Room-Temperature ppb-Level H2S Gas Sensors Based on Ag Nanowire/Hollow PPy Nanotube Nanocomposites
Abstract
:1. Introduction
2. Experimental Methods
2.1. Materials
2.2. Fabrication of Hollow PPy NTs
2.3. Fabrication of Ag NWs
2.4. Fabrication of H2S Gas Sensor Based on Ag NW/Hollow PPy NT Nanocomposites
2.5. Material Characterization and Gas-Sensing Test
3. Results
3.1. Characteristics of Ag NW/Hollow PPy NT Nanocomposites
3.1.1. XRD Analysis
3.1.2. FTIR Analysis
3.1.3. SEM and TEM Analyses
3.2. Effect of Amount of Added Ag NWs on the Response of Ag NW/Hollow PPy NT Nanocomposite Films to H2S Gas
3.3. Gas-Sensing Properties of Ag NW/Hollow PPy NT Nanocomposite Films
3.4. Electrical Property and Gas-Sensing Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xue, X.; Xing, L.; Chen, Y.; Shi, S.; Wang, Y.; Wang, T. Synthesis and H2S sensing properties of CuO-SnO2 core/shell PN-junction nanorods. J. Phys. Chem. C. 2008, 112, 12157–12160. [Google Scholar] [CrossRef]
- Guo, Y.; Gong, M.; Li, Y.; Liu, Y.; Dou, X. Sensitivity, selectivity, and fast detection of ppb-level H2S gas boosted by ZnO-CuO mesocrystal. Nanoscale Res. Lett. 2016, 11, 475–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, P.G.; Zheng, Y.L. Room-temperature ppb-level SO2 gas sensors based on RGO/WO3 and MWCNTs/WO3 nanocomposites. Anal. Methods 2021, 13, 782–788. [Google Scholar] [CrossRef]
- Zheng, L.; He, M.; Yu, H.; Li, D. An H2S sensor based on electrochemistry for chicken coops. Sensors 2016, 16, 1398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes, M.; Nogueira, P.; Oliveira, J. Quantification of CO2, SO2, NH3, and H2S with a single coated piezoelectric quartz crystal. Sens. Actuators B 2000, 68, 218–222. [Google Scholar] [CrossRef]
- Afsari, A.; Sarraf, M.J. Design of a hydrogen sulfide gas sensor based on a photonic crystal cavity using graphene. Superlattice Microstruct. 2020, 138, 106362. [Google Scholar] [CrossRef]
- Alsarraj, A.; Rehman, A.; Belhaouari, S.B.; Saoud, K.M.; Bermak, A. Hydrogen sulfide (H2S) sensor: A concept of physical versus virtual sensing. IEEE Trans. Instrum. Meas. 2021, 70, 2516813. [Google Scholar] [CrossRef]
- Mirzaei, A.; Kim, S.S.; Kim, H.W. Resistance-based H2S gas sensors using metal oxide nanostructures: A review of recent advances. J. Haz. Mater. 2018, 357, 314–331. [Google Scholar] [CrossRef] [PubMed]
- Ali, F.I.M.; Awwad, F.; Greish, Y.E.; Mahmoud, S.T. Hydrogen sulfide (H2S) gas sensor: A review. IEEE Sens. J. 2019, 19, 2394–2407. [Google Scholar] [CrossRef]
- Wong, Y.C.; Ang, B.C.; Haseeb, A.S.M.A.; Baharuddin, A.A.; Wong, Y.H. Review-conducting polymers as chemiresistive gas sensing materials: A review. J. Electrochem. Soc. 2020, 167, 037503. [Google Scholar] [CrossRef]
- Duc, C.; Boukhenane, M.L.; Wojkiewicz, J.L.; Redon, N. Hydrogen sulfide detection by sensors based on conductive polymers: A review. Front. Mater. 2020, 7, 215. [Google Scholar] [CrossRef]
- Yan, Y.; Yang, G.; Xu, J.L.; Zhang, M.; Kuo, C.C.; Wang, S.D. Conducting polymer-inorganic nanocomposite-based gas sensors: A review. Sci. Technol. Adv. Mater. 2020, 21, 768–786. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, A.; Han, Y.; Li, T. Sensors based on conductive polymers and their composites: A review. Polym. Int. 2020, 69, 7–17. [Google Scholar] [CrossRef]
- Farea, M.A.; Mohammed, H.Y.; Shirsat, S.M.; Sayyad, P.W.; Ingle, N.N.; Al-Gahouari, T.; Mahadik, M.M.; Bodkhe, G.A.; Shirsat, M.D. Hazardous gases sensors based on conducting polymer composites: Review. Chem. Phys. Lett. 2021, 776, 138703. [Google Scholar] [CrossRef]
- Shirsat, M.D.; Bangar, M.A.; Deshusses, M.A.; Myung, N.V.; Mulchandani, A. Polyaniline nanowires-gold nanoparticles hybrid network based chemiresistive hydrogen sulfide sensor. Appl. Phys. Lett. 2009, 94, 083502. [Google Scholar] [CrossRef] [Green Version]
- Garg, R.; Kumar, V.; Kumar, D.; Chakarvarti, S.K. Polypyrrole microwires as toxic gas sensors for ammonia and hydrogen sulphide. J. Sensor. Instrum. 2015, 3, 1–13. [Google Scholar] [CrossRef]
- Nerkar, D.M.; Jaware, S.E.; Padhye, G.G. Fabrication of a novel flexible room temperature hydrogen sulfide (H2S) gas sensor based on polypyrrole films. Indian J. Sci. Res. 2016, 5, 106–111. [Google Scholar]
- Hasan, M.I.; Bakr, N.A.; Ibrahim, I.M. Morphological, magnetic, optical, surface potential, and H2S gas sensing behavior of polypyrrole nanofibers. J. Electron. Mat. 2021, 50, 2716–2724. [Google Scholar] [CrossRef]
- Mirzaei, A.; Bang, J.H.; Kim, S.S.; Kim, H.W. Effect of noble metals on hydrogen sensing properties of metal oxide-based gas sensors. J. Sens. Sci. Technol. 2020, 29, 365–368. [Google Scholar]
- Navale, S.; Shahbaz, M.; Mirzaei, A.; Kim, S.S.; Kim, H.W. Effect of Ag addition on the gas-sensing properties of nanostructured resistive-based gas sensors: An overview. Sensors 2021, 21, 6454. [Google Scholar] [CrossRef]
- Mekki, A.; Joshi, N.; Singh, A.; Salmi, Z.; Jha, P.; Decorse, P.; Lau-Truong, S.; Mahmoud, R.; Chehimi, M.M.; Aswal, D.K.; et al. H2S sensing using in situ photo-polymerized polyaniline–silver nanocomposite films on flexible substrates. Org. Electron. 2014, 15, 71–81. [Google Scholar] [CrossRef]
- Yang, X.; Li, L.; Yan, F. Polypyrrole/silver composite nanotubes for gas sensors. Sens. Actuators B. 2010, 145, 495–500. [Google Scholar] [CrossRef]
- Kate, K.H.; Damkale, S.R.; Khanna, P.K.; Jain, G.H. Nano-silver mediated polymerization of pyrrole: Synthesis and gas sensing properties of polypyrrole (PPy)/Ag nanocomposite. J. Nanosci. Nanotechnol. 2011, 11, 7863–7869. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.I.; Ibrahim, I.M.; Bakr, N.A. The sensitivity of polypyrrole nanotube/(Ag nanoparticle, Ag-NiO nanocomposite) against H2S toxic gas at low temperature. Sens. Transducers 2020, 243, 31–41. [Google Scholar]
- Mirzaei, A.; Kumar, V.; Bonyani, M.; Majhi, S.M.; Bang, J.H.; Kim, J.Y.; Kim, H.W.; Kim, S.S.; Kim, K.H. Conducting polymer nanofibers based sensors for organic and inorganic gaseous compounds. Asian J. Atmos. Environ. 2020, 14, 85–104. [Google Scholar] [CrossRef]
- Shimizu, Y.; Egashira, M. Basic aspects and challenges of semiconductor gas sensors. MRS Bull. 1999, 24, 18–24. [Google Scholar] [CrossRef]
- Arafat, M.; Dinan, B.; Akbar, S.A.; Haseeb, A. Gas sensors based on one dimensional nanostructured metal oxides: A review. Sensors 2012, 12, 7207–7258. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhu, L.; Sun, S.; Wang, J.; Yan, W. One-dimensional nanomaterials in resistive gas Sensor: From material design to application. Chemosensors 2021, 9, 198. [Google Scholar] [CrossRef]
- Zhou, T.; Zhang, T. Recent progress of nanostructured sensing materials from 0D to 3D: Overview of structure–property-application relationship for gas sensors. Small Methods 2021, 5, 2100515. [Google Scholar] [CrossRef]
- Wang, B.; Cancilla, J.C.; Torrecilla, J.S.; Haick, H. Artificial sensing intelligence with silicon nanowires for ultraselective detection in the gas phase. Nano Lett. 2014, 14, 933–938. [Google Scholar] [CrossRef] [PubMed]
- Shalev, G. The electrostatically formed nanowire: A novel platform for gas-sensing applications. Sensors 2017, 17, 471. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Xiao, S.; Du, K. Chemiresistive gas sensors based on hollow heterojunction: A review. Adv. Mater. Interfaces 2021, 8, 2002122. [Google Scholar] [CrossRef]
- Tian, T.; Deng, J.; Xie, Z.; Zhao, Y.; Feng, Z.; Kang, X.; Gu, Z. Polypyrrole hollow fiber for solid phase extraction. Analyst 2012, 137, 1846–1852. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xiang, S.; Wang, L.; Wang, M.; Wang, C.; Liu, S.; Zhang, K.; Yang, B. Hollow polypyrrole nanospindles for highly effective cancer therapy. ChemPlusChem 2018, 83, 1127–1134. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Wu, F.; Xie, A.; Duan, L.; Yang, Z.; Xia, Y.; Sun, M.; Xiong, Z. Hollow polypyrrole nanofiber-based self-assembled aerogel: Large-scale fabrication and outstanding performance in electromagnetic pollution management. Ind. Eng. Chem. Res. 2020, 59, 7604–7610. [Google Scholar] [CrossRef]
- Gai, L.; Zhao, Y.; Song, G.; An, Q.; Xiao, Z.; Zhai, S.; Li, Z. Construction of core-shell PPy@MoS2 with nanotube-like heterostructures for electromagnetic wave absorption: Assembly and enhanced mechanism. Compos. Part A 2020, 136, 105965. [Google Scholar] [CrossRef]
- Luan, Y.; Zhang, S.; Nguyen, T.H.; Yang, W.; No, J.S. Polyurethane sponges decorated with reduced graphene oxide and silver nanowires for highly stretchable gas sensors. Sens. Actuators B 2018, 265, 609–616. [Google Scholar] [CrossRef]
- Yang, X.; Fu, H.; Zhang, L.; An, X.; Xiong, S.; Jiang, X.; Yu, A. Enhanced gas sensing performance based on the fabrication of polycrystalline Ag@TiO2 core-shell nanowires. Sens. Actuators B 2019, 286, 483–492. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, S.; Kimura, K. Superlattice formation from polydisperse Ag nanoparticles by a vapor-diffusion method. Angew. Chem. Int. Ed. 2006, 45, 5662–5665. [Google Scholar] [CrossRef] [PubMed]
- Allen, N.S.; Murray, K.S.; Fleming, R.J. Physical properties of polypyrrole films containing trisoxalatometallate anions and prepared from aqueous solution. Synth. Met. 1997, 87, 237–247. [Google Scholar] [CrossRef]
- Ouyang, J.Y.; Li, Y.F. Great improvement of polypyrrole films prepared electrochemically from aqueous solutions by adding nonaphenol polyethyleneoxy (10) ether. Polymer 1997, 38, 3997–3999. [Google Scholar] [CrossRef]
- Chougule, M.A.; Pawara, S.G.; Godse, P.R.; Mulika, R.N.; Sen, S.; Patila, V.B. Synthesis and characterization of polypyrrole (PPy) thin films. Soft Nanosci. Lett. 2011, 1, 6–10. [Google Scholar] [CrossRef] [Green Version]
- Bhat, N.V.; Gadre, A.P.; Bambole, V.A. Investigation of electropolymerized polypyrrole composite film: Characterization and application to gas sensor. J. Appl. Polym. Sci. 2003, 88, 22–29. [Google Scholar] [CrossRef]
- Yan, Y.; Li, H.; Zhang, Y.; Kan, J.; Jiang, T.; Pang, H.; Zhu, Z.; Xue, H. Facile synthesis of polypyrrole nanotubes and their supercapacitive application. Int. J. Electrochem. Sci. 2017, 12, 9320–9334. [Google Scholar] [CrossRef]
- Sun, Y. Silver nanowires—Unique templates for functional nanostructures. Nanoscale 2010, 2, 1626–1642. [Google Scholar] [CrossRef] [PubMed]
- Park, E.; Kwon, O.S.; Park, S.J.; Lee, J.S.; You, S.; Jang, J. One-pot synthesis of silver nanoparticles decorated poly(3,4-ethylenedioxythiophene) nanotubes for chemical sensor application. J. Mater. Chem. 2012, 22, 1521–1526. [Google Scholar] [CrossRef]
- Bai, S.L.; Zhang, K.W.; Sun, J.H.; Zhang, D.F.; Luo, R.X.; Li, D.Q.; Liu, C.C. Polythiophene-WO3 hybrid architectures for low-temperature H2S detection. Sens. Actuators B 2014, 197, 142–148. [Google Scholar] [CrossRef]
- Su, P.G.; Yu, J.H. Enhanced NO2 gas-sensing properties of Au-Ag bimetal decorated MWCNTs/WO3 composite sensor under UV-LED irradiation. Sens. Actuators A 2020, 303, 111718. [Google Scholar] [CrossRef]
- Kriván, E.; Visy, C.; Dobay, R.; Harsányi, G.; Berkesi, O. Irregular response of the polypyrrole films to H2S. Electroanalysis 2000, 12, 1195–1200. [Google Scholar] [CrossRef]
Sensing Material | Working Range | Response (ΔR/Rair) | Response/Recovery Time | Operating Temperature (°C) | References |
---|---|---|---|---|---|
Au NPs-PANI a | 0.1~1000 ppb | 2.2% (@1000 ppb) | <2 min/<2 min | 25 | [15] |
Ag-PANI | 1~25 ppm | 6 min/− | 25 | [22] | |
PTh-WO3 b | 5~200 ppm | 1.4% (@200 ppm) | 15 s/− | 70 | [47] |
PPy microwire | 200 ppm | 85% (@200 ppm) | −/− | 25 | [16] |
PPy film | 10~100 ppm | 5% (@10 ppm) | 64 s/644 s | 25 | [17] |
Ag NPs-PPy | 800 ppm | − | −/− | 250 | [23] |
Ag NPs-PPy NTs | 20 ppm | 30.57% (@20 ppm) | 48.7 s/10.7 s | 25 | [24] |
Ag NWs/hollow PPy NTs | 10~1000 ppb | 13% (@500 ppb) | 97 s/352 s | 25 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, P.-G.; Chai, X.-C. Room-Temperature ppb-Level H2S Gas Sensors Based on Ag Nanowire/Hollow PPy Nanotube Nanocomposites. Chemosensors 2022, 10, 305. https://doi.org/10.3390/chemosensors10080305
Su P-G, Chai X-C. Room-Temperature ppb-Level H2S Gas Sensors Based on Ag Nanowire/Hollow PPy Nanotube Nanocomposites. Chemosensors. 2022; 10(8):305. https://doi.org/10.3390/chemosensors10080305
Chicago/Turabian StyleSu, Pi-Guey, and Xing-Chen Chai. 2022. "Room-Temperature ppb-Level H2S Gas Sensors Based on Ag Nanowire/Hollow PPy Nanotube Nanocomposites" Chemosensors 10, no. 8: 305. https://doi.org/10.3390/chemosensors10080305
APA StyleSu, P. -G., & Chai, X. -C. (2022). Room-Temperature ppb-Level H2S Gas Sensors Based on Ag Nanowire/Hollow PPy Nanotube Nanocomposites. Chemosensors, 10(8), 305. https://doi.org/10.3390/chemosensors10080305