Spectroscopy, a Tool for the Non-Destructive Sensory Analysis of Plant-Based Foods and Beverages: A Comprehensive Review
Abstract
:1. Introduction
2. Methods: Review Protocol
3. Near-Infrared (NIR) Spectroscopy
4. Hyperspectral Imaging Spectroscopy
4.1. Imaging-Based Techniques
4.2. Specific Problems
5. Chemometrics
5.1. Hyperspectral Data
5.2. Multivariate Data Analysis
5.2.1. Step 1: Pre-Processing
5.2.2. Step 2: Multivariate Analysis with ML
5.2.3. Step 3: Model Validation
6. Sensory Analysis—An Overview
7. Applications for Plant-Based Products
7.1. Coffee
7.2. Tea
7.3. Soft Drinks
7.4. Alcoholic Drinks
7.5. Fresh Fruits and Vegetables
7.6. Cocoa
7.7. Processed Food
8. Technical Challenges and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- EFSA—Sustainable Healthy Diets. Available online: https://www.efsa.europa.eu/sites/default/files/2021-03/5.5-new-dietary-guidelines.pdf (accessed on 1 September 2023).
- Hargreaves, S.M.; Raposo, A.; Saraiva, A.; Zandonadi, R.P. Vegetarian Diet: An Overview through the Perspective of Quality of Life Domains. Int. J. Environ. Res. Public Health 2021, 18, 4067. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Horizon the EU Research and Innovation Magazine. Available online: https://ec.europa.eu/research-and-innovation/en/horizon-magazine/plant-based-diets-improve-health-and-environment-says-top-eu-scientific-advisor (accessed on 1 September 2023).
- Clem, J.; Barthel, B. A Look at Plant-Based Diets. Mo. Med. 2021, 118, 233–238. [Google Scholar] [PubMed]
- The Good Food Institute. U.S. Plant-Based Market Overview: New SPINS Retail Sales Data. Published 27 November 2018. Available online: https://www.gfi.org/marketresearch (accessed on 1 September 2023).
- The Good Food Institute. Plant-Based Sales Boast 21% Growth Since 2020. Published 3 April 2023. Available online: https://gfieurope.org/blog/plant-based-sales-in-europe-22-growth/ (accessed on 1 September 2023).
- Hemler, E.C.; Hu, F.B. Plant-Based Diets for Cardiovascular Disease Prevention: All Plant Foods Are Not Created Equal. Curr. Atheroscler. Rep. 2019, 21, 18. [Google Scholar] [CrossRef] [PubMed]
- Rammanee, K.; Hongpattarakere, T. Effects of tropical citrus essential oils on growth, aflatoxin production, and ultrastructure alterations of Aspergillus flavus and Aspergillus parasiticus. Food Bioprocess Technol. 2011, 4, 1050–1059. [Google Scholar] [CrossRef]
- Hussain, N.; Sun, D.W.; Pu, H. Classical and emerging non-destructive technologies for safety and quality evaluation of cereals: A review of recent applications. Trends Food Sci. Technol. 2019, 91, 598–608. [Google Scholar] [CrossRef]
- Ren, Q.-S.; Fang, K.; Yang, X.-T.; Han, J.-W. Ensuring the quality of meat in cold chain logistics: A comprehensive review. Trends Food Sci. Technol. 2022, 119, 133–151. [Google Scholar] [CrossRef]
- Orecchio, S.; Amorello, D.; Barreca, S. Chapter 7—Analysis of Contaminants in Beverages. Volume17: The Science of Beverages. In Quality Control in the Beverage Industry; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 225–258. [Google Scholar] [CrossRef]
- El Masry, G.; Nakauchi, S. Image analysis operations applied to hyperspectral images for non-invasive sensing of food quality a comprehensive review. Biosyst. Eng. 2016, 142, 53–82. [Google Scholar] [CrossRef]
- Rodrigues Arruda Pinto, V.; Faria de Abreu Campos, R.; Rocha, F.; Emmendoerfer, M.L.; Teixeira Ribeiro Vidigal, M.C.; Silva Soares da Rocha, S.J.; Della Lucia, S.M.; Fernandes Melo Cabral, L.; Fernandes de Carvalho, A.; Tuler Perrone, Í. Perceived healthiness of foods: A systematic review of qualitative studies. Future Foods 2021, 4, 100056. [Google Scholar] [CrossRef]
- European Commission. Definition of Food Quality. Published in 19 February 2021. Available online: https://knowledge4policy.ec.europa.eu/food-fraud-quality/topic/food-quality_en (accessed on 1 September 2023).
- Shewfelt, R.L. What is quality? Postharvest Biol. Technol. 1999, 15, 197–200. [Google Scholar] [CrossRef]
- Suwannaporn, P.; Linnemann, A. Rice-eating quality among consumers in different rice grain preference countries. J. Sens. Stud. 2008, 23, 1–13. [Google Scholar] [CrossRef]
- Bonany, J.; Brugger, C.; Buehler, A.; Carbó, J.; Codarin, S.; Donati, F.; Echeverria, G.; Egger, S.; Guerra, W.; Hilaire, C.; et al. Preference mapping of apple varieties in Europe. Food Qual. Pref. 2014, 32, 317–329. [Google Scholar] [CrossRef]
- Cicerale, S.; Liem, G.; Keast, R.S.J. Consumer perception, attitudes, liking and preferences for olive oil. In Products from Olive Tree; Boskou, D., Clodoveo, M.L., Eds.; Intechopen: London, UK, 2016. [Google Scholar] [CrossRef]
- Sevim, Y.; Yalcın, T. Changes in the food preferences and purchase behaviors in the new normal: A cross-sectional study. Rev. Esp. Nutr. Hum. Diet. 2022, 26, 167–177. [Google Scholar] [CrossRef]
- Romero del Castillo, R.; Sans, S.; Casañas, F.; Soler, S.; Prohens, J.; José Diez, M.; Casals, J. Fine tuning European geographic quality labels, an opportunity for horticulture diversification: A tentative proposal for the Spanish case. Food Control 2021, 129, 108196. [Google Scholar] [CrossRef]
- Lu, Y.; Huang, Y.; Lu, R. Innovative Hyperspectral Imaging-Based Techniques for Quality Evaluation of Fruits and Vegetables: A Review. Appl. Sci. 2017, 7, 189. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Yuan, H.; Song, M.; Zhu, Y.; Cao, W.; Jiang, X.; Ni, J. Non-Destructive Quality-Detection Techniques for Cereal Grains: A Systematic Review. Agronomy 2022, 12, 3187. [Google Scholar] [CrossRef]
- Kharbach, M.; Alaoui Mansouri, M.; Taabouz, M.; Yu, H. Current Application of Advancing Spectroscopy Techniques in Food Analysis: Data Handling with Chemometric Approaches. Foods 2023, 12, 2753. [Google Scholar] [CrossRef]
- Kang, Z.; Zhao, Y.; Chen, L.; Guo, Y.; Mu, Q.; Wang, S. Advances in Machine Learning and Hyperspectral Imaging in the Food Supply Chain. Food Eng. Rev. 2022, 14, 596–616. [Google Scholar] [CrossRef]
- Lin, X.; Sun, D.W. Recent developments in vibrational spectroscopic techniques for tea quality and safety analyses. Trends Food Sci. Technol. 2020, 104, 163–176. [Google Scholar] [CrossRef]
- Hassoun, A.; Jagtap, S.; Garcia-Garcia, G.; Trollman, H.; Pateiro, M.; Lorenzo, J.M.; Trif, M.; Vasile Rusu, A.; Muhammad Aadil, R.; Šimat, V.; et al. Food quality 4.0: From traditional approaches to digitalized automated analysis. J. Food Eng. 2023, 337, 111216. [Google Scholar] [CrossRef]
- Ma, S.; Li, Y.; Peng, Y. Spectroscopy and computer vision techniques for non invasive analysis of legumes: A review. Comput. Electron. Agric. 2023, 206, 107695. [Google Scholar] [CrossRef]
- Onuma, T.; Maruyama, H.; Sakai, N. Enhancement of Saltiness Perception by Monosodium Glutamate Taste and Soy Sauce Odor: A Near-Infrared Spectroscopy Study. Chem. Senses. 2018, 43, 151–167. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.; Power, A.; Chapman, J.; Chandra, S.; Cozzolino, D. A Short Update on the Advantages, Applications and Limitations of Hyperspectral and Chemical Imaging in Food Authentication. Appl. Sci. 2018, 8, 505. [Google Scholar] [CrossRef]
- Gonzalez Viejo, C.; Torrico, D.D.; Dunshea, F.R.; Fuentes, S. Emerging Technologies Based on Artificial Intelligence to Assess the Quality and Consumer Preference of Beverages. Beverages 2019, 5, 62. [Google Scholar] [CrossRef]
- Raponi, F.; Moscetti, R.; Monarca, D.; Colantoni, A.; Massantini, R. Monitoring and Optimization of the Process of Drying Fruits and Vegetables Using Computer Vision: A Review. Sustainability 2017, 9, 2009. [Google Scholar] [CrossRef]
- Armstrong, C.E.J.; Niimi, J.; Boss, P.K.; Pagay, V.; Jeffery, D.W. Use of Machine Learning with Fused Spectral Data for Prediction of Product Sensory Characteristics: The Case of Grape to Wine. Foods 2023, 12, 757. [Google Scholar] [CrossRef]
- Ghnimi, H.; Ennouri, M.; Chèné, C.; Karoui, R. A review combining emerging techniques with classical ones for the determination of biscuit quality: Advantages and drawbacks. Crit. Rev. Food Sci. Nutr. 2023, 63, 5009–5032. [Google Scholar] [CrossRef]
- Siche, R.; Vejarano, R.; Aredo, V.; Velasquez, L.; Saldaña, E.; Quevedo, R. Evaluation of Food Quality and Safety with Hyperspectral Imaging (HSI). Food Eng. Rev. 2016, 8, 306–322. [Google Scholar] [CrossRef]
- Mahajan, P.V.; Caleb, O.J.; Gil, M.I.; Izumi, H.; Colelli, G.; Watkins, C.B.; Zude, M. Quality and safety of fresh horticultural commodities: Recent advances and future perspectives. Food Packag. Shelf Life 2017, 14, 2–11. [Google Scholar] [CrossRef]
- Su, W.H.; He, H.J.; Sun, D.W. Non-Destructive and rapid evaluation of staple foods quality by using spectroscopic techniques: A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 1039–1051. [Google Scholar] [CrossRef]
- Basile, T.; Marsico, A.D.; Perniola, R. NIR Analysis of Intact Grape Berries: Chemical and Physical Properties Prediction Using Multivariate Analysis. Foods 2021, 10, 113. [Google Scholar] [CrossRef]
- Perez, M.; Lopez-Yerena, A.; Vallverdú-Queralt, A. Traceability, authenticity and sustainability of cocoa and chocolate products: A challenge for the chocolate industry. Crit. Rev. Food Sci. Nutr. 2020, 62, 475–489. [Google Scholar] [CrossRef] [PubMed]
- Baiano, A. Applications of hyperspectral imaging for quality assessment of liquid based and semi-liquid food products: A review. J. Food Eng. 2017, 214, 10–15. [Google Scholar] [CrossRef]
- Quelal-Vásconez, M.A.; Lerma-García, M.J.; Pérez-Esteve, É.; Talens, P.; Barat, J.M. Roadmap of cocoa quality and authenticity control in the industry: A review of conventional and alternative methods. Compr. Rev. Food Sci. Food Saf. 2020, 19, 448–478. [Google Scholar] [CrossRef] [PubMed]
- Chapman, J.; Elbourne, A.; Khanh Truong, V.; Newman, L.; Gangadoo, S.; Rajapaksha Pathirannahalage, P.; Cheeseman, S.; Cozzolino, D. Sensomics—From conventional to functional NIR spectroscopy- Shining light over the aroma and taste of foods. Trends Food Sci. Technol. 2019, 91, 274–281. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef] [PubMed]
- Grames, E.M.; Stillman, A.N.; Tingley, M.W.; Elphick, C.S. An automated approach to identifying search terms for systematic reviews using keyword co-occurrence networks. Methods Ecol. Evol. 2019, 10, 1645–1654. [Google Scholar] [CrossRef]
- Westgate, M.J. revtools: An R package to support article screening for evidence synthesis. Res. Synth. Methods 2019, 10, 606–614. [Google Scholar] [CrossRef]
- Chen, R.; Liu, F.; Zhang, C.; Wang, W.; Yang, R.; Zhao, Y.; Peng, J.; Kong, W.; Huang, J. Trends in digital detection for the quality and safety of herbs using infrared and Raman spectroscopy. Front. Plant Sci. 2023, 14, 1128300. [Google Scholar] [CrossRef]
- Lin, M.; Rasco, B.A.; Cavinato, A.; Al-Holy, M. Infrared (IR) spectroscopy near-infrared spectroscopy and mid-infrared spectroscopy. In Infrared Spectroscopy for Food Quality Analysis and Control, 1st ed.; Sun, D.-W., Ed.; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2008; pp. 119–143. [Google Scholar]
- Porep, J.U.; Kammerer, D.R.; Carle, R. On-line application of near infrared (NIR) spectroscopy in food production. Trends Food Sci. Technol. 2015, 46, 211–230. [Google Scholar] [CrossRef]
- Ouyang, Q.; Wang, L.; Park, B.; Kang, R.; Wang, Z.; Chen, Q.; Guo, Z. Assessment of matcha sensory quality using hyperspectral microscope imaging technology. LWT 2020, 125, 109254. [Google Scholar] [CrossRef]
- Lohumi, S.; Lee, S.; Lee, H.; Cho, B.-K. A review of vibrational spectroscopic techniques for the detection of food authenticity and adulteration. Trends Food Sci. Technol. 2015, 46, 85–98. [Google Scholar] [CrossRef]
- Zhang, B.; Huang, W.; Li, J.; Zhao, C.; Fan, S.; Wu, J.; Liu, C. Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: A review. Food Res. Int. 2014, 62, 326–343. [Google Scholar] [CrossRef]
- Ghaffari, M.; Omidikia, N.; Ruckebusch, C. Essential Spectral Pixels for Multivariate Curve Resolution of Chemical Images. Anal. Chem. 2019, 91, 10943–10948. [Google Scholar] [CrossRef] [PubMed]
- Paoletti, M.E.; Haut, J.M.; Plaza, J.; Plaza, A. Deep learning classifiers for hyperspectral imaging: A review. ISPRS J. Photogramm. Remote Sens. 2019, 158, 279–317. [Google Scholar] [CrossRef]
- Feng, Y.Z.; Sun, D.W. Application of hyperspectral imaging in food safety inspection and control: A review. Crit. Rev. Food Sci. Nutr. 2012, 52, 1039–1058. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Sun, D.-W.; Pu, H.; Cheng, J.-H.; Wei, Q. Advanced techniques for hyperspectral imaging in the food industry: Principles and recent applications. Annu. Rev. Food Sci. Technol. 2019, 10, 197–220. [Google Scholar] [CrossRef]
- Wang, W.; Paliwal, J. Near-infrared spectroscopy and imaging in food quality and safety. Sens. Instrum. Food Qual. Safe. 2007, 1, 193–207. [Google Scholar] [CrossRef]
- Mehl, P.M.; Chen, Y.-R.; Kim, M.S.; Chan, D.E. Development of hyperspectral imaging technique for the detection of apple surface defects and contaminations. J. Food Eng. 2004, 61, 67–81. [Google Scholar] [CrossRef]
- Mahanti, N.K.; Pandiselvam, R.; Kothakota, A.; Ishwarya, P.S.; Kumar Chakraborty, S.; Kumar, M.; Cozzolino, D. Emerging non-destructive imaging techniques for fruit damage detection: Image processing and analysis. Trends Food Sci. Technol. 2022, 120, 418–438. [Google Scholar] [CrossRef]
- Pan, L.Q.; Sun, Y.; Xiao, H.; Gu, X.Z.; Hu, P.C.; Wei, Y.Y.; Tu, K. Hyperspectral imaging with different illumination patterns for the hollowness classification of white radish. Postharv. Biol. Technol. 2017, 126, 40–49. [Google Scholar] [CrossRef]
- Huang, M.; Kim, M.S.; Chao, K.L.; Qin, J.W.; Mo, C.Y.; Esquerre, C.; Delwiche, S.; Zhu, Q.B. Penetration depth measurement of Near-Infrared Hyperspectral Imaging light for milk powder. Sensors 2016, 16, 441. [Google Scholar] [CrossRef]
- Lu, G.; Wang, D.; Qin, X.; Halig, L.; Muller, S.; Zhang, H.; Chen, A.; Pogue, B.W.; Chen, Z.G.; Fei, B. Framework for hyperspectral image processing and quantification for cancer detection during animal tumors surgery. J. Biomed. Opt. 2015, 20, 126012. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Ren, J.; Lin, J.; Mao, S.; Xu, Z.; Chen, Z.; Zhao, J.; Wu, Y.; Xu, N.; Wang, P. The impact of high-quality data on the assessment results of visible/near-infrared hyperspectral imaging and development direction in the food fields: A review. Food Measure 2023, 17, 2988–3004. [Google Scholar] [CrossRef]
- Amigo, J.M. Practical issues of hyperspectral imaging analysis of solid dosage forms. Anal. Bioanal. Chem. 2010, 398, 93–109. [Google Scholar] [CrossRef]
- Lorente, D.; Aleixos, N.; Gómez-Sanchis, J.; Cubero, S.; García-Navarrete, Ó.L.; Blasco, J. Recent Advances and Applications of Hyperspectral Imaging for Fruit and Vegetable Quality Assessment. Food Bioprocess Technol. 2012, 5, 1121–1142. [Google Scholar] [CrossRef]
- Rodríguez-Ortega, A.; Aleixos, N.; Blasco, J.; Albert, F.; Munera, S. Study of light penetration depth of a Vis-NIR hyperspectral imaging system for the assessment of fruit quality. A case study in persimmon fruit. J. Food Eng. 2023, 358, 111673. [Google Scholar] [CrossRef]
- Pu, Y.Y.; Feng, Y.Z.; Sun, D.W. Recent progress of Hyperspectral Imaging on Quality and Safety Inspection of fruits and vegetables: A review. Compr. Rev. Food Sci. Food Saf. 2015, 14, 176–188. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Xiao, H.; Tu, S.; Sun, K.; Pan, L.; Tu, K. Detecting decayed peach using a rotating hyperspectral imaging test bed. LWT 2018, 87, 326–332. [Google Scholar] [CrossRef]
- Fomina, P.; Femenias, A.; Hlavatsch, M.; Scheuermann, J.; Schäfer, N.; Freitag, S.; Patel, N.; Kohler, A.; Krska, R.; Koeth, J.; et al. A Portable Infrared Attenuated Total Reflection Spectrometer for Food Analysis. Appl. Spectrosc. 2023, 77, 1073–1086. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Zhu, S.S.; Zhang, C.; Feng, X.P.; Feng, L.; He, Y. Application of hyperspectral imaging and chemometrics for variety classification of maize seeds. RSC Adv. 2018, 8, 1337–1345. [Google Scholar] [CrossRef]
- Garg, P.K. Chapter10-Effect of contamination and adjacency factors on snow using spectroradiometer and hyperspectral images. In Hyperspectral Remote Sensing; Pandey, P.C., Srivastava, P.K., Balzter, H., Bhattacharya, B., Petropoulos, G.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 167–196. [Google Scholar] [CrossRef]
- Basile, T.; Marsico, A.D.; Perniola, R. Use of Artificial Neural Networks and NIR Spectroscopy for Non-Destructive Grape Texture Prediction. Foods 2022, 11, 281. [Google Scholar] [CrossRef] [PubMed]
- Vidal, M.; Amigo, J.M. Pre-processing of hyperspectral images. Essential steps before image analysis. Chemom. Intell. Lab. Syst. 2012, 117, 138–148. [Google Scholar] [CrossRef]
- Li, G.; Ma, S.; Li, K.; Zhou, M.; Lin, L. Band selection for heterogeneity classification of hyperspectral transmission images based on multi-criteria ranking. Infrared Phys. Technol. 2022, 125, 104317. [Google Scholar] [CrossRef]
- Raju, V.B.; Imtiaz, M.H.; Sazonov, E. Food Image Segmentation Using Multi-Modal Imaging Sensors with Color and Thermal Data. Sensors 2023, 23, 560. [Google Scholar] [CrossRef] [PubMed]
- Prats-Montalbán, J.M.; de Juan, A.; Ferrer, A. Multivariate image analysis: A review with applications. Chemom. Intell. Lab. Syst. 2011, 107, 1–23. [Google Scholar] [CrossRef]
- Lin, Y.; Ma, J.; Wang, Q.; Sun, D.W. Applications of machine learning techniques for enhancing non destructive food quality and safety detection. Crit. Rev. Food Sci. Nutr. 2023, 63, 1649–1669. [Google Scholar] [CrossRef]
- Buvè, C.; Saeys, W.; Rasmussen, M.A.; Neckebroeck, B.; Hendrickx, M.; Grauwet, T.; VanLoey, A. Application of multivariate data analysis for food quality investigations: An example-based review. Food Res. Int. 2022, 151, 110878. [Google Scholar] [CrossRef]
- Engel, J.; Gerretzen, J.; Szymańska, E.; Jansen, J.J.; Downey, G.; Blanchet, L.; Buydens, L.M.C. Breaking with trends in pre-processing? Trends Anal. Chem. 2013, 50, 96–106. [Google Scholar] [CrossRef]
- Conzen, J.-P. Multivariate Calibration, 3rd ed.; Bruker Optik GmbH: Ettlingen, Germany, 2014; ISBN 978-3-929431-13-1. [Google Scholar]
- Saha, D.; Manickavasagan, A. Machine learning techniques for analysis of hyperspectral images to determine quality of food products: A review. Curr. Res. Food Sci. 2021, 4, 28–44. [Google Scholar] [CrossRef]
- Wang, H.-P.; Chen, P.; Dai, J.-W.; Liu, D.; Li, J.-Y.; Xu, Y.-P.; Chu, X.-L. Recent advances of chemometric calibration methods in modern spectroscopy: Algorithms, strategy, and related issues. TrAC Trends Anal. Chem. 2022, 153, 116648. [Google Scholar] [CrossRef]
- Badillo, S.; Banfai, B.; Birzele, F.; Davydov, I.I.; Hutchinson, L.; Kam-Thong, T.; Siebourg-Polster, J.; Steiert, B.; Zhang, J.D. An Introduction to MachineLearning. Clin. Pharmacol. Ther. 2020, 107, 871–885. [Google Scholar] [CrossRef] [PubMed]
- Ezugwu, A.E.; Ikotun, A.M.; Oyelade, O.O.; Abualigah, L.; Agushaka, J.O.; Eke, C.I.; Akinyelu, A.A. A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Eng. Appl. Artif. Intell. 2022, 110, 104743. [Google Scholar] [CrossRef]
- Basile, T.; Amendolagine, A.M.; Tarricone, L. Rootstocks’ and Cover-Crops’ Influence on Grape: A NIR-Based ANN Classification Model. Agriculture 2023, 13, 5. [Google Scholar] [CrossRef]
- Sheth, V.; Tripathi, U.; Sharma, A. A Comparative Analysis of Machine Learning Algorithms for Classification Purpose. Procedia Comput. Sci. 2022, 215, 422–431. [Google Scholar] [CrossRef]
- Berrier, K.L.; Prebihalo, S.E.; Synovec, R.E. Chapter 7—Advanced data handling in comprehensive two-dimensional gas chromatography. In Basic Multidimensional Gas Chromatography; Separation Science and Technology Book Series; Snow, N.H., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 12, pp. 229–268. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Huang, Y.; Kangas, L.J.; Rasco, B.A. Applications of artificial neural networks (ANNs) in food science. Crit. Rev. Food Sci. Nutr. 2007, 47, 113–126. [Google Scholar] [CrossRef]
- Plaza, A.; Benediktsson, J.A.; Boardman, J.W.; Brazile, J.; Bruzzone, L.; Camps-Valls, G.J.; Chanussot, M.; Fauvel, P.; Gamba, A.; Gualtieri, M.; et al. Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 2009, 113, S110–S122. [Google Scholar] [CrossRef]
- Boichenko, E.; Panchenko, A.; Tyndyk, M.; Maydin, M.; Kruglov, S.; Artyushenko, V.; Kirsanov, D. Validation of classification models in cancer studies using simulated spectral data—A “sandbox” concept. Chemom. Intell. Lab. Syst. 2022, 225, 104564. [Google Scholar] [CrossRef]
- Pu, H.; Kamruzzaman, M.; Sun, D.-W. Selection of feature wavelengths for developing multispectral imaging systems for quality, safety and authenticity of muscle foods-a review. Trends Food Sci. Technol. 2015, 45, 86–104. [Google Scholar] [CrossRef]
- Hoshi, A.; Aoki, S.; Kouno, E.; Ogasawara, M.; Onaka, T.; Miura, Y.; Mamiya, K. A novel objective sour taste evaluation method based on near-infrared spectroscopy. Chem. Senses 2014, 39, 313–322. [Google Scholar] [CrossRef]
- Wang, H.; Miao, Y.; Xu, X.; Ye, P.; Wu, H.; Wang, B.; Shi, X. Effects of Blending on Phenolic, Colour, Antioxidant and Aroma Components of Cabernet Sauvign on Wine from Xinjiang (China). Foods 2022, 11, 3332. [Google Scholar] [CrossRef] [PubMed]
- Smyth, H.; Cozzolino, D. Instrumental methods (spectroscopy, electronic nose and tongue) as tools to predict taste and aroma in beverages: Advantages and limitations. Chem. Rev. 2013, 113, 1429–1440. [Google Scholar] [CrossRef] [PubMed]
- Hugi, A.; Voirol, E. Instrumental measurements and sensory parameters. In Instrumentation and Sensors for the Food Industry, 2nd ed.; Rogers, E.K., Brimelow, C.J.B., Eds.; CRC Press: Boca Raton, FL, USA, 2001; pp. 31–60. [Google Scholar]
- Peleg, M. On fundamental issues in texture evaluation and texturization—A view. Food Hydrocoll. 2006, 20, 405–414. [Google Scholar] [CrossRef]
- Chen, L.; Opara, U.L. Texture measurement approaches in fresh and processed foods. A review. Food Res. Int. 2013, 51, 823–835. [Google Scholar] [CrossRef]
- Özdoğan, G.; Lin, X.; Sun, D.-W. Rapid and non invasive sensory analyses of food products by hyperspectral imaging: Recent application developments. Trends Food Sci. Technol. 2021, 111, 151–165. [Google Scholar] [CrossRef]
- Mavani, N.R.; Ali, J.M.; Othman, S.; Hussain, M.A.; Hashim, H.; Rahman, N.A. Application of Artificial Intelligence in Food Industry—A Guideline. Food Eng. Rev. 2022, 14, 134–175. [Google Scholar] [CrossRef]
- Belchior, V.; Botelho, B.G.; Franca, A.S. Comparison of Spectroscopy-Based Methods and Chemometrics to Confirm Classification of Specialty Coffees. Foods 2022, 11, 1655. [Google Scholar] [CrossRef]
- Esteban-Díez, I.; González-Sáiz, J.M.; Pizarro, C. Prediction of sensory properties of espresso from roasted coffee samples by near-infrared spectroscopy. Anal. Chim. Acta 2004, 525, 171–182. [Google Scholar] [CrossRef]
- Ribeiro, J.S.; Ferreira, M.M.C.; Salva, T.J.G. Chemometric models for the quantitative descriptive sensory analysis of Arabica coffee beverages using near infrared spectroscopy. Talanta 2011, 83, 1352–1358. [Google Scholar] [CrossRef]
- Baqueta, M.R.; Coqueiro, A.; Valderrama, P. Brazilian Coffee Blends: A Simple and Fast Method by Near-Infrared Spectroscopy for the Determination of the Sensory Attributes Elicited in Professional Coffee Cupping. J. Food Sci. 2019, 84, 1247–1255. [Google Scholar] [CrossRef]
- Caporaso, N.; Whitworth, M.B.; Fisk, I.D. Prediction of coffee aroma from single roasted coffee beans by hyperspectral imaging. Food Chem. 2022, 371, 131159. [Google Scholar] [CrossRef] [PubMed]
- de Souza Gois Barbosa, M.; Dos Santos Scholz, M.B.; Good Kitzberger, C.S.; de Toledo Benassi, M. Correlation between the composition of green Arabica coffee beans and the sensory quality of coffee brews. Food Chem. 2019, 292, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos Scholz, M.B.; Kitzberger, C.S.G.; Durand, N.; Rakocevic, M. From the field to coffee cup: Impact of planting design on chlorogenic acid isomers and other compounds in coffee beans and sensory attributes of coffee beverage. Eur. Food Res. Technol. 2018, 244, 1793–1802. [Google Scholar] [CrossRef]
- Belchior, V.; Gonçalves Botelho, B.; Oliveira, L.S.; Franca, A.S. Attenuated Total Reflectance Fourier Transform Spectroscopy (ATR-FTIR) and chemometrics for discrimination of espresso coffees with different sensory characteristics. Food Chem. 2019, 273, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Craig, A.P.; Franca, A.S.; Oliveira, L.S.; Irudayaraj, J.; Ileleji, K. Application of elastic net and infrared spectroscopy in the discrimination between defective and non-defective roasted coffees. Talanta 2014, 128, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Buratti, S.; Sinelli, N.; Bertone, E.; Venturello, A.; Casiraghi, E.; Geobaldo, F. Discrimination between washed Arabica, natural Arabica and Robusta coffees by using near infrared spectroscopy, electronic nose and electronic tongue analysis. J. Sci. Food Agric. 2015, 95, 2192–2200. [Google Scholar] [CrossRef] [PubMed]
- Cestari, A. Development of a fast and simple method to identify pure Arabica coffee and blended coffee by Infrared Spectroscopy. J. Food Sci. Technol. 2021, 58, 3645–3654. [Google Scholar] [CrossRef]
- Correia, R.M.; Andrade, R.; Tosato, F.; Nascimento, M.T.; Pereira, L.L.; Araújo, J.B.S.; Pinto, F.E.; Endringer, D.C.; Padovan, M.P.; Castro, E.V.R.; et al. Analysis of Robusta coffee cultivated in agroforestry systems (AFS) by ESI-FT-ICRMS and portable NIR associated with sensory analysis. J. Food Compos. Anal. 2020, 94, 103637. [Google Scholar] [CrossRef]
- Yu, X.L.; Sun, D.-W.; He, Y. Emerging techniques for determining the quality and safety of tea products: A review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2613–2638. [Google Scholar] [CrossRef]
- Li, L.; Sheng, X.; Zan, J.; Yuan, H.; Zong, X.; Jiang, Y. Monitoring the dynamic change of catechins in black tea drying by using near-infrared spectroscopy and chemometrics. J. Food Compos. Anal. 2023, 119, 105266. [Google Scholar] [CrossRef]
- Jin, G.; Wang, Y.; Li, M.; Li, T.; Huang, W.; Li, L.; Deng, W.-W.; Ning, J. Rapid and real-time detection of black tea fermentation quality by using an inexpensive data fusion system. Food Chem. 2021, 358, 129815. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zong, B.; Guo, H.; Luo, Z.; He, P.; Gong, S.; Fan, F. Discrimination of white teas produced from fresh leaves with different maturity by near-infrared spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 227, 117697. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Guo, H.; Zong, B.; He, P.; Fan, F.; Gong, S. Rapid and non-destructive discrimination of special-grade flat green tea using Near-infrared spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 206, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Zong, X.; Sheng, X.; Li, L.; Zan, J.; Jiang, Y.; Zou, H.; Shen, S.; Yuan, H. Rapid Detection of Moisture Content in the Processing of Longjing Tea by Micro-Near-Infrared Spectroscopy and a Portable Colorimeter Based on a Data Fusion Strategy. Horticulturae 2022, 8, 1007. [Google Scholar] [CrossRef]
- Daniels, A.J.; Poblete-Echeverría, C.; Opara, U.L.; Nieuwoudt, H.H. Measuring Internal Maturity Parameters Contactless on Intact Table Grape Bunches Using NIR Spectroscopy. Front Plant Sci 2019, 10, 1517. [Google Scholar] [CrossRef] [PubMed]
- Włodarska, K.; Szulc, J.; Khmelinskii, I.; Sikorska, E. Non-destructive determination of strawberry fruit and juice quality parameters using ultraviolet, visible, and near-infrared spectroscopy. J. Sci. Food Agric. 2019, 99, 5953–5961. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, D.; Smyth, H.E.; Lattey, K.A.; Cynkar, W.; Janik, L.; Dambergs, R.G.; Francis, I.L.; Gishen, M. Relationship between sensory analysis and near infrared spectroscopy in Australian Riesling and Chardonnay wines. Anal. Chim. Acta 2005, 539, 341–348. [Google Scholar] [CrossRef]
- Anjos, O.; Caldeira, I.; Fernandes, T.A.; Pedro, S.I.; Vitória, C.; Oliveira-Alves, S.; Catarino, S.; Canas, S. PLS-R Calibration Models for Wine Spirit Volatile Phenols Prediction by Near-Infrared Spectroscopy. Sensors 2022, 22, 286. [Google Scholar] [CrossRef]
- Anjos, O.; Caldeira, I.; Roque, R.; Pedro, S.I.; Lourenço, S.; Canas, S. Screening of Different Ageing Technologies of Wine Spirit by Application of Near-Infrared (NIR) Spectroscopy and Volatile Quantification. Processes 2020, 8, 736. [Google Scholar] [CrossRef]
- Čiča, K.H.; Pezer, M.; Mrvčić, J.; Stanzer, D.; Čačić, J.; Jurak, V.; Krajnović, M.; Gajdoš Kljusurić, J. Identification of phenolic and alcoholic compounds in wine spirits and their classification by use of multivariate analysis. J. Serbian Chem. Soc. 2019, 84, 663–677. [Google Scholar] [CrossRef]
- Srivastava, S.; Sadistap, S. Data processing approaches and strategies for non-destructive fruits quality inspection and authentication: A review. J. Food Meas. Charact. 2018, 12, 2758–2794. [Google Scholar] [CrossRef]
- Jaywant, S.A.; Singh, H.; Arif, K.M. Sensors and Instruments for Brix Measurement: A Review. Sensors 2022, 22, 2290. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.-M.; Sun, L.; Cai, J.-R.; Lin, H. A Preliminary Study on Whether the Soluble Solid Content and Acidity of Oranges Predicted by Near Infrared Spectroscopy Meet the Sensory Degustation. J. Food Process Eng. 2015, 38, 309–319. [Google Scholar] [CrossRef]
- Baiano, A.; Terracone, C.; Peri, G.; Romaniello, R. Application of hyperspectral imaging for prediction of physico-chemical and sensory characteristics of table grapes. Comput. Electron. Agric. 2012, 87, 142–151. [Google Scholar] [CrossRef]
- Nantongo, J.S.; Tinyiro, S.E.; Nakitto, M.; Serunkuma, E.; Namugga, P.; Ayetigbo, O.; Mayanja, S.; Moyo, M.; Ssali, R.; Mendes, T. End-user preferences to enhance prospects for varietal acceptance and adoption in potato breeding in Uganda. J. Sci. Food Agric. 2023. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Van Dijk, C.; Fischer, M.; Holm, J.; Beekhuizen, J.-G.; Stolle-Smits, T.; Boeriu, C. Textureof Cooked Potatoes (Solanum tuberosum).1. Relationships between Dry Matter Content, Sensory-Perceived Texture, and Near-Infrared Spectroscopy. J. Agric. Food Chem. 2002, 50, 5082–5088. [Google Scholar] [CrossRef] [PubMed]
- Serra, S.; Goke, A.; Diako, C.; Vixie, B.; Ross, C.; Musacchi, S. Consumer perception of d’Anjou pear classified by dry matter at harvest using near-infrared spectroscopy. Int. J. Food Sci. Technol. 2019, 54, 2256–2265. [Google Scholar] [CrossRef]
- Alhamdan, A.M.; Fickak, A.; Atia, A.R. Evaluation of sensory and texture profile analysis properties of stored Khalal Barhi dates non destructively usingVis/NIR spectroscopy. J. Food Process. Eng. 2019, 42, e13215. [Google Scholar] [CrossRef]
- Løkke, M.M.; Fast Seefeldt, H.; Skov, T.; Edelenbos, M. Color and textural quality of packaged wild rocket measured by multispectral imaging. Postharvest Biol. Technol. 2013, 75, 86–95. [Google Scholar] [CrossRef]
- Li, X.; Tsuta, M.; Hayakawa, F.; Nakano, Y.; Kazami, Y.; Ikehata, A. Estimating the sensory qualities of tomatoes using visible and near-infrared spectroscopy and interpretation based on gas chromatography-mass spectrometry metabolomics. Food Chem. 2021, 343, 128470. [Google Scholar] [CrossRef]
- Plans, M.; Simó, J.; Casañas, F.; Romero del Castillo, R.; Rodriguez-Saona, L.E.; Sabaté, J. Estimating sensory properties of common beans (Phaseolus vulgaris L.) by near infrared spectroscopy. Food Res. Int. 2014, 56, 55–62. [Google Scholar] [CrossRef]
- Mehinagic, E.; Royer, G.; Bertrand, D.; Symoneaux, R.; Laurens, F.; Jourjon, F. Relationship between sensory analysis, penetrometry and visible–NIR spectroscopy of apples belonging to different cultivars. Food Qual. Pref. 2003, 14, 473–484. [Google Scholar] [CrossRef]
- Jensen, P.N.; Sørensen, G.; Engelsen, S.B.; Bertelsen, G. Evaluation of Quality Changes in Walnut Kernels (Juglans regia L.) by Vis/NIR Spectroscopy. J. Agric. Food Chem. 2001, 49, 5790–5796. [Google Scholar] [CrossRef] [PubMed]
- Sans, S.; Ferré, J.; Boqué, R.; Sabaté, J.; Casals, J.; Simó, J. Estimating Sensory Properties with Near-Infrared Spectroscopy: A Tool for Quality Control and Breeding of ‘Calçots’ (Allium cepa L.). Agronomy 2020, 10, 828. [Google Scholar] [CrossRef]
- Basile, T.; Marsico, A.D.; Cardone, M.F.; Antonacci, D.; Perniola, R. FT-NIR Analysis of Intact Table Grape Berries to Understand Consumer Preference Driving Factors. Foods 2020, 9, 98. [Google Scholar] [CrossRef] [PubMed]
- LeMoigne, M.; Maury, C.; Bertrand, D.; Jourjon, F. Sensory and instrumental characterisation of Cabernet Franc grapes according to ripening stages and growing location. Food Qual. Pref. 2008, 19, 220–231. [Google Scholar] [CrossRef]
- Sinelli, N.; Cerretani, L.; Di Egidio, V.; Bendini, A.; Casiraghi, E. Application of near (NIR) infrared and mid (MIR) infrared spectroscopy as a rapid tool to classify extravirgin olive oil on the basis of fruity attribute intensity. Food Res. Int. 2010, 43, 369–375. [Google Scholar] [CrossRef]
- Clemmensen, L.H.; Dissing, B.S.; Hyldig, G.; Løje, H. Multispectral Imaging of Wok-Fried Vegetables. J. Imaging Sci. Technol. 2012, 56, 020404-1–020404-6. [Google Scholar] [CrossRef]
- Krähmer, A.; Engel, A.; Kadow, D.; Ali, N.; Umaharan, P.; Kroh, L.W.; Schulz, H. Fast and neat—Determination of biochemical quality parameters in cocoa using near infrared spectroscopy. Food Chem. 2015, 181, 152–159. [Google Scholar] [CrossRef]
- Biancolillo, A.; Preys, S.; Gaci, B.; Le-Quere, J.-L.; Laboure, H.; Deuscher, Z.; Cheynier, V.; Sommerer, N.; Fayeulle, N.; Costet, P.; et al. Multi-block classification of chocolate and cocoa samples into sensory poles. Food Chem. 2021, 340, 127904. [Google Scholar] [CrossRef]
- Ashraf, S.; Ghufran Saeed, S.M.; Sayeed, S.A.; Kanwar, H.; Ahmed, M.; Ali, R. Impact of Lentil Fortification on Physical, Chemical and Instrumental Properties of Dough and its Influence on overall Quality of Cookies. Arab. Gulf J. Sci. Res. 2012, 30, 125–134. [Google Scholar] [CrossRef]
- Radoš, K.; Čukelj Mustač, N.; Benković, M.; Kuzmić, I.; Novotni, D.; Drakula, S.; Habuš, M.; Voučko, B.; Ćurić, D. The quality and shelf life of biscuits with cryo-ground proso millet and buck wheat by-products. J. Food Process. Preserv. 2022, 46, 15532. [Google Scholar] [CrossRef]
- Cevoli, C.; Evangelisti, A.; Gradari, P.; Fabbri, A. Storage of wafer cookies: Assessment by destructive techniques, and non-destructive spectral detection methods. J. Food Eng. 2023, 336, 111209. [Google Scholar] [CrossRef]
- Wang, T.; Rodriguez-Saona, L.E. Rapid determination of sugar level in snack products using infrared spectroscopy. J. Food Sci. 2012, 77, C874–C879. [Google Scholar] [CrossRef] [PubMed]
- Bedini, A.; Zanolli, V.; Zanardi, S.; Bersellini, U.; Dalcanale, E.; Suman, M. Rapid and Simultaneous Analysis of Xanthines and Polyphenols as Bitter Taste Markers in Bakery Products by FT-NIR Spectroscopy. Food Anal. Methods 2013, 6, 17–27. [Google Scholar] [CrossRef]
- Otegbayo, B.; Oluyinka, O.; Tanimola, A.R.; Bisi, F.; Ayomide, A.; Tomilola, B.; Madu, T.; Okoye, B.; Chijioke, U.; Ofoeze, M.; et al. Food quality profile of pounded yam and implications for yam breeding. J. Sci. Food Agric. 2023. [Google Scholar] [CrossRef]
- Craig, A.P.; Franca, A.S.; Oliveira, L.S.; Irudayaraj, J.; Ileleji, K. Fourier transform infrared spectroscopy and near infrared spectroscopy for the quantification of defects in roasted coffees. Talanta 2015, 134, 379–386. [Google Scholar] [CrossRef]
- Corona, P.; Frangipane, M.T.; Moscetti, R.; LoFeudo, G.; Castellotti, T.; Massantini, R. Chestnut Cultivar Identification through the Data Fusion of Sensory Quality and FT-NIR Spectral Data. Foods 2021, 10, 2575. [Google Scholar] [CrossRef]
- Manthou, E.; Lago, S.-L.; Dagres, E.; Lianou, A.; Tsakanikas, P.; Panagou, E.Z.; Anastasiadi, M.; Mohareb, F.; Nychas, G.J.E. Application of spectroscopic and multispectral imaging technologies on the assessment of ready-to-eat pineapple quality: A performance evaluation study of machine learning models generated from two commercial data analytics tools. Comp. Electron. Agric. 2020, 175, 105529. [Google Scholar] [CrossRef]
- Nirere, A.; Sun, J.; Atindana, V.A.; Hussain, A.; Zhou, X.; Yao, K. A comparative analysis of hybrid SVM and LS-SVM classification algorithms to identify dried wolfberry fruits quality based on hyperspectral imaging technology. J. Food Process. Preserv. 2022, 46, e16320. [Google Scholar] [CrossRef]
- Bertone, E.; Venturello, A.; Giraudo, A.; Pellegrino, G.; Geobaldo, F. Simultaneous determination by NIR spectroscopy of the roasting degree and Arabica/Robusta ratio in roasted and ground coffee. Food Control 2016, 59, 683–689. [Google Scholar] [CrossRef]
- Ibrahim, A.; Alghannam, A.; Eissa, A.; Firtha, F.; Kaszab, T.; Kovacs, Z.; Helyes, L. Preliminary Study for Inspecting Moisture Content, Dry Matter Content, and Firmness Parameters of Two Date Cultivars Using an NIR Hyperspectral Imaging System. Front. Bioeng. Biotechnol. 2021, 9, 720630. [Google Scholar] [CrossRef] [PubMed]
- Champagne, E.T.; Bett-Garber, K.L.; Grimm, C.C.; McClung, A.M.; Moldenhauer, K.A.; Linscombe, S.; McKenzie, K.S.; Barton, F.E. II Near-Infrared Reflectance Analysis for Prediction of Cooked Rice Texture. Cereal Chem. 2001, 78, 358–362. [Google Scholar] [CrossRef]
- Großmann, J.L.; Westerhuis, J.A.; Næs, T.; Smilde, A.K. Critical evaluation of assessor difference correction approaches in sensory analysis. Food Qual. Pref. 2023, 106, 104792. [Google Scholar] [CrossRef]
Product | Sample | N | Technique | Regions | Best Model | Statistics | Sensory Analysis | References |
---|---|---|---|---|---|---|---|---|
Coffee | Green beans and roasted ground coffee | 194 | NIR | 12,500–3700 cm−1 | LDA | 100% | NO | Buratti et al. (2014) [108] |
Roasted and ground coffee beans | 45 | NIR | 1200–2400 nm | Elastic net | 0.88–0.94% | NO | Craiget al. (2015) [149] | |
Espresso | 24 | FT-NIR | 4000–600 cm−1 | PLS-DA | Aroma:sensitivity = 0.92–1; specificity = 0.82–0.99 | YES n = 6 trained testers | Belchior et al. (2019) [106] | |
Flavor: sensitivity = 0.75–0.97; specificity = 0.94–0.99 | ||||||||
Aftertaste: sensitivity = 0.90–1; specificity = 0.93–1 | ||||||||
Acidity: sensitivity = 0.75–0.97; specificity= 0.90–1 | ||||||||
Body: sensitivity = 0.84–1; specificity = 0.87–0.99 | ||||||||
Tea | White tea | 127 | FT-NIR | 10,000–4000 cm−1 | PSO-SVM | 98.92% discrimination of tea (buds and young leaves vs. mature leaves and shoots) | YES n = 6 trained testers | Li et al. (2019) [114] |
Green tea | 279 | NIR | 10,000–4000 cm−1 | siPLS | 93%externalpredictionaccuracy | YES n = 6 trained testers | Li et al. (2019) [115] | |
Black tea | 110 | Micro-NIR | 900–1700 nm | SVM | 83.78–89.19% (low–mediumlevel data fusion: color and spectra) | YES n = 5 trained testers | Jin et al. (2021) [113] | |
Alcoholic beverage | Wine spirits | 16 | NIR | 904–1699 nm | LDA | 66–100% | NO | Čica et al. (2019) [122] |
Fresh/dried Fruits and oils | Raw and boiled chestnuts | 96 | VIS-NIR | 10,000–4000 cm−1 | PLS-DA | Data fusion based, raw and boiled: accuracy (0.99 both), sensitivity (0.98 and 0.99), specificity (0.99 both) | YES n = 8 trained testers | Corona et al. (2021) [150] |
PLS-DA | Only spectral data:CV = 0.78 boiled CV = 0.98 raw | |||||||
Pineapple | 424 | MSI | 405–970 nm | PLS-DA | Color:accuracy (85.71%),sensitivity (100%),specificity (42.86%) | YES n = 2 testers | Manthou et al. (2020) [151] | |
PLS-DA | Odor:accuracy (83.04%);sensitivity (61.54%);specificity (89.53%) | |||||||
PLS-DA | Texture:accuracy (72.32%);sensitivity (95%);specificity (15.63%) | |||||||
Virgin olive oils | 112 | FT-NIR | 12,500–4500 cm−1 | LDA | 76.3% (67.2–100%): 4 classes: defective and non-defective oils (low, medium, high fruity flavor) | YES n = 16 trained testers | Sinelli et al. (2010) [139] | |
LDA | 98% (92.9–100%):3 classes: low, medium, high fruity flavor | |||||||
Grapes | 15 batches | Vis-NIR | yes | FDA | 55–79% | YES n = 12 trained testers | Le Moigne et al.(2008) [138] | |
Gooseberries | HSI | 400.680–1001.612 nm | LS-SVM | 96.66% | NO | Nirere et al. (2022) [152] | ||
Cocoa | Chocolate | 97 | VIS-NIR | 400–2498 nm | SO-PLS-LDA (selected data from NIR + PTR-ToF-MS fluorescence) | 77.4% | YES n = NS | Biancolillo et al. (2021) [142] |
Product | Sample | N | Technique | Regions | Quality Parameters/Sensory Attributes | Best Model | Accuracy | Sensory Analysis | References |
---|---|---|---|---|---|---|---|---|---|
Coffee | Roasted coffee beans | 250 | HSI | 1000–2500 nm | Aldehydes | PLS | R2cv = 0.67; RMSE = 2.85; RPD = 1.82 | NO | Caporaso et al. (2022) [103] |
Pyrazine | PLS | R2cv = 0.69; RMSE = 4.65; RPD = 1.78 | |||||||
Ketones | PLS | R2cv = 0.43; RMSE = 0.64; RPD = 1.37 | |||||||
Phenols | PLS | R2cv = 0.54; RMSE = 0.25; RPD = 1.87 | |||||||
Acids | PLS | R2cv = 0.18; RMSE = 4.26; RPD = 1.12 | |||||||
Heterocyclic | PLS | R2cv = 0.26; RMSE = 1.95; RPD = 1.89 | |||||||
Roasted and ground coffee | 130 | FT-NIR | 12,500–3500 cm−1 | Roasting color | PLS | R2cv = 0.87 | NO | Bertone et al. (2016) [153] | |
Arabica content | PLS | R2cv = 0.97 | |||||||
Espresso green coffee beans | 35 38 | NIR on roasted ground coffee | 1100–2200 nm | Acidity | PLS | R2cv = 0.94; RMSECV = 6.77% | YES n = 11 trained testers | Esteban D’ıez et al. (2004) [100] | |
Mouthfeel (body) | PLS | R2cv = 0.83; RMSECV = 7.01% | |||||||
Bitterness | PLS | R2cv = 0.94; RMSECV = 4.74% | |||||||
Aftertaste | PLS | R2cv = 0.86; RMSECV = 6.57% | |||||||
Arabica roasted coffee | 51 | NIR | 1100–2500 nm | Acidity | PLS | R2cv = 0.84; RMSECV = 0.28 | YES n = 5 trained testers | Ribeiro et al. (2011) [101] | |
Bitterness | PLS | R2cv = 0.87; RMSECV = 0.35 | |||||||
Flavor | PLS | R2cv = 0.93; RMSECV = 0.31 | |||||||
Cleanliness | PLS | R2cv = 0.91; RMSECV = 0.38 | |||||||
Body | PLS | R2cv = 0.88; RMSECV = 0.27 | |||||||
Overall quality | PLS | R2cv = 0.91; RMSECV = 0.39 | |||||||
Coffee | 217 | NIR | 900–1650 nm | Body | PLS | R2ev = 0.80; RMSEP = 0.28; RPD = 1.86 | YES n = 2 trained testers | Baqueta et al. (2019) [102] | |
Flavor | PLS | R2ev = 0.77; RMSEP = 0.13; RPD = 1.23 | |||||||
Astringency | PLS | R2ev = 0.84; RMSEP = 0.13; RPD = 1.09 | |||||||
Acidity | PLS | R2ev = 0.80; RMSEP = 0.11; RPD = 5 × 10−14 | |||||||
Bitterness | PLS | R2ev = 0.84; RMSEP = 0.10; RPD = 0.74 | |||||||
Powder fragrance | PLS | R2ev = 0.75; RMSEP = 0.15; RPD = 1.05 | |||||||
Drink aroma | PLS | R2ev = 0.75; RMSEP = 0.16; RPD = 1.02 | |||||||
Residual flavor | PLS | R2ev = 0.75; RMSEP = 0.15; RPD = 0.89 | |||||||
Overall quality | PLS | R2ev = 0.74; RMSEP = 0.16; RPD = 1.02 | |||||||
Coffee | 56 | NIR | 900–2300 nm | Quality score | PLS | R2ev = 0.98; RMSEP = 0.52 | YES n = 6 trained testers | Belchioret et al. (2022) [106] | |
Coffee blends | 55 | NIR | 1200–2400 nm | Defective coffee | PLS | R2ev = 0.87–0.91; RMSEP = 0.03 (mixture of defects) | NO | Craiget et al. (2015) [149] | |
Tea | Green tea | 225 | micro-NIR | 900–1700 nm | Moisture | PLS | R2ev = 0.98; RMSEP = 0.03; RPD = 6.53 | NO | Zong et al. (2022) [116] |
Black tea | 108 | NIR | 1000–1800 nm | Catechin | LS-SVM | R2ev = 0.98; RPD = 5.65 | NO | Li et al. (2023) [112] | |
Catechin gallate | LS-SVM | R2ev = 0.99; RPD = 10.7 | |||||||
Epicatechin | LS-SVM | R2ev = 0.99; RPD = 7.16 | |||||||
Epicatechin gallate | LS-SVM | R2ev = 0.98; RPD = 5.45 | |||||||
Epigallocatechin | LS-SVM | R2ev = 0.98; RPD = 5.40 | |||||||
Epigallocatechin gallate | LS-SVM | R2ev = 0.98; RPD = 6.37 | |||||||
Gallocatechin | LS-SVM | R2ev = 0.98; RPD = 6.22 | |||||||
Gallocatechin gallate | LS-SVM | R2ev = 0.99; RPD = 14.8 | |||||||
Black tea | 110 | micro-NIR | 900–1700 nm | Theaflavin | SVM | R2ev = 0.79; RMSEP = 0.77; RPD = 1.60 (micro-NIR) | YES n = 5 trained testers | Jin et al. (2021) [113] | |
R2ev = 086; RMSEP = 0.58; RPD = 2.01 (data fusion) | |||||||||
Theaflavin-3-gallate | SVM | R2ev = 0.73; RMSEP = 0.74; RPD = 1.48 (micro-NIR) | |||||||
R2ev = 0.67; RMSEP = 0.74; RPD = 1.36 (data fusion) | |||||||||
Theaflavin-3-3′-gallate | SVM | R2ev = 0.24; RMSEP = 2.05; RPD = 0.98 (micro-NIR) | |||||||
R2ev = 0.18; RMSEP = 1.90; RPD = 0.99 (data fusion) | |||||||||
Theaflavin-3′-gallate | SVM | R2ev = 0.63; RMSEP = 0.48; RPD = 1.30 (micro-NIR) | |||||||
R2ev = 0.55; RMSEP = 0.47; RPD = 1.18 (data fusion) | |||||||||
Beverages | Wine spirits | 16 | NIR | 904–1699 nm | Alcohols and phenols | PLS | R2cal = 0.82–0.98 | NO | Čica et al. (2019) [122] |
Wine spirits | 120 | NIR | 12,500–4000 cm−1 | Guaiacol | PLS | R2 = 0.96; RMSEP = 0.0296; RPD = 5.90 | NO | Anjos et al. (2022) [120] | |
4-methylguaiacol | PLS | R2 = 0.96; RMSEP = 0.0233; RPD = 5.36 | |||||||
Eugenol | PLS | R2 = 0.95; RMSEP = 0.0049; RPD = 4.92 | |||||||
Syringol | PLS | R2 = 0.97; RMSEP = 0.1170; RPD = 6.76 | |||||||
4-methylsyringol | PLS | R2 = 0.94; RMSEP = 0.0874; RPD = 4.45 | |||||||
4-allylsyringo | PLS | R2 = 0.90; RMSEP = 0.0176; RPD = 3.19 | |||||||
White wine | 120 | Vis-NIR | 400–2500 nm | Estery aroma | PLS | R2cv = 0.67; SEP = 0.61 | YES n = 16 trained testers | Cozzolino et al. (2005) [119] | |
Lemon aroma | PLS | R2cv = 0.71; SEP = 0.40 | |||||||
Passionfruit aroma | PLS | R2cv = 0.58; SEP = 1.01 | |||||||
Honey aroma | PLS | R2cv = 0.78; SEP = 0.50 | |||||||
Sweetness (flavor) | PLS | R2cv = 0.60; SEP = 0.30 | |||||||
Overall flavor | PLS | R2cv = 0.77; SEP = 0.30 | |||||||
Strawberry juice | 122 | FT-NIR | 800–2400 nm | TSS | PLS | R2ev = 0.979; RMSEP = 0.25; RPD = 6.8 | NO | Włodarska et al. (2019) [118] | |
Total phenolic content | PLS | R2ev = 0.844; RMSEP = 126.7; RPD = 2.6 | |||||||
Matcha drink | 115 | HSI | 400–998 nm | Appearance | ANN | R2ev = 0.79; RMSEP = 3.23; RPD = 2.20 | YES n = 5 trained testers | Ouyang et al. (2020) [48] | |
Infusion color | ANN | R2ev = 0.71; RMSEP = 3.43; RPD = 1.74 | |||||||
Aroma | ANN | R2ev = 0.67; RMSEP = 2.98; RPD = 1.76 | |||||||
Taste | ANN | R2ev = 0.77; RMSEP = 2.34; RPD = 2.03 | |||||||
Overall quality | ANN | R2ev = 0.77; RMSEP = 2.56; RPD = 2.01 | |||||||
Fruits and vegetables | Table grapes | 350 | FT-NIR | 11,544–3952 cm−1 | Titratable acidity | PLS | R2cv = 0.57; RMSECV = 0.861 | YES n = 82 consumers | Basile et al. (2020) [137] |
TSS | PLS | R2cv = 0.83; RMSECV = 1.3 | |||||||
White and red table grapes | 140 | HSI | 400–1000 nm | TSS (white) | PLS | R2cv = 0.94; RMSE = 0.06 | YES n = 15 trained testers | Baiano et al. (2012) [16] | |
TA (white) | PLS | R2cv = 0.95; RMSE = 0.06 | |||||||
pH (white) | PLS | R2cv = 0.80; RMSE = 0.06 | |||||||
TSS (red) | PLS | R2cv = 0.94; RMSE = 0.12 | |||||||
TA (red) | PLS | R2cv = 0.82; RMSE = 0.25 | |||||||
pH (red) | PLS | R2cv = 0.90; RMSE = 0.12 | |||||||
Dates | 250 | Vis-NIR | 285–1200 nm | Hardness | PCR | R2cv = 0.91; RMSE = 1.05 | YES n = 10 trained testers | Alhamdan et al. (2019) [31] | |
Chewiness | PCR | R2cv = 0.68; RMSE = 3.56 | |||||||
Cohesiveness | PCR | R2cv = 0.80; RMSE = 1.34 | |||||||
Dates | 200 | NIR-HSI | 950–1700 nm | Moisture | PLS | R2ev = 0.91; RPD = 3.65; SEP = 0.82 | NO | Ibrahim et al. (2021) [154] | |
Dry matter | PLS | R2ev = 0.91; RPD = 3.69; SEP = 0.81 | |||||||
Firmness | PLS | R2ev = 0.89; RPD = 3.42; SEP = 4.12 | |||||||
Pears | 200 | NIR | 729–975 nm | Dry matter harvest 2016 | PLS | R2 = 0.90; RMSE = 0.32 | YES n = 668 consumers | Serra et al. (2019) [129] | |
200 | Dry matter harvest 2017 | PLS | R2 = 0.94; RMSE = 0.36 | ||||||
Oranges | 600 | FT-NIR | 10,000–4000 cm−1 | TSS | PLS | R2ev = 0.83; RMSEP = 0.61 | YES n = 23 consumers | Yuan et al. (2014) [125] | |
pH | PLS | R2ev = 0.73; RMSEP = 0.17 | |||||||
Apples | 380 | Vis-NIR | 400–2100 nm | Roughness | PLS | R2cv = 0.84 | YES n = 16 trained testers | Mehinagic et al. (2003) [134] | |
Crunchiness | PLS | R2cv = 0.49 | |||||||
Mealiness | PLS | R2cv = 0.41 | |||||||
Sweet taste | PLS | R2cv = 0.65 | |||||||
Sour taste | PLS | R2cv = 0.63 | |||||||
Tomatoes | 356 | VIS-NIR | 400–2499 nm | Green, unripe | PLS | R2cv = 0.66 | YES n = 9 trained testers | Li et al. (2021) [132] | |
Saltiness | PLS | R2cv = 0.85 | |||||||
Sweetness | PLS | R2cv = 0.92 | |||||||
Umami | PLS | R2cv = 0.74 | |||||||
Tingling | PLS | R2cv = 0.78 | |||||||
Firmness | PLS | R2cv = 0.76 | |||||||
Smoothness | PLS | R2cv = 0.72 | |||||||
Mealiness | PLS | R2cv = 0.65 | |||||||
Beans | 55 | NIR | 1100–2500 nm | Aroma | PLS | R2ev = 0.31; RMSEP = 0.77; RPD = 1.19 | YES n = 11 trained testers | Plans et al. (2014) [133] | |
Flavor | PLS | R2ev = 0.70; RMSEP = 0.71; RPD = 1.62 | |||||||
Mealiness | PLS | R2ev = 0.81; RMSEP = 0.81; RPD = 1.90 | |||||||
Seed-coat perception | PLS | R2ev = 0.26; RMSEP = 1.26; RPD = 1.16 | |||||||
Seed-coat roughness | PLS | R2ev = 0.59; RMSEP = 1.22; RPD = 1.55 | |||||||
Seed-coat brightness | PLS | R2ev = 0.55; RMSEP = 0.99; RPD = 1.47 | |||||||
Wild rocket | 96 packages | MSI | 405–970 nm | Visual freshness | PLS | RMSECV = 1.5 | YES n = 11 trained testers | Løkke et al. (2013) [131] | |
Sprinkliness | PLS | RMSECV = 1.7 | |||||||
Green leaves | PLS | RMSECV = 1.6 | |||||||
Yellow leaves | PLS | RMSECV = 1.5 | |||||||
Cooked potatoes | 81 | NIR | 1100–2500 nm | Dry matter | PLS | R2 = 0.88–0.94; RMSEP = 6.84–12.70 | YES n = 16 trained testers | Van Dijk et al. (2002) [128] | |
Cooked garlic | 85 | NIR | 1100–2500 nm | Sweetness | iPLS | R2ev = 0.66–0.72; RMSEP = 0.76–0.73; RPD = 1.71–1.78 | YES n = 8 trained testers | Sans et al. (2020) [136] | |
Fiber | iPLS | R2ev = 0.58–0.42; RMSEP = 0.64–0.82; RPD = 1.41–1.10 | |||||||
Off flavor | iPLS | R2ev = 0.57–0.20; RMSEP = 0.77–1.02; RPD = 1.48–1.12 | |||||||
Cereals | Cooked rice | 76 | Vis-NIR | 400–2500 nm | Initial starch coating | PLS | R2cv = 0.76; RMSEP = 0.20 | YES n = 12 trained testers | Champagne et al. (2001) [155] |
Slickness | PLS | R2cv = 0.53; RMSEP = 0.38 | |||||||
Stickiness | PLS | R2cv = 0.58; RMSEP = 0.33 | |||||||
Hardness | PLS | R2cv = 0.67; RMSEP = 0.32 | |||||||
Cohesiveness of mass | PLS | R2cv = 0.83; RMSEP = 0.22 | |||||||
Amylose | PLS | R2cv = 0.81; RMSEP = 1.91 | |||||||
Protein | PLS | R2cv = 0.85; RMSEP = 0.38 | |||||||
Lipid | PLS | R2cv = 0.90; RMSEP = 0.04 | |||||||
Dried fruits | Walnuts | 50 | Vis-NIR | 400–2500 nm | Peroxide value | PLS | R2cv = 0.55; RMSECV = 1.9 | YES n = 9 trained testers | Jensen et al. (2001) [135] |
Hexanal content | PLS | R2cv = 0.72; RMSECV = 26.2 | |||||||
Nutty | PLS | R2cv = 0.77; RMSECV = 11.7 | |||||||
Sweet | PLS | R2cv = 0.76; RMSECV = 7.8 | |||||||
Rancid | PLS | R2cv = 0.86; RMSECV = 13.4 | |||||||
Bitter | PLS | R2cv = 0.75; RMSECV = 8.8 | |||||||
Cocoa | Cocoa beans | 48 | FT-NIR | 12,500–3600 cm−1 | Moisture | PLS | R2cv = 0.88; RMSECV = 0.21; RPD = 2.87 | NO | Krähmer et al. (2015) [141] |
pH | PLS | R2cv = 0.94; RMSECV = 0.11; RPD = 4.22 | |||||||
Free amino acids | PLS | R2cv = 0.82; RMSECV = 0.25; RPD = 1.79 | |||||||
Nitrogen content | PLS | R2cv = 0.87; RMSECV = 0.06; RPD = 2.81 | |||||||
Organic acids | PLS | R2cv = 0.88; RMSECV = 0.14; RPD = 2.91 | |||||||
Acetic acid | PLS | R2cv = 0.67; RMSECV = 0.10; RPD = 1.75 | |||||||
Lactic acid | PLS | R2cv = 0.85; RMSECV = 0.11; RPD = 2.57 | |||||||
Methylxanthines | PLS | R2cv = 0.74; RMSECV = 0.20; RPD = 1.98 | |||||||
Theobromine | PLS | R2cv = 0.79; RMSECV = 0.14; RPD = 2.19 | |||||||
Caffeine | PLS | R2cv = 0.26; RMSECV = 0.17; RPD = 1.16 | |||||||
Fat | PLS | R2cv = 0.80; RMSECV = 1.05; RPD = 2.25 | |||||||
Carbohydrates | PLS | R2cv = 0.82; RMSECV = 0.32; RPD = 2.35 | |||||||
Phenols | PLS | R2cv = 0.93; RMSECV = 0.25; RPD = 3.77 | |||||||
Epicatechin | PLS | R2cv = 0.93; RMSECV = 0.22; RPD = 3.69 | |||||||
Processed foods | Biscuits | 164 | FT-NIR | 10,000–4000 cm−1 | Xanthines | PLS | R2ev = 0.96; SEC/SEP= 77 mg kg−1 | YES n = 8 trained testers | Bedini et al. (2013) [147] |
156 | 10,000–4000 cm−1 | Polyphenols | PLS | R2ev = 0.96; SEC/SEP= 3 mg kg−1 | YES n = 8 trained testers |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basile, T.; Mallardi, D.; Cardone, M.F. Spectroscopy, a Tool for the Non-Destructive Sensory Analysis of Plant-Based Foods and Beverages: A Comprehensive Review. Chemosensors 2023, 11, 579. https://doi.org/10.3390/chemosensors11120579
Basile T, Mallardi D, Cardone MF. Spectroscopy, a Tool for the Non-Destructive Sensory Analysis of Plant-Based Foods and Beverages: A Comprehensive Review. Chemosensors. 2023; 11(12):579. https://doi.org/10.3390/chemosensors11120579
Chicago/Turabian StyleBasile, Teodora, Domenica Mallardi, and Maria Francesca Cardone. 2023. "Spectroscopy, a Tool for the Non-Destructive Sensory Analysis of Plant-Based Foods and Beverages: A Comprehensive Review" Chemosensors 11, no. 12: 579. https://doi.org/10.3390/chemosensors11120579
APA StyleBasile, T., Mallardi, D., & Cardone, M. F. (2023). Spectroscopy, a Tool for the Non-Destructive Sensory Analysis of Plant-Based Foods and Beverages: A Comprehensive Review. Chemosensors, 11(12), 579. https://doi.org/10.3390/chemosensors11120579