An Enzyme-Based Interdigitated Electrode-Type Biosensor for Detecting Low Concentrations of H2O2 Vapor/Aerosol
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Capacitive Detection of the H2O2 Vapor Inside the Glass Box as Proof-of-Concept Experiment
3.2. Capacitive Detection of the H2O2 Vapor/Aerosol in the Sterilization Test Rig
3.3. Influence of the Relative Humidity on the Capacitive Detection of the H2O2 Aerosol
4. Conclusions and Outlook
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jildeh, Z.B.; Wagner, P.H.; Schöning, M.J. Sterilization of objects, products, and packaging surfaces and their characterization in different fields of industry: The status in 2020. Phys. Status Solidi Appl. Mater. Sci. 2021, 218, 2170039. [Google Scholar] [CrossRef]
- McEvoy, B.; Rowan, N.J. Terminal sterilization of medical devices using vaporized hydrogen peroxide: A review of current methods and emerging opportunities. J. Appl. Microbiol. 2019, 127, 1403–1420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonnell, G. The use of hydrogen peroxide for disinfection and sterilization applications. PATAI’S Chem. Funct. Groups 2014, 2, 1–34. [Google Scholar] [CrossRef]
- Johnston, M.D.; Lawson, S.; Otter, J.A. Evaluation of hydrogen peroxide vapour as a method for the decontamination of surfaces contaminated with Clostridium botulinum spores. J. Microbiol. Methods 2005, 60, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Vahidpour, F.; Oberländer, J.; Schöning, M.J. Flexible calorimetric gas sensors for detection of a broad concentration range of gaseous hydrogen peroxide: A step forward to online monitoring of food-package sterilization processes. Phys. Status Solidi Appl. Mater. Sci. 2018, 215, 1800044. [Google Scholar] [CrossRef]
- Kirchner, P.; Ng, Y.A.; Spelthahn, H.; Schneider, A.; Henkel, H.; Friedrich, P.; Kolstad, J.; Berger, J.; Keusgen, M.; Schöning, M.J. Gas sensor investigation based on a catalytically activated thin-film thermopile for H2O2 detection. Phys. Status Solidi Appl. Mater. Sci. 2010, 207, 787–792. [Google Scholar] [CrossRef]
- Kirchner, P.; Oberländer, J.; Friedrich, P.; Berger, J.; Rysstad, G.; Keusgen, M.; Schöning, M.J. Realisation of a calorimetric gas sensor on polyimide foil for applications in aseptic food industry. Sens. Actuators B Chem. 2012, 170, 60–66. [Google Scholar] [CrossRef]
- Oberländer, J.; Kirchner, P.; Boyen, H.G.; Schöning, M.J. Detection of hydrogen peroxide vapor by use of manganese (IV) oxide as catalyst for calorimetric gas sensors. Phys. Status Solidi A 2014, 211, 1372–1376. [Google Scholar] [CrossRef] [Green Version]
- Kirchner, P.; Oberländer, J.; Suso, H.P.; Rysstad, G.; Keusgen, M.; Schöning, M.J. Monitoring the microbicidal effectiveness of gaseous hydrogen peroxide in sterilisation processes by means of a calorimetric gas sensor. Food Control 2013, 31, 530–538. [Google Scholar] [CrossRef]
- Vahidpour, F.; Guthmann, E.; Arreola, J.; Alghazali, Y.; Wagner, T.; Schöning, M.J. Assessment of various process parameters for optimized sterilization conditions using a multi-sensing platform. Foods 2022, 11, 660. [Google Scholar] [CrossRef]
- Oberländer, J.; Kirchner, P.; Keusgen, M.; Schöning, M.J. Strategies in developing thin-film sensors for monitoring aseptic food processes: Theoretical considerations and investigations of passivation materials. Electrochim. Acta 2015, 183, 130–136. [Google Scholar] [CrossRef]
- Arreola, J.; Keusgen, M.; Wagner, T.; Schöning, M.J. Combined calorimetric gas- and spore-based biosensor array for online monitoring and sterility assurance of gaseous hydrogen peroxide in aseptic filling machines. Biosens. Bioelectron. 2019, 143, 111628. [Google Scholar] [CrossRef] [PubMed]
- Arreola, J.; Keusgen, M.; Schöning, M.J. Towards an immobinization method for spore-based biosensors in oxidative environment. Electrochim. Acta 2019, 302, 394–401. [Google Scholar] [CrossRef]
- Oberländer, J.; Bromm, A.; Wendeler, L.; Iken, H.; Durán, M.P.; Greeff, A.; Kirchner, P.; Keusgen, M.; Schöning, M.J. Towards a biosensor to monitor the sterilisation efficiency of aseptic filling machines. Phys. Status Solidi A 2015, 212, 1299–1305. [Google Scholar] [CrossRef]
- Xu, M.; Bunes, B.R.; Zang, L. Paper-based vapor detection of hydrogen peroxide: Colorimetric sensing with tunable interface. ACS Appl. Mater. Interfaces 2011, 3, 642–647. [Google Scholar] [CrossRef]
- Kubo, W.; Tatsuma, T. Detection of H2O2 released from TiO2 photocatalyst to air. Anal. Sci. 2004, 20, 591–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.H.; Kim, K.H.; Seo, S.E.; il Kim, M.; Park, S.J.; Kwon, O.S. Cytochrome C-decorated graphene field-effect transistor for highly sensitive hydrogen peroxide detection. J. Ind. Eng. Chem. 2020, 83, 29–34. [Google Scholar] [CrossRef]
- Lee, J.S.; Jeong, D.W.; Byun, Y.T. Porphyrin nanofiber/single-walled carbon nanotube nanocomposite-based sensors for monitoring hydrogen peroxide vapor. Sens. Actuators B Chem. 2020, 306, 127518. [Google Scholar] [CrossRef]
- Verma, A.L.; Saxena, S.; Saini, G.S.S.; Gaur, V.; Jain, V.K. Hydrogen peroxide vapor sensor using metal-phthalocyanine functionalized carbon nanotubes. Thin Solid Films 2011, 519, 8144–8148. [Google Scholar] [CrossRef]
- Patel, V.; Kruse, P.; Selvaganapathy, P.R. Solid state sensors for hydrogen peroxide detection. Biosensors 2021, 11, 9. [Google Scholar] [CrossRef]
- Wu, S.H.; Huang, X.B.; Tang, Y.; Ma, L.M.; Liu, Y.; Sun, J.J. Temperature controllable electrochemical sensors based on horseradish peroxidase as electrocatalyst at heated Au disk electrode and its preliminary application for H2O2 detection. Anal. Chim. Acta 2020, 1096, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishnan, S.; Kim, S.J. An enzymatic biosensor for hydrogen peroxide based on one-pot preparation of CeO2-reduced graphene oxide nanocomposite. RSC Adv. 2015, 5, 12937–12943. [Google Scholar] [CrossRef]
- Srivastava, A.; Kumar, N.; Singh, P.; Singh, S.K. H2O2 sensing using HRP modified catalyst-free ZnO nanorods synthesized by RF sputtering. Appl. Phys. A Mater. Sci. Process. 2017, 123, 453. [Google Scholar] [CrossRef]
- Iwata, T.; Mizutani, S.; Okumura, K.; Okumura, Y.; Takahashi, K.; Sawada, K. H2O2 detection by redox-based potentiometric sensors under biological environments. Sens. Mater. 2018, 30, 2359–2367. [Google Scholar] [CrossRef]
- Chen, S.; Yuan, R.; Chai, Y.; Hu, F. Electrochemical sensing of hydrogen peroxide using metal nanoparticles: A review. Microchim. Acta 2013, 180, 15–32. [Google Scholar] [CrossRef]
- Song, M.; Wang, J.; Chen, B.; Wang, L. A facile, non-reactive hydrogen peroxide (H2O2) detection method enabled by ion chromatography with UV detector. Anal. Chem. 2017, 89, 11537–11544. [Google Scholar] [CrossRef] [PubMed]
- Karyakin, A.A.; Puganova, E.A.; Budashov, I.A.; Kurochkin, I.N.; Karyakina, E.E.; Levchenko, V.A.; Matveyenko, V.N.; Varfolomeyev, S.D. Prussian blue based nanoelectrode arrays for H2O2 detection. Anal. Chem. 2004, 76, 474–478. [Google Scholar] [CrossRef]
- Zhang, Y.; Bai, X.; Wang, X.; Shiu, K.K.; Zhu, Y.; Jiang, H. Highly sensitive graphene—Pt nanocomposites amperometric biosensor and its application in living cell H2O2 detection. Anal. Chem. 2014, 86, 9459–9465. [Google Scholar] [CrossRef]
- Akahashi, A.T.; Ashimoto, K.H.; Umazawa, S.K.; Akayama, T.N. Determination of hydrogen peroxide by high-performance liquid chromatography with a cation-exchange resin gel column and electrochemical detector. Anal. Sci. 1999, 15, 481–483. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Rao, D.; Zheng, J. Synthesis of Ag nanoparticle doped MnO2/GO nanocomposites at a gas/liquid interface and its application in H2O2 detection. Electroanalysis 2016, 28, 588–595. [Google Scholar] [CrossRef]
- Gao, Y.C.; Xi, K.; Wang, W.N.; Jia, X.D.; Zhu, J.J. A novel biosensor based on a gold nanoflowers/hemoglobin/carbon nanotubes modified electrode. Anal. Methods 2011, 3, 2387–2391. [Google Scholar] [CrossRef]
- Townsend, M. Aseptic processing of protein pharmaceuticals. In Development and Manufacture of Protein Pharmaceuticals; Nail, S.L., Akers, M.J., Eds.; Plenum Publishers: New York, NY, USA, 2002; pp. 129–189. [Google Scholar]
- Rutala, W.A.; Weber, D.J. Disinfection and sterilization: An overview. Am. J. Infect. Control 2013, 41, S2–S5. [Google Scholar] [CrossRef]
- Doll, M.; Stevens, M.; Bearman, G. Environmental cleaning and disinfection of patient areas. Int. J. Infect. Dis. 2018, 67, 52–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bounoure, F.; Fiquet, H.; Arnaud, P. Comparison of hydrogen peroxide and peracetic acid as isolator sterilization agents in a hospital pharmacy. Am. J. Health Pharm. 2006, 63, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Doll, M.; Morgan, D.J.; Anderson, D.; Bearman, G. Touchless technologies for decontamination in the hospital: A review of hydrogen peroxide and UV devices. Curr. Infect. Dis. Rep. 2015, 17, 44. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Janie, E.; Huang, T.; Gitzen, J.; Kissinger, P.T.; Vreeke, M.; Heller, A. Applications of “wired” peroxidase electrodes for peroxide determination in liquid chromatography coupled to oxidase immobilized enzyme reactors. Anal. Chem. 1995, 67, 1326–1331. [Google Scholar] [CrossRef]
- Castilho, T.J.; Sotomayor, M.D.P.T.; Kubota, L.T. Amperometric biosensor based on horseradish peroxidase for biogenic amine determinations in biological samples. J. Pharm. Biomed. Anal. 2005, 37, 785–791. [Google Scholar] [CrossRef]
- Negahdary, M.; Asadi, A.; Mehrtashfar, S.; Imandar, M.; Akbari-Dastjerdi, H.; Salahi, F.; Jamaleddini, A.; Ajdary, M. A biosensor for determination of H2O2 by use of HRP enzyme and modified CPE with Zno Nps. Int. J. Electrochem. Sci. 2012, 7, 5185–5194. [Google Scholar]
- Tang, J.; Wang, B.; Wu, Z.; Han, X.; Dong, S.; Wang, E. Lipid membrane immobilized horseradish peroxidase biosensor for amperometric determination of hydrogen peroxide. Biosens. Bioelectron. 2003, 18, 867–872. [Google Scholar] [CrossRef]
- Horseradish Peroxidase Product Specification. Available online: https://www.sigmaaldrich.com/specification-sheets/342/523/P8375-BULK________SIGMA____.pdf (accessed on 21 February 2022).
- Dzyadevich, S.V.; Zhylyak, G.A.; Soldatkin, A.P.; El’skaya, A.V. Conductometric urease microbiosensor based on thin-film interdigitated electrodes for urea determination. Biopolym. Cell 1996, 12, 53–57. [Google Scholar] [CrossRef] [Green Version]
- Chemistry Libretexts. Horseradish Peroxidase. Available online: https://chem.libretexts.org/Bookshelves/Biological_Chemistry/Supplemental_Modules_(Biological_Chemistry)/Enzymes/Case_Studies/Horseradish_Peroxidase (accessed on 26 April 2022).
- Berglund, G.I.; Carlsson, G.H.; Smith, A.T.; Szöke, H.; Henriksen, A.; Hajdu, J. The Catalytic Pathway of Horseradish Peroxidase at High Resolution. Available online: https://www.rcsb.org/structure/1HCH (accessed on 26 April 2022).
- Abouzar, M.H.; Poghossian, A.; Siqueira, J.R.; Oliveira, O.N.; Moritz, W.; Schöning, M.J. Capacitive electrolyte-insulator-semiconductor structures functionalised with a polyelectrolyte/enzyme multilayer: New strategy for enhanced field-effect biosensing. Phys. Status Solidi Appl. Mater. Sci. 2010, 207, 884–890. [Google Scholar] [CrossRef]
- Poghossian, A.; Schöning, M.J.; Schroth, P.; Simonis, A.; Lüth, H. An ISFET-based penicillin sensor with high sensitivity, low detection limit and long lifetime. Sens. Actuators B Chem. 2001, 76, 519–526. [Google Scholar] [CrossRef]
- Jablonski, M.; Münstermann, F.; Nork, J.; Molinnus, D.; Muschallik, L.; Bongaerts, J.; Wagner, T.; Keusgen, M.; Siegert, P.; Schöning, M.J. Capacitive field-effect biosensor applied for the detection of acetoin in alcoholic beverages and fermentation broths. Phys. Status Solidi Appl. Mater. Sci. 2021, 218, 2000765. [Google Scholar] [CrossRef]
- Wu, L.; Yin, W.; Tang, K.; Li, D.; Shao, K.; Zuo, Y.; Ma, J.; Liu, J.; Han, H. Enzymatic biosensor of horseradish peroxidase immobilized on Au-Pt nanotube/Au-graphene for the simultaneous determination of antioxidants. Anal. Chim. Acta 2016, 933, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Che, X.; Yuan, R.; Chai, Y.; Ma, L.; Li, W.; Li, J. Hydrogen peroxide sensor based on horseradish peroxidase immobilized on an electrode modified with DNA-L-cysteine-gold-platinum nanoparticles in polypyrrole film. Microchim. Acta 2009, 167, 159–165. [Google Scholar] [CrossRef]
- Baker, C.J.; Orlandi, E.W.; Deahl, K.; Domek, J. Scavenging of H2O2 and production of oxygen by horseradish peroxidase. Arch. Biochem. Biophys. 2000, 382, 232–237. [Google Scholar] [CrossRef]
- Abu-Abed, A.S.; Lindquist, R.G. Capacitive interdigital sensor with inhomogeneous nematic liquid crystal film. Prog. Electromagn. Res. B 2008, 7, 75–87. [Google Scholar] [CrossRef] [Green Version]
- Oberländer, J.; Jildeh, Z.B.; Kirchner, P.; Wendeler, L.; Bromm, A.; Iken, H.; Wagner, P.; Keusgen, M.; Schöning, M.J. Study of interdigitated electrode arrays using experiments and finite element models for the evaluation of sterilization processes. Sensors 2015, 15, 26115–26127. [Google Scholar] [CrossRef] [Green Version]
- Oberländer, J.; Jildeh, Z.; Kirchner, P.; Wendeler, L.; Bromm, A.; Iken, H.; Wagner, P.; Keusgen, M.; Schöning, M.J. Experimental and numerical evaluation of interdigitated electrode array for monitoring gaseous sterilization processes. In Proceedings of the 12. Dresdner Sensor-Symposium, Dresden, Germany, 9 December 2015; pp. 163–168. [Google Scholar]
- Maupas, H.; Saby, C.; Martelet, C.; Jaffrezic-Renault, N.; Soldatkin, A.P.; Charles, M.H.; Delair, T.; Mandrand, B. Impedance analysis of Si/SiO2 heterostructures grafted with antibodies: An approach for immunosensor development. J. Electroanal. Chem. 1996, 406, 53–58. [Google Scholar] [CrossRef]
- Mahmoudi, A.; Nazari, K.; Mohammadian, N.; Moosavi-Movahedi, A.A. Effect of Mn2+, Co2+, Ni2+, and Cu2+ on horseradish peroxidase: Activation, inhibition, and denaturation studies. Appl. Biochem. Biotechnol. Part A Enzym. Eng. Biotechnol. 2003, 104, 81–94. [Google Scholar] [CrossRef]
- Abdulaal, W.H.; Almulaiky, Y.Q. Encapsulation of HRP enzyme onto a magnetic Fe3O4 NP—PMMA film via casting with sustainable biocatalytic activity. Catalysts 2020, 10, 181. [Google Scholar] [CrossRef] [Green Version]
- Kirchner, P.; Li, B.; Spelthahn, H.; Henkel, H.; Schneider, A.; Friedrich, P.; Kolstad, J.; Keusgen, M.; Schöning, M.J. Thin-film calorimetric H2O2 gas sensor for the validation of germicidal effectivity in aseptic filling processes. Sens. Actuators B Chem. 2011, 154, 257–263. [Google Scholar] [CrossRef]
Commercial H2O2 Detector (e.g., Viasala) | Novel Enzymatic Biosensor Setup | |
---|---|---|
Size | Length: 22 mm + 96 mm Diameter: 16 mm | Sensor: W × H: 5 × 10 mm2 PCB holder: 20 × 48 mm2 (Further miniaturization to about 2 × 2 mm2 for 2D and 3D mapping). |
Response time | Vaisala: >1 min | <1 min |
Applicability | Less probable application for 2D or 3D mapping of medical isolators due to the large sizes and non-flat sensor surface. | Due to flat shape, miniaturized structure, possibility of 2D or 3D mapping of medical isolators with several sensors at once. |
Costs | EUR ~2500 plus software and read-out devices. | <5 Euros, cost-effective read-out by Arduino µ-controller; |
for 3D mapping of the medical isolator: EUR ~200–300. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vahidpour, F.; Alghazali, Y.; Akca, S.; Hommes, G.; Schöning, M.J. An Enzyme-Based Interdigitated Electrode-Type Biosensor for Detecting Low Concentrations of H2O2 Vapor/Aerosol. Chemosensors 2022, 10, 202. https://doi.org/10.3390/chemosensors10060202
Vahidpour F, Alghazali Y, Akca S, Hommes G, Schöning MJ. An Enzyme-Based Interdigitated Electrode-Type Biosensor for Detecting Low Concentrations of H2O2 Vapor/Aerosol. Chemosensors. 2022; 10(6):202. https://doi.org/10.3390/chemosensors10060202
Chicago/Turabian StyleVahidpour, Farnoosh, Yousef Alghazali, Sevilay Akca, Gregor Hommes, and Michael J. Schöning. 2022. "An Enzyme-Based Interdigitated Electrode-Type Biosensor for Detecting Low Concentrations of H2O2 Vapor/Aerosol" Chemosensors 10, no. 6: 202. https://doi.org/10.3390/chemosensors10060202