surfaces. J. Optoelectron. Adv. Mater. 2005, 7, 3197–3208. [Google Scholar]
- Grönlund, R.; Hällström, J.; Johansson, A.; Barup, K.; Svanberg, S. Remote multicolor excitation laser-induced fluorescence imaging. Laser Chem. 2006, 57934. [Google Scholar] [CrossRef]
- Colao, F.; Fantoni, R.; Fiorani, L.; Palucci, A. Application of a scanning hyperspectral lidar fluorosensor to fresco diagnostincs during the CULTURE 2000 campaign in Bucovina. Rev. Monum. Istor. 2006, 1–2, LXXV. [Google Scholar]
- Nevin, A.; Cather, S.; Anglos, D.; Fotakis, C. Analysis of protein-based binding media found in paintings using laser induced fluorescence spectroscopy. Anal. Chim. Acta 2006, 573–574, 341–346. [Google Scholar] [CrossRef]
- Komar, K.; Sliwinski, G. Non-Destructive Observation of the Laser Treatment Effect on Historical Paper via the Laser-Induced Fluorescence Spectra. In Proceedings of the Lasers in the Conservation of Artworks: LACONA VI Proceedings, Vienna, Austria, 21–25 September 2005; Springer: Berlin, Germany, 2007; pp. 361–366. [Google Scholar] [CrossRef]
- Nevin, A.; Comelli, D.; Valentini, G.; Anglos, D.; Burnstock, A.; Cather, S.; Cubeddu, R. Time-resolved fluorescence spectroscopy and imaging of proteinaceous binders used in paintings. Anal. Bioanal. Chem. 2007, 388, 1897–1905. [Google Scholar] [CrossRef]
- Raimondi, V.; Palombi, L.; Cecchi, G.; Lognoli, D.; Trambusti, M.; Gomoiu, I. Remote detection of laser-induced autofluorescence on pure cultures of fungal and bacterial strains and their analysis with multivariate techniques. Opt. Commun. 2007, 273, 219–225. [Google Scholar] [CrossRef]
- Osticioli, I.; Nevin, A.; Anglos, D.; Burnstock, A.; Cather, S.; Becucci, M.; Fotakis, C.; Castellucci, E. Micro-Raman and fluorescence spectroscopy for the assessment of the effects of the exposure to light on films of egg white and egg yolk. J. Raman Spectrosc. 2008, 39, 307–313. [Google Scholar] [CrossRef]
- Nevin, A.; Anglos, D.; Cather, S.; Burnstock, A. The influence of visible light and inorganic pigments on fluorescence excitation emission spectra of egg-, casein- and collagen-based painting media. Appl. Phys. A Mater. Sci. Process. 2008, 92, 69–76. [Google Scholar] [CrossRef]
- Claro, A.; Melo, M.J.; Schäfer, S.; de Melo, J.S.S.; Pina, F.; Berg, K.J.V.D.; Burnstock, A. The use of microspectrofluorimetry for the characterization of lake pigments. Talanta 2008, 74, 922–929. [Google Scholar] [CrossRef]
- Selimis, A.; Vounisiou, P.; Tserevelakis, G.J.; Melessanaki, K.; Pouli, P.; Filippidis, G.; Beltsios, C.; Georgiou, S.; Fotakis, C. In-depth assessment of modifications induced during the laser cleaning of modern paintings. In Proceedings of the Proc. SPIE 7391, O3A: Optics for Arts, Architecture, and Archaeology II, Munich, Germany, 14–18 June 2009; p. 73910U. [Google Scholar] [CrossRef]
- Osticioli, I.; Mendes, N.F.C.; Nevin, A.; Zoppi, A.; Lofrumento, C.; Becucci, M.; Castellucci, E.M. A new compact instrument for Raman, laser-induced breakdown, and laser-induced fluorescence spectroscopy of works of art and their constituent materials. Rev. Sci. Instruments 2009, 80, 76109. [Google Scholar] [CrossRef]
- Hällström, J.; Barup, K.; Grönlund, R.; Johansson, A.; Svanberg, S.; Palombi, L.; Lognoli, D.; Raimondi, V.; Cecchi, G.; Conti, C. Documentation of soiled and biodeteriorated facades: A case study on the Coliseum, Rome, using hyperspectral imaging fluorescence lidars. J. Cult. Heritage 2009, 10, 106–115. [Google Scholar] [CrossRef]
- Persia, F.; Caneve, L.; Conti, P.; Bosco, C.; Grimaldi, F. Study of aging effects on treated marbles by colorimetry and laser induced fluorescence. In Proceedings of the 4th International Congress on “Science and Technology for the Safeguyard of Cultural Heritage in the Mediterranean Basin”, Cairo, Egypt, 6–8 December 2009; Volume 1, pp. 329–334. [Google Scholar]
- Raimondi, V.; Cecchi, G.; Lognoli, D.; Palombi, L.; Grönlund, R.; Johansson, A.; Svanberg, S.; Barup, K.; Hällström, J. The fluorescence lidar technique for the remote sensing of photoautotrophic biodeteriogens in the outdoor cultural heritage: A decade of in situ experiments. Int. Biodeterior. Biodegrad. 2009, 63, 823–835. [Google Scholar] [CrossRef]
- Nevin, A.; Comelli, D.; Osticioli, I.; Toniolo, L.; Valentini, G.; Cubeddu, R. Assessment of the ageing of triterpenoid paint varnishes using fluorescence, Raman and FTIR spectroscopy. Anal. Bioanal. Chem. 2009, 395, 2139–2149. [Google Scholar] [CrossRef]
- Toja, F.; Nevin, A.; Comelli, D.; Levi, M.; Cubeddu, R.; Toniolo, L. Fluorescence and Fourier-transform infrared spectroscopy for the analysis of iconic Italian design lamps made of polymeric materials. Anal. Bioanal. Chem. 2011, 399, 2977–2986. [Google Scholar] [CrossRef]
- Comelli, D.; Nevin, A.; Brambilla, A.; Osticioli, I.; Valentini, G.; Toniolo, L.; Fratelli, M.; Cubeddu, R. On the discovery of an unusual luminescent pigment in Van Gogh’s painting ‘les bretonnes et le pardon de pont Aven. Appl. Phys. A Mater. Sci. Process. 2012, 106, 25–34. [Google Scholar] [CrossRef]
- Giancristofaro, C.; D’Amato, R.; Caneve, L.; Pilloni, L.; Rinaldi, A.; Persia, F. Performance of nanocomposites for conservation of artistic stones. AIP Conf. Proc. 2014, 1603, 86. [Google Scholar] [CrossRef]
- Carlesi, S. Optical Spectroscopies: Application to the Study of Paint Models. Ph. D. Thesis, Universita degli Studi Firenze, Florence, Italy, 2012. Available online: https://flore.unifi.it/retrieve/handle/2158/1043901/138014/PhD_Thesis_SerenaCarlesi.pdf (accessed on 25 January 2023).
- Oujja, M.; Vázquez-Calvo, C.; Sanz, M.; De Buergo, M.A.; Fort, R.; Castillejo, M. Laser-induced fluorescence and FT-Raman spectroscopy for characterizing patinas on stone substrates. Anal. Bioanal. Chem. 2012, 402, 1433–1441. [Google Scholar] [CrossRef]
- Colao, F.; Fantoni, R.; Caneve, L.; Fiorani, L.; Dell’Erba, R.; Fassina, V. Diagnostica superficiale non invasiva mediante fluorescenza indotta da laser (LIF) sulle pitture murali di Giusto de’ Menabuoi nel Battistero di Padova. In Da Guariento a Giusto de’Menabuoi: Studi, Ricerche e Restauri; Antiga: Crocetta del Montello (Treviso), Italy, 2012; pp. 85–99. [Google Scholar]
- Raimondi, V.; Cucci, C.; Cuzman, O.; Fornacelli, C.; Galeotti, M.; Gomoiu, I.; Lognoli, D.; Mohanu, D.; Palombi, L.; Picollo, M.; et al. Study of the effects of low-fluence laser irradiation on wall paintings: Test measurements on fresco model samples. Appl. Surf. Sci. 2013, 284, 184–194. [Google Scholar] [CrossRef]
- Caneve, L.; Colao, F.; Fantoni, R.; Fiorani, L. Scanning lidar fluorosensor for remote diagnostic of surfaces. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equ 2013, 720, 164–167. [Google Scholar] [CrossRef]
- Oujja, M.; Sanz, M.; Rebollar, E.; Marco, J.; Domingo, C.; Pouli, P.; Kogou, S.; Fotakis, C.; Castillejo, M. Wavelength and pulse duration effects on laser induced changes on raw pigments used in paintings. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2013, 102, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Mannino, M.R.; Orecchio, S.; Gennaro, G. Microanalytical method for studying paintings by use of fluorescence spectroscopy combined with principal component analysis. Microchem. J. 2013, 110, 407–416. [Google Scholar] [CrossRef]
- Fantoni, R.; Caneve, L.; Colao, F.; Fiorani, L.; Palucci, A.; Dell’Erba, R.; Fassina, V. Laser-induced fluorescence study of medieval frescoes by Giusto de’ Menabuoi. J. Cult. Heritage 2013, 14, S59–S65. [Google Scholar] [CrossRef]
- Atanassova, V.; Karatodorov, S.; Yankov, G.; Zahariev, P.; Tsvekova, E. Laser-Induced Fluorescence Spectroscopy–a Contemporary Approach to Cultural Heritage. Adv. Bulg. Sci. 2013, 5–10. [Google Scholar]
- Mounier, A.; Le Bourdon, G.; Aupetit, C.; Belin, C.; Servant, L.; Lazare, S.; Lefrais, Y.; Daniel, F. Hyperspectral imaging, spectrofluorimetry, FORS and XRF for the non-invasive study of medieval miniatures materials. Heritage Sci. 2014, 2, 24. [Google Scholar] [CrossRef]
- Nevin, A.; Cesaratto, A.; Bellei, S.; D’Andrea, C.; Toniolo, L.; Valentini, G.; Comelli, D. Time-resolved photoluminescence spectroscopy and imaging: New approaches to the analysis of cultural heritage and its degradation. Sensors 2014, 14, 6338–6355. [Google Scholar] [CrossRef]
- Romani, M.; Colao, F.; Fantoni, R.; Guiso, M.; Santarelli, M.L. Hyperspectral Fluorescence for Organic Pigment Characterization in Contemporary Artwork. J. Appl. Laser Spectrosc. 2014, 1, 29–36. [Google Scholar]
- Raimondi, V.; Andreotti, A.; Colombini, M.P.; Cucci, C.; Cuzman, O.; Galeotti, M.; Lognoli, D.; Palombi, L.; Picollo, M.; Tiano, P. Test measurements on a secco white-lead containing model samples to assess the effects of exposure to low-fluence UV laser radiation. Appl. Surf. Sci. 2015, 337, 45–57. [Google Scholar] [CrossRef]
- Ortiz, R.; Ortiz, P.; Colao, F.; Fantoni, R.; Gómez-Morón, M.; Vázquez, M. Laser spectroscopy and imaging applications for the study of cultural heritage murals. Constr. Build. Mater. 2015, 98, 35–43. [Google Scholar] [CrossRef]
- Mounier, A.; Lazare, S.; Le Bourdon, G.; Aupetit, A.; Servant, L.; Daniel, F. LEDμSF: A new portable device for fragile artworks analyses. Application on medieval pigments. Microchem. J. 2016, 126, 480–487. [Google Scholar] [CrossRef]
- Caneve, L.; Colao, F.; Del Franco, M.; Palucci, A.; Pistilli, M.; Spizzichino, V. Multispectral imaging system based on laser-induced fluorescence for security applications. In Proceedings of the Proc. SPIE 9995, Optics and Photonics for Counterterrorism, Crime Fighting, and Defence XII, Edinburgh, UK, 26–29 September 2016; p. 999509. [Google Scholar] [CrossRef]
- Marinelli, M.; Pasqualucci, A.; Romani, M.; Verona-Rinati, G. Time resolved laser induced fluorescence for characterization of binders in contemporary artworks. J. Cult. Heritage 2017, 23, 98–105. [Google Scholar] [CrossRef]
- Romani, M.; Marinelli, M.; Pasqualucci, A.; Verona-Rinati, G. A preliminary study of contemporary binders by Time Resolved Laser Induced Fluorescence (TR-LIF) spectroscopy: Characterization of the painting Nascita Della Forma by Nato Frascà. In Proceedings of the Lasers in the Conservation of Artworks: LACONA XI Proceedings, Kraków, Poland, 20–23 September 2016; Nicolaus Copernicus University Press: Toruń, Poland, 2017; pp. 179–190. [Google Scholar] [CrossRef]
- Oujja, M.; Psilodimitrakopoulos, S.; Carrasco, E.; Sanz, M.; Philippidis, A.; Selimis, A.; Pouli, P.; Filippidis, G.; Castillejo, M. Nonlinear imaging microscopy for assessing structural and photochemical modifications upon laser removal of dammar varnish on photosensitive substrates. Phys. Chem. Chem. Phys. 2017, 19, 22836–22843. [Google Scholar] [CrossRef]
- Pronti, L.; Felici, A.C.; Ménager, M.; Vieillescazes, C.; Piacentini, M. Spectral Behavior of White Pigment Mixtures Using Reflectance, Spectral Behavior of White Pigment Mixtures Using Reflectance, Ultraviolet-Fluorescence Spectroscopy, and Multispectral Imaging. Appl Spectrosc. 2017, 71, 2616–2625. [Google Scholar] [CrossRef]
- Almaviva, S.; Fantoni, R.; Colao, F.; Puiu, A.; Bisconti, F.; Nicolai, V.F.; Romani, M.; Cascioli, S.; Bellagamba, S. LIF/Raman/XRF non-invasive microanalysis of frescoes from St. Alexander catacombs in Rome. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2018, 201, 207–215. [Google Scholar] [CrossRef]
- Martínez-Hernández, A.; Oujja, M.; Sanz, M.; Carrasco, E.; Detalle, V.; Castillejo, M. Analysis of heritage stones and model wall paintings by pulsed laser excitation of Raman, laser-induced fluorescence and laser-induced breakdown spectroscopy signals with a hybrid system. J. Cult. Herit. 2018, 32, 1–8. [Google Scholar] [CrossRef]
- Syvilay, D.; Bai, X.; Wilkie-Chancellier, N.; Texier, A.; Martinez, L.; Serfaty, S.; Detalle, V. Laser-induced emission, fluorescence and Raman hybrid setup: A versatile instrument to analyze materials from cultural heritage. Spectrochim. Acta-Part B At. Spectrosc. 2018, 140, 44–53. [Google Scholar] [CrossRef]
- Rampazzi, L.; Andreotti, A.; Bressan, M.; Colombini, M.P.; Corti, C.; Cuzman, O.; D’Alessandro, N.; Liberatore, L.; Palombi, L.; Raimondi, V.; et al. An interdisciplinary approach to a knowledge-based restoration: The dark alteration on Matera Cathedral (Italy). Appl. Surf. Sci. 2018, 458, 529–539. [Google Scholar] [CrossRef]
- Moretti, P.; Iwanicka, M.; Melessanaki, K.; Dimitroulaki, E.; Kokkinaki, O.; Daugherty, M.; Sylwestrzak, M.; Pouli, P.; Targowski, P.; Berg, K.J.V.D.; et al. Laser cleaning of paintings: In situ optimization of operative parameters through non-invasive assessment by optical coherence tomography (OCT), reflection FT-IR spectroscopy and laser induced fluorescence spectroscopy (LIF). Heritage Sci. 2019, 7, 44. [Google Scholar] [CrossRef]
- Caneve, L.; Guarneri, M.; Lai, A.; Spizzichino, V.; Ceccarelli, S.; Mazzei, B. Non-destructive laser based techniques for biodegradation analysis in cultural heritage. NDT E Int. 2019, 104, 108–113. [Google Scholar] [CrossRef]
- Bruno, L.; Rugnini, L.; Spizzichino, V.; Caneve, L.; Canini, A.; Ellwood, N.T.W. Biodeterioration of Roman hypogea: The case study of the Catacombs of SS. Marcellino and Pietro (Rome, Italy). Ann. Microbiol. 2019, 69, 1023–1032. [Google Scholar] [CrossRef]
- Romani, M.; Almaviva, S.; Colao, F.; Fantoni, R.; Marinelli, M.; Pasqualucci, A.; Puiu, A.; Verona-Rinati, G. Raman and Time-Gated-Lif Spectroscopy for the Identification of Painting Materials. J. Appl. Spectrosc. 2019, 86, 360–368. [Google Scholar] [CrossRef]
- Fovo, A.D.; Oujja, M.; Sanz, M.; Martínez-Hernández, A.; Cañamares, M.V.; Castillejo, M.; Fontana, R. Multianalytical non-invasive characterization of phthalocyanine acrylic paints through spectroscopic and non-linear optical techniques. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2019, 208, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Morón, M.A.; Ortiz, R.; Colao, F.; Fantoni, R.; Luna, J.B.; Ortiz, P. Laser-Induced Fluorescence mapping of pigments in a secco painted murals. Ge-Conservacion 2020, 17, 233–250. [Google Scholar] [CrossRef]
- Gómez-Morón, M.A.; Ortiz, R.; Colao, F.; Fantoni, R.; Gómez-Villa, J.L.; Becerra, J.; Ortiz, P. Monitoring the Restoration of a Seventeenth-Century Wooden Artwork Using Laser-Induced Fluorescence and Digital Image Analysis. Appl. Spectrosc. 2021, 75, 70–80. [Google Scholar] [CrossRef]
- Ceccarelli, S.; Guarneri, M.; Romani, M.; Giacopini, L.; Francucci, M.; Ciaffi, M.; De Collibus, M.F.; Puiu, A.; Verona-Rinati, G.; Colao, F.; et al. Are the blue daemons really blue? Multidisciplinary study for the colours characterization of the mural paintings inside the Blue Daemons Etruscan tomb. J. Cult. Heritage 2020, 47, 257–264. [Google Scholar] [CrossRef]
- Oujja, M.; Agua, F.; Sanz, M.; Morales-Martin, D.; García-Heras, M.; Villegas, M.; Castillejo, M. Multiphoton Excitation Fluorescence Microscopy and Spectroscopic Multianalytical Approach for Characterization of Historical Glass Grisailles. Talanta 2021, 230, 122314. [Google Scholar] [CrossRef] [PubMed]
- Caso, M.F.; Caneve, L.; Spizzichino, V. Improvement of ENEA laser-induced fluorescence prototypes: An intercalibration between a hyperspectral and a multispectral scanning system. Acta IMEKO 2021, 10, 70–76. [Google Scholar] [CrossRef]
- Palomar, T.; Martínez-Weinbaum, M.; Aparicio, M.; Maestro-Guijarro, L.; Castillejo, M.; Oujja, M. Spectroscopic and Microscopic Characterization of Flashed Glasses from Stained Glass Windows. Appl. Sci. 2022, 12, 5760. [Google Scholar] [CrossRef]
- Anglos, D.; Georgiou, S.; Fotakis, C. Lasers in the analysis of cultural heritage materials. J. Nano Res. 2009, 8, 47–60. [Google Scholar] [CrossRef]
- Nevin, A.; Echard, J.-P.; Thoury, M.; Comelli, D.; Valentini, G.; Cubeddu, R. Excitation emission and time-resolved fluorescence spectroscopy of selected varnishes used in historical musical instruments. Talanta 2009, 80, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Brambilla, L.; Riedo, C.; Baraldi, C.; Nevin, A.; Gamberini, M.C.; D’Andrea, C.; Chiantore, O.; Goidanich, S.; Toniolo, L. Characterization of fresh and aged natural ingredients used in historical ointments by molecular spectroscopic techniques: IR, Raman and fluorescence. Anal. Bioanal. Chem. 2011, 401, 1827–1837. [Google Scholar] [CrossRef] [PubMed]
- Di Lazzaro, P.; Guarneri, M.; Murra, D.; Spizzichino, V.; Danielis, A.; Mencattini, A.; Piraccini, V.; Missori, M. Noninvasive analyses of low-contrast images on ancient textiles: The case of the Shroud of Arquata. J. Cult. Heritage 2016, 17, 14–19. [Google Scholar] [CrossRef]
- Larson, L.J.; Shin, K.-S.K.; Zink, J.I. Photoluminescence spectroscopy of natural resins and organic binding media of paintings. J. Am. Inst. Conserv. 1991, 30, 89–104. [Google Scholar] [CrossRef]
- Persia, F.; Caneve, L.; Colao, F.; D’Amato, R.; Giancristofaro, C.; Ricci, G.; Pilloni, L.; Rinaldi, A. Performance of nanocomposites for conservation of artistic stones. In Proceedings of the 12th International Congress on the Deterioration and Conservation of Stone, New York, NY, USA, 22–26 October 2012; pp. 66–77. [Google Scholar]
- Osticioli, I.; Mendes, N.; Nevin, A.; Gil, F.P.; Becucci, M.; Castellucci, E. Analysis of natural and artificial ultramarine blue pigments using laser induced breakdown and pulsed Raman spectroscopy, statistical analysis and light microscopy. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2009, 73, 525–531. [Google Scholar] [CrossRef]
- Elias, M.; Magnain, C.; Barthou, C.; Nevin, A.; Comelli, D.; Valentini, G. UV-fluorescence spectroscopy for identification of varnishes in works of art: Influence of the underlayer on the emission spectrum. In Proceedings of the Proc. SPIE 7391, O3A: Optics for Arts, Architecture, and Archaeology II, Munich, Germany, 14–18 June 2009; p. 739104. [Google Scholar] [CrossRef]
- Castro, K.; Pérez, M.; Rodríguez-Laso, M.D.; Madariaga, J.M. FTIR spectra database of inorganic art materials. Analytical Chemistry. Anal. Chem. 2003, 75. [Google Scholar] [CrossRef] [Green Version]
- Cosentino, A. FORS Spectral Database of Historical Pigments in Different Binders. E-Conserv. J. 2014, 2, 53–65. [Google Scholar] [CrossRef]
- Castro, K.; Alonso, M.P.; Rodríguez-Laso, M.D.; Fernández, L.A.; Madariaga, J.M. On-line FT-Raman and dispersive Raman spectra database of artists’ materials (e-VISART database). Anal. Bioanal. Chem. 2005, 382, 248–258. [Google Scholar] [CrossRef]
- Cortea, I.M.; Chiroșca, A.; Angheluță, L.M.; Serițan, G. INFRA-ART: An Open Access Spectral Library of Art-Related Materials as a Digital Support Tool for Cultural Heritage Science. J. Comput. Cult. Herit. 2023, 16, 2. [Google Scholar]
- Weibring, P.; Edner, H.; Svanberg, S. Versatile mobile lidar system for environmental monitoring. Appl. Opt. 2003, 42, 3583–3594. [Google Scholar] [CrossRef]
- Grönlund, R.; Svanberg, S.; Hällström, J.; Barup, K.; Cecchi, G.; Raimondi, V.; Lognoli, D.; Palombi, L. Laser-induced fluorescence imaging for studies of cultural heritage. In O3A: Optics for Arts, Architecture, and Archaeology; Society of Photo Optical: Bellingham, WA, USA, 2007; p. 66180P. [Google Scholar] [CrossRef]
- Nevin, A.; Anglos, D. Assisted interpretation of laser-induced fluorescence spectra of egg-based binding media using total emission fluorescence spectroscopy. Laser Chem. 2006, 2006, 82823. [Google Scholar] [CrossRef]
- Fotakis, C.; Kautek, W.; Castillejo, M. Lasers in the Preservation of Cultural Heritage. Laser Chem. 2006, 2006, 1. [Google Scholar] [CrossRef]
- Simileanu, M.; Avgerinidou, G.; Angheluta, L.; Radvan, R.; Striber, J.; Miu, L. Laser cleaning of XVIIIth, C. parchment with polychrome inscriptions. Optoelectron. Adv. Mater. Commun. 2009, 2, 587–592. [Google Scholar]
- Bengtsson, M.; Wallström, S.; Sjöholm, M.; Grönlund, R.; Anderson, B.; Larsson, A.; Karlsson, S.; Kröll, S.; Svanberg, S. Fungus covered insulator materials studied with laser-induced fluorescence and principal component analysis. Appl. Spectrosc. 2005, 59, 1037–1041. [Google Scholar] [CrossRef]
- Owoicho, O.; Olwal, C.O.; Quaye, O. Potential of laser-induced fluorescence-light detection and ranging for future stand-off virus surveillance. Microb. Biotechnol. 2021, 14, 126–135. [Google Scholar] [CrossRef]
- Simileanu, M. Libs quantitative analyses of bronze objects for cultural heritage applications. Rom. Reports Phys. 2016, 68, 203–209. [Google Scholar]
- Burgio, L.; Clark, R.J. Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2001, 57, 1491–1521. [Google Scholar] [CrossRef] [PubMed]
- Anglos, D. Laser-induced breakdown spectroscopy in art and archaeology. Appl. Spectrosc. 2001, 55, 186A–205A. [Google Scholar] [CrossRef]
- Telle, H.; Beddows, D.; Morris, G.; Samek, O. Sensitive and selective spectrochemical analysis of metallic samples: The combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy. Spectrochim. Acta-Part B At. Spectrosc. 2001, 56, 947–960. [Google Scholar] [CrossRef]
- Hilbk-Kortenbruck, F.; Noll, R.; Wintjens, P.; Falk, H.; Becker, C. Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence. Spectrochim. Acta-Part B At. Spectrosc. 2001, 56, 933–945. [Google Scholar] [CrossRef]
- Hahn, D.W.; Omenetto, N. Laser-induced breakdown spectroscopy (LIBS), part II: Review of instrumental and methodological approaches to material analysis and applications to different fields. Appl. Spectrosc. 2012, 66, 347–419. [Google Scholar] [CrossRef]
- Giakoumaki, A.; Osticioli, I.; Anglos, D. Spectroscopic analysis using a hybrid LIBS-Raman system. Appl. Phys. A Mater. Sci. Process. 2006, 83, 537–541. [Google Scholar] [CrossRef]
- Masri, A.R.; Dibble, R.W.; Barlow, R.S. The structure of turbulent nonpremixed flames revealed by Raman-Rayleigh-Lif measurements. Prog. Energy Combust. Sci. 1996, 22, 307–362. [Google Scholar] [CrossRef]
- Smith, N.S.A.; Bilger, R.W.; Carter, C.D.; Barlow, R.S.; Chen, J.Y. A Comparison of CMC and PDF Modelling Predictions with Experimental Nitric Oxide Lif/Raman Measurements in a Turbulent H2 Jet Flame. Combust. Sci. Technol. 1995, 105, 357–375. [Google Scholar] [CrossRef]
- Hoehse, M.; Mory, D.; Florek, S.; Weritz, F.; Gornushkin, I.; Panne, U. A combined laser-induced breakdown and Raman spectroscopy Echelle system for elemental and molecular microanalysis. Spectrochim. Acta-Part B At. Spectrosc. 2009, 64, 1219–1227. [Google Scholar] [CrossRef]
- Lin, Q.; Niu, G.; Wang, Q.; Yu, Q.; Duan, Y. Combined laser-induced breakdown with Raman spectroscopy: Historical technology development and recent applications. Appl. Spectrosc. Rev. 2013, 48, 487–508. [Google Scholar] [CrossRef]
- Guo, G.; Liu, K.; Wang, J.; Wang, S.; Lin, Q.; Ding, Y.; Tian, D.; Duan, Y. Integrated instrumentation for combined laser-induced breakdown and Raman spectroscopy. Instrum. Sci. Technol. 2019, 47, 355–373. [Google Scholar] [CrossRef]
- Shameem, K.M.M.; Dhanada, V.S.; Unnikrishnan, V.K.; George, S.D.; Kartha, V.B.; Santhosh, C. A hyphenated echelle LIBS-Raman system for multi-purpose applications. Rev. Sci. Instruments 2018, 89, 073108. [Google Scholar] [CrossRef]
- Courrèges-Lacoste, G.B.; Ahlers, B.; Pérez, F.R. Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2007, 68, 1023–1028. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Wang, S.; Guo, G.; Tian, Y.; Duan, Y. Novel laser induced breakdown spectroscopy–Raman instrumentation using a single pulsed laser and an echelle spectrometer. Instrum. Sci. Technol. 2018, 46, 163–174. [Google Scholar] [CrossRef]
- Shameem, K.M.; Dhanada, V.; Harikrishnan, S.; George, S.D.; Kartha, V.; Santhosh, C.; Unnikrishnan, V. Echelle LIBS-Raman system: A versatile tool for mineralogical and archaeological applications. Talanta 2020, 208, 120482. [Google Scholar] [CrossRef] [PubMed]
- Nevin, A.; Osticioli, I. Statistical analysis of laser-based spectroscopic data elucidates painting materials. SPIE Newsroom 2012. [Google Scholar] [CrossRef]
- Osticioli, I.; Mendes, N.F.C.; Porcinai, S.; Cagnini, A.; Castellucci, E. Spectroscopic analysis of works of art using a single LIBS pulsed Raman setup. Anal. Bioanal. Chem. 2009, 394, 1033–1041. [Google Scholar] [CrossRef]
- Han, D.; Kim, D.; Choi, S.; Yoh, J.J. A novel classification of polymorphs using combined LIBS and Raman spectroscopy. Curr. Opt. Photonics 2017, 1, 402–411. [Google Scholar] [CrossRef]
- Sharma, S.K.; Misra, A.K.; Lucey, P.G.; Lentz, R.C. A combined remote Raman and LIBS instrument for characterizing minerals with 532 nm laser excitation. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2009, 73, 468–476. [Google Scholar] [CrossRef]
- Syvilay, D. Evaluation of LIBS LIF Raman Spectroscopies to Analyze Materials from Cultural Heritage. Ph. D. Thesis, L’université De Cergy Pontoise, Paris, France, 2016. Available online: http://inis.iaea.org/search/search.aspx?orig_q=RN:52015148 (accessed on 25 January 2023).
- Bai, X.; Oujja, M.; Sanz, M.; Lopez, M.; Dandolo, C.L.K.; Castillejo, M.; Detalle, V. Integrating LIBS LIF Raman into a single multi-spectroscopic mobile device for in situ cultural heritage analysis. In Proceedings of the SPIE 11058, Optics for Arts, Architecture, and Archaeology VII, Munich, Germany, 24–26 June 2019; p. 1105818. [Google Scholar] [CrossRef]
- Detalle, V.; Bai, X.; Bourguignon, E.; Menu, M.; Pallot-Frossard, I. LIBS-LIF-Raman: A new tool for the future E-RIHS. In Proceedings of the Proc. SPIE 10331, Optics for Arts, Architecture, and Archaeology VI, Munich, Germany, 28–29 June 2017; p. 103310N. [Google Scholar] [CrossRef]
- Gasda, P.; Acosta-Maeda, T.; Lucey, P.; Misra, A.; Sharma, S.; Taylor, G. A Compact Laser Induced Breakdown, Raman, and Fluorescence Spectroscopy Instrument for Mars Exploration. In Proceedings of the 45th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 17–21 March 2014. [Google Scholar]
- Dhanada, V.S.; George, S.D.; Kartha, V.B.; Chidangil, S.; Unnikrishnan, V.K. Hybrid LIBS-Raman-LIF systems for multi-modal spectroscopic applications: A topical review. Appl. Spectrosc. Rev. 2021, 56, 463–491. [Google Scholar] [CrossRef]
- Downs, R.T. RRUFF Project. 2006. Available online: https://rruff.info (accessed on 25 January 2023).
- Bell, I.M.; Clarck, R.J.H.; Gibbs, P.J. Raman Spectroscopic Library of Natural and Synthetic Pigments. 1998. Available online: http://www.chem.ucl.ac.uk/resources/raman (accessed on 25 January 2023).
- Buzgar, N.; Apopei, A.I.; Buzatu, A. Romanian Database of Raman Spectroscopy. 2014. Available online: http://rdrs.uaic.ro (accessed on 25 January 2023).
- Rossman, G. Mineral Spectroscopy Server. 2010. Available online: http://minerals.gps.caltech.edu (accessed on 25 January 2023).
- Cortea, I.M. INFRA-ART Spectral Library. 2022. Available online: https://infraart.inoe.ro (accessed on 25 January 2023).
- Dooley, K.A.; Chieli, A.; Romani, A.; Legrand, S.; Miliani, C.; Janssens, K.; Delaney, J.K. Molecular Fluorescence Imaging Spectroscopy for Mapping Low Concentrations of Red Lake Pigments: Van Gogh’s Painting The Olive Orchard. Angew. Chemie-Int. Ed. 2020, 59, 6046–6053. [Google Scholar] [CrossRef]
- Festa, G.; Scatigno, C.; Armetta, F.; Saladino, M.L.; Ciaramitaro, V.; Nardo, V.M.; Ponterio, R.C. Chemometric tools to point out benchmarks and chromophores in pigments through spectroscopic data analyses. Molecules 2022, 27, 163. [Google Scholar] [CrossRef]
- Cortea, I.M.; Ghervase, L.; Rădvan, R.; Serițan, G. Assessment of Easily Accessible Spectroscopic Techniques Coupled with Multivariate Analysis for the Qualitative Characterization and Differentiation of Earth Pigments of Various Provenance. Minerals 2022, 12, 755. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Principal Component Analysis, 2nd ed.; Springer Series in Statistics; Springer: New York, NY, USA, 2007. [Google Scholar]
- Smith, L.I. A tutorial on Principal Components Analysis Introduction; University of Otago: Dunedin, Otago, New Zealand, 2002; Available online: http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf (accessed on 25 January 2023).
- Drennan, R.D. Principal Components Analysis. In Statistics for Archaeologists. Interdisciplinary Contributions to Archaeology; Springer: Boston, MA, USA, 2009; pp. 299–307. [Google Scholar] [CrossRef]
- Bro, R.; Smilde, A.K. Principal component analysis. Anal. Methods 2014, 6, 2812–2831. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Drennan, R.D. Cluster Analysis. In Statistics for Archaeologists. Interdisciplinary Contributions to Archaeology; Springer: Boston, MA, USA, 2009; pp. 309–320. [Google Scholar] [CrossRef]
- Everitt, B.S.; Landau, S.; Leese, M.; Stahl, D. Cluster Analysis, 5th ed.; Wiley: London, UK, 2012. [Google Scholar]
- Cutillo, L. Parametric and multivariate methods. In Encyclopedia of Bioinformatics and Computational Biology; Elsevier: Amsterdam, Netherlands, 2019; Volume 1, pp. 738–746. [Google Scholar] [CrossRef]
- Scitovski, R.; Sabo, K.; Martínez-Álvarez, F.; Ungar, Š. Cluster Analysis and Applications, 1st ed.; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Varmuza, K.; Filzmoser, P. Introduction to Multivariate Statistical Analysis in Chemometrics; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Pelagotti, A.; Pezzati, L.; Bevilacqua, N.; Vascotto, V.; Reillon, V.; Daffara, C. A study of UV fluorescence emission of painting materials. In Proceedings of the 8th International Conference on Non-Destructive Investigations and Microanalysis for the Diagnostics and Conservation of the Cultural and Environmental Heritage, Lecce, Italy, 15–19 May 2005. [Google Scholar]
- Caneve, L.; Colao, F.; Spizzichino, V. Analysis of Biofilms from Roman Catacombs by Laser Induced Fluorescence and Multivariate Analysis. In Proceedings of the CMA4CH 2010, Mediterraneum Meeting, Application of Multivariate Analysis and Chemometry to Cultural Heritage and Environment, Taormina, Sicily, Italy, 26–29 September 2010. [Google Scholar]
No. | Material | Class | Excitation [nm] | Emission [nm] | Reference |
---|---|---|---|---|---|
1. | Amber | Resins | 337 | 475 | [24] |
2. | Arenaria Pliocenica di Siena tuff | Rocks | 250, 280, 300, 330 | 440, 410 (shoulder), 470 (shoulder) | [32] |
399 | 440, 410 (shoulder), 470 (shoulder), 640 (impurities, such as transition metals or rare earths) | [32] | |||
3. | Aureobasidium pullulans | Fungi | 308 | 450 | [43] |
4. | Azurite | Pigments | 266 | 480 | [85] |
5. | Bacillus sp. | Bacteria | 308 | 450 | [43] |
6. | Brazil wood | Pigments | 366 | 615 | [65] |
7. | Cadmium red, Cd(S,Se) | Pigments | 337 | 600 | [24] |
355 | 568 | [26] | |||
600 | [91] | ||||
8. | Cadmium yellow | Pigments | 355 | 483 | [26] |
480 | [91] | ||||
9. | Calaton soluble nylon | Resins | 266 | 435 | [58] |
355 | 484 | [58] | |||
10. | Calcite, CaCO3 | Minerals/Pigments | 266 | 460 | [87] |
448, 510 | [11] | ||||
11. | Carbon black | Pigments | Broad band at 500 nm | [28] | |
12. | Carmine lake (cochineal) | Pigments | 266 | 635 | [85] |
337 | 640 | [24] | |||
366 | 620–630 | [65] | |||
13. | Casein | Binders | 248 | 340, 415, 435 | [91] |
266 | 343 | [58] | |||
280 | 348 | [40] | |||
355 | 450 | [58] | |||
14. | Chlorophyll a | Vegetation | - | 685 | [49] |
405 | 685, 740 | [79] | |||
15. | Cinnabar, HgS | Pigments | 266 | 650 | [85] |
366 | 580, 610 | [65] | |||
16. | Chroococcidiopsis kashayi | Cyanobacteria | 355 | 400–450 460–470 650–670 | [29] |
17. | Chroococcus sp. | Cyanobacteria | 488 | 570 (phycocyanin) 660 (phycoerythrin) | [27] |
18. | Colophony | Resins | 337 | 420–530 | [92] |
355 | 435 | [26] | |||
19. | Copal | Resins | 337 | 405–430 | [92] |
355 | 456 | [26] | |||
20. | Dammar | Resins | 318 | 378 | [52] |
337 | 430 | [92] | |||
355 | 437 | [26] | |||
21. | Edible oils | Oils | 270–310 | 300–350 (tocopherol) (fresh) | [93] |
350 | 450 (aged) | ||||
22. | Egg yolk | Binders | 248 | 490, 440 | [42] |
266 | 340 | [58] | |||
337 | 425 | [42] | |||
355 | 420, 470 | [42] | |||
540 | [58] | ||||
405 | 470 | [42] | |||
23. | Egg white | Binders | 248 | 340 (tryptophan) | [40] |
330 | [42] | ||||
340, 415, 435 | [91] | ||||
266 | 343 | [58] | |||
~330 | [48] | ||||
337 | 415 | [42] | |||
355 | 420 (tyrosine derivatives) | [40] [42] | |||
520 | [58] | ||||
435 (tryptophan oxidation products N-formylkynurenine (NFK) and kynurenine) | [40] | ||||
405 | 470 | [42] | |||
24. | Egyptian blue, CaCuSi4O10 | Pigments | 266 | 835 | [87] |
25. | Elemi | Resins | 337 | 410–480 | [92] |
26. | Eosin lake | Pigments | 530 | 550 | [46] |
27. | Fungi | Fungi | 266 | 340 | [39] |
28. | Glass | Amorphous solid | 266 | 300–500 (oxygen deficiency centers) 520 (Ca2+) 360 (Fe3+/Fe2+) 475 (Cu2+) 500 (Fe3+) 540 (Mn2+) 580 (Cu particles) 610 (Mn3+) 325 (Pb2+/Sn2+) | [88,90] |
29. | Green algae Coccomyxa minor—cell membranes | Algae | 355 | 400–500 | [29] |
30. | Green algae Coccomyxa minor—chlorophyll a | Algae | 355 | 680–690 730–740 | [29] |
31. | Green algae Pleurococcus sp. | Algae | 488 | 670–690 740 (shoulder–chlorophyll) | [27] |
32. | Grey tuff | Rocks | 355 | 445 | [30] |
33. | Gum arabic | Binders | 366 | 440 | [65] |
34. | Gypsum | Minerals | 266 | 455, 505 | [11] |
35. | Hematite | Pigments | 355 | 440 | [26] |
36. | Kynurenine | Amino acids/degradation products | 290 | 435 | [45] |
37. | Lead white, 2PbCO3·Pb(OH)2 | Pigments | Broad band at 500 nm | [28] | |
355 | 547 | [26] | |||
38. | Linen | Cellulose (polysaccharide) | 266 | 380, 440, 465 | [94] |
39. | Linseed oil | Binders/oils | 355 | 520 | [58] |
40. | Luminescent green, ZnS:Cu | Pigments | 365 | 440, 530 | [54] |
41. | Madder lake (alizarin) | Pigments | 266 | 600–615 | [85] |
490 | 578 | [46] | |||
42. | Maillard reaction products | Amino acids/degradation products | 345–350 | 400–450 | [45] |
43. | Malachite, Cu2CO3(OH)2 | Minerals/pigments | 355 | 520 | [26] |
44. | Mastic | Resins | 330 | 456 | [52] |
337 | 430–440 | [92] | |||
363.8 | 450 | [95] | |||
366 | 442 | [52] | |||
45. | Montagnola Senese marble | Rocks | 250, 280, 300, 330 | 370, 440, 470 | [32] |
46. | Mowilith 50 | Resins | 266 | 330 | [58] |
355 | 474 | [58] | |||
47. | n-acetyl tyrosine ethyl ester | Amino acids/degradation products | 260 | 301 | [40] |
48. | n-acetyl tryptophan | Amino acids/degradation products | 280 | 355 | [40] |
260 | 310 | [40] | |||
49. | N-formyl kynurenine | Amino acids/degradation products | 360 | 435 | [45] |
50. | Naples yellow, Pb2Sb2O7 | Pigments | 355 | 538 | [26] |
51. | Olive oil | Oils | 405 | 670 (chlorophyll) | [93] |
52. | Orange tuff | Rocks | 266 | 395, 435 | [30] |
53. | Orpiment, As2S3 | Pigments | Broad band at 500 nm | [28] | |
54. | Ox glue | Binders | 248 | 410, 490 (oxidation products) | [42] |
337 | 415 | [42] | |||
355 | 420, 470 | [42] | |||
405 | 470 | [42] | |||
55. | Palm oil | Oils | 270–310 | 673 (carotenoids) | [93] |
56. | Paper | Cellulose (polysaccharide) | 266 | 440 | [11] |
57. | Paraloid B72 | Resins | 266 | 330, 510 | [96] |
360 | [85] | ||||
355 | 485 | [58] | |||
58. | Parchment glue | Binders | 260 | 310 (tyrosine) | [40] |
335 | 385 (age-related cross-linkages) | [40] | |||
355 | 415 (age-related cross-linkages) | [40] | |||
59. | Pentosidine | Amino acids/degradation products | 280 | 380 | [45] |
60. | Phthalocyanine paint—cobalt blue hue | Pigments | 266 | 400, 440 | [84] |
61. | Phthalocyanine paint—permanent light blue | Pigments | 266 | 400 | [84] |
62. | Phthalocyanine paint—permanent light green | Pigments | 266 | 500 (460–570) | [84] |
63. | Phthalocyanine paint—phthalo blue | Pigments | 266 | 400 | [84] |
64. | Phthalocyanine paint—phthalo green | Pigments | 266 | 380–500 | [84] |
65. | Phthalocyanine paint—primary blue cyan | Pigments | 266 | 400, 440 | [84] |
66. | Plaster | Painting materials | 266 | 450–500 | [85] |
67. | Primal AC33 | Resins | 266 | 315 | [58] |
355 | 477 | [58] | |||
68. | Pseudomonas sp. | Bacteria | 308 | 440 | [43] |
69. | Purpurin | Pigments | 490 | 582 | [46] |
70. | Rabbit skin glue | Binders | 248 | 415, 435, 490 | [91] |
266 | 310 | [58] | |||
310, 330, 450 | [48] | ||||
290 | 300 | [40] | |||
330 | 385 (pentosidine, pyridinoline) | [40] | |||
355 | 520 | [58] | |||
366 | 440 | [65] | |||
71. | Rhodorsil RC80 | Resins | 266 | 330, 510 | [55,96] |
72. | Red lake | Pigments | 337 | 630 | [24] |
73. | Red lead, Pb3O4 | Pigments | 248 | Broad band at 500 nm Asymmetrical band with a shoulder at 620 nm | [28] |
355 | 586–600 | [26] | |||
366 | 580 | [65] | |||
74. | Rosso Veronese | Rocks | 250, 280, 300, 330 | 450 | [32] |
399 | 480 | [32] | |||
75. | Sandarac | Resins | 337 | 410–460 | [92] |
337 | 480 | [24] | |||
76. | Shellac | Resins | 337 | 430–580 600–640 | [92] |
337 | 580, 630 | [24] | |||
457.9 | 606, 632, 680 | [95] | |||
465 | 635 | [92] | |||
77. | Shellac, purified | Resins | 307 | 387 | [92] |
78. | Silica | Binders | 355 | 520 | [58] |
79. | Smalt | Pigments | 266 | 390 | [85] |
80. | Titanium white | Pigments | 266 | 385 | [11] |
337 | 381 | [24] | |||
355 | 473 | [26] | |||
81. | Turpentine | Resins | 337 | 410–480 | [92] |
355 | 450 | [26] | |||
82. | Tryptophan | Amino acids/degradation products | 290 | 338 | [45] |
83. | Tyrosine | Amino acids/degradation products | 230 | 300 | [45] |
280 | 305 | [45] | |||
84. | Ultramarine ash | Pigments | 355 | 625 | [26] |
85. | Vermilion | Pigments | 248 | Broad band at 500 nm Asymmetrical band with a shoulder at 620 nm | [28] |
337 | 600 | [24] | |||
86. | Verticillium sp. | Fungi | 308 | 450 | [43] |
87. | Vinavil | Resins | 266 | 340 | [58] |
88. | Vinylic | Alkenyl functional groups | 340, 352 | [11] | |
89. | White Carrara marble | Rocks | 355 | 450 | [30] |
250, 280, 300, 330 | 370, 440, 470 | [32] | |||
399 | 370, 440, 470, 640 | [32] | |||
90. | White Naxos marble | Rocks | 355 | 440 | [30] |
91. | White Paros I marble | Rocks | 355 | 445 | [30] |
92. | White Paros II marble | Rocks | 355 | 447 | [30] |
93. | White Proconneso marble | Rocks | 355 | 450 | [30] |
94. | Yellow tuff | Rocks | 266 | 395, 435 | [30] |
355 | 455 | ||||
95. | Zinc white | Pigments | 266 | 380 | [83] |
337 | 385 | [26] | |||
355 | 380–385 | [91] | |||
355 | 385 | [24] | |||
365 | 370–390, 420–430 | [54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghervase, L.; Cortea, I.M. Lighting Up the Heritage Sciences: The Past and Future of Laser-Induced Fluorescence Spectroscopy in the Field of Cultural Goods. Chemosensors 2023, 11, 100. https://doi.org/10.3390/chemosensors11020100
Ghervase L, Cortea IM. Lighting Up the Heritage Sciences: The Past and Future of Laser-Induced Fluorescence Spectroscopy in the Field of Cultural Goods. Chemosensors. 2023; 11(2):100. https://doi.org/10.3390/chemosensors11020100
Chicago/Turabian StyleGhervase, Luminița, and Ioana Maria Cortea. 2023. "Lighting Up the Heritage Sciences: The Past and Future of Laser-Induced Fluorescence Spectroscopy in the Field of Cultural Goods" Chemosensors 11, no. 2: 100. https://doi.org/10.3390/chemosensors11020100
APA StyleGhervase, L., & Cortea, I. M. (2023). Lighting Up the Heritage Sciences: The Past and Future of Laser-Induced Fluorescence Spectroscopy in the Field of Cultural Goods. Chemosensors, 11(2), 100. https://doi.org/10.3390/chemosensors11020100