Potentiometric Determination of Moxifloxacin by Solid-Contact ISEs in Wastewater Effluents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumentation
2.2. Chemicals, Reagents, and Standard Solutions
2.3. Sensors’ Fabrication, Calibration, and Optimization
2.4. Application
3. Results
3.1. Manufactured Membranes’ Performance Evaluation
3.2. Assay of Water Samples Loaded with MOX
3.3. Assay of MOX in Real Wastewater
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seifrtová, M.; Aufartová, J.; Vytlačilová, J.; Pena, A.; Solich, P.; Nováková, L. Determination of fluoroquinolone antibiotics in wastewater using ultra high-performance liquid chromatography with mass spectrometry and fluorescence detection. J. Sep. Sci. 2010, 33, 2094–2108. [Google Scholar] [CrossRef] [PubMed]
- Sweetman, S.C. Martindale: The Complete Drug Reference, 36th ed.; The pharmaceutical Press: London, UK, 2009; pp. 302–340. [Google Scholar]
- O’Neil, M.J. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, 14th ed.; Merck Research Laboratories, Division of Merck and Co. Inc.: Kenilworth, NJ, USA, 2001; pp. 1125–1150. [Google Scholar]
- Drlica, K.; Zhao, X. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol. Mol. Biol. Rev. 1997, 61, 377–392. [Google Scholar] [PubMed]
- Motwani, S.K.; Chopra, S.; Ahmad, F.J.; Khar, R.K. Validated spectrophotometric methods for the estimation of moxifloxacin in bulk and pharmaceutical formulations. Spectrochim. Acta A 2007, 68, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Elbashir, A.A.; Ebraheem, S.A.; Elwagee, A.H.; Aboul-Enein, H.Y. New spectrophotometric methods for the determination of moxifloxacin in pharmaceutical formulations. Acta Chim. Slov. 2013, 60, 159–165. [Google Scholar] [PubMed]
- Kamruzzaman, M.; Alam, A.M.; Lee, S.H.; Ragupathy, D.; Kim, Y.H.; Park, S.R.; Kim, S.H. Spectrofluorimetric study of the interaction between europium (III) and moxifloxacin in micellar solution and its analytical application. Spectrochim. Acta A 2012, 86, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghannam, S.M. Atomic absorption spectroscopic, conductometric and colorimetric methods for determination of some fluoroquinolone antibacterials using ammonium reineckate. Spectrochim. Acta A 2008, 69, 1188–1194. [Google Scholar] [CrossRef]
- Xu, Y.H.; Li, D.; Liu, X.Y.; Li, Y.Z.; Lu, J. High-performance liquid chromatography assay with ultraviolet detection for moxifloxacin: Validation and application to a pharmacokinetic study in Chinese volunteers. J. Chromatogr. B 2010, 878, 3437–3441. [Google Scholar] [CrossRef]
- Lemoine, T.; Breilh, D.; Ducint, D.; Dubrez, J.; Jougon, J.; Velly, J.F.; Saux, M.C. Determination of moxifloxacin (BAY 12–8039) in plasma and lung tissue by high-performance liquid chromatography with ultraviolet detection using a fully automated extraction method with a new polymeric cartridge. J. Chromatogr. B 2000, 742, 247–254. [Google Scholar] [CrossRef]
- Guerra, F.L.; Paim, C.S.; Steppe, M.; Schapoval, E.E. Biological assay and liquid chromatographic method for analysis of moxifloxacin in tablets. J. AOAC Int. 2005, 88, 1086–1092. [Google Scholar] [CrossRef] [Green Version]
- Abdelaziz, A.A.; Elbanna, T.E.; Gamaleldeen, N.M. Validated microbiological and HPLC methods for the determination of moxifloxacin in pharmaceutical preparations and human plasma. Braz. J. Microbiol. 2012, 43, 1291–1301. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.K.; Sudha, V.; Srinivasan, R.; Ramachandran, G. Simple and rapid liquid chromatography method for determination of moxifloxacin in saliva. J. Chromatogr. B 2011, 879, 3663–3667. [Google Scholar] [CrossRef] [PubMed]
- Goudah, A. Pharmacokinetics and tissue residues of moxifloxacin in broiler chickens. Br. Poult. Sci. 2009, 50, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Cruz, L.A.; Hall, R. Enantiomeric purity assay of moxifloxacin hydrochloride by capillary electrophoresis. J. Pharm. Biomed. Anal. 2005, 38, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Möller, J.G.; Stass, H.; Heinig, R.; Blaschke, G. Capillary electrophoresis with laser-induced fluorescence: A routine method to determine moxifloxacin in human body fluids in very small sample volumes. J. Chromatogr. B 1998, 716, 325–334. [Google Scholar] [CrossRef]
- Raju, B.; Ramesh, M.; Borkar, R.M.; Padiya, R.; Banerjee, S.K.; Srinivas, R. Development and validation of liquid chromatography-mass spectrometric method for simultaneous determination of moxifloxacin and ketorolac in rat plasma: Application to pharmacokinetic study. Biomed. Chromatogr. 2012, 26, 1341–1347. [Google Scholar] [CrossRef]
- Pranger, A.D.; Alffenaar, J.W.; Wessels, A.M.; Greijdanus, B.; Uges, D.R. Determination of moxifloxacin in human plasma, plasma ultrafiltrate, and cerebrospinal fluid by a rapid and simple liquid chromatography-tandem mass spectrometry method. J. Anal. Toxicol. 2010, 34, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Erk, N. Voltammetric behavior and determination of moxifloxacin in pharmaceutical products and human plasma. Anal. Bioanal. Chem. 2004, 378, 1351–1356. [Google Scholar] [CrossRef]
- Essa, W.A.; Beltagi, A.M.; Hathoot, A.A.; Abdel Azzem, M. A Sensitive Voltammetric Sensor for Improved Simultaneous Determination of Moxifloxacin Hydrochloride and Paracetamol. J. Electrochem. Soc. 2020, 167, 167509. [Google Scholar] [CrossRef]
- Zhou, Q.; Long, N.; Liu, L.; Zhai, H.; Zhu, M. Electrochemical Determination of Moxifloxacin Hydrochloride Based on Molecularly Imprinted Polymer Modified Carbon Paste Electrode. Int. J. Electrochem. Sci. 2015, 10, 5069–5076. [Google Scholar]
- Hammam, M.A.; Wagdy, H.A.; El Nashar, R.M. Moxifloxacin hydrochloride electrochemical detection based on newly designed molecularly imprinted polymer. Sens. Actuators B 2018, 275, 127–136. [Google Scholar] [CrossRef]
- Hefnawy, M.M.; Homoda, A.M.; Abounassif, M.A.; Alanazi, A.M.; Al-Majed, A.; Mostafa, G.A. Potentiometric determination of moxifloxacin in some pharmaceutical formulation using PVC membrane sensors. Chem Cent. J. 2014, 8, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Sindhu, S.K.; Kumar, P.; Sharma, A. Determination of AVELOX (Moxifloxacin Hydrochloride) Tablets in Dosage Forms Modified with Potentiometer Sensors: A Comparative Analysis. 2021. Available online: http://dx.doi.org/10.2139/ssrn.3902688 (accessed on 10 March 2022).
- Moamed, G.G.; Frag, E.Y.; El-dien, F.A.; Saad, M. Comparative Study of Different Modified Potentiometric Sensors for Determination of Moxifloxacin HCl in Dosage Forms. Pharm. Anal. Acta 2015, 6, 397. [Google Scholar] [CrossRef]
- Idress, M.O.; Elbashir, A.A.; Nur, O. Potentiometric determination of moxifloxacin by ZnO nanorods modified ion selective electrode. Pharm. Anal. Acta 2017, 8, 566. [Google Scholar] [CrossRef]
- Gadhari, N.S.; Gholave, J.V.; Patil, S.S.; Patil, V.R.; Upadhyay, S.S. Enantioselective high performance new solid contact ion-selective electrode potentiometric sensor based on sulphated γ-cyclodextrin-carbon nanofiber composite for determination of multichiral drug moxifloxacin. J. Electroanal. Chem. 2021, 882, 114981. [Google Scholar] [CrossRef]
- Ladhani, S.; Gransden, W. Increasing antibiotic resistance among urinary tract isolates. Arch. Dis. Child. 2003, 88, 444–445. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Blaney, L. Systematic optimization of an SPE with HPLC-FLD method for fluoroquinolone detection in wastewater. J. Hazard. Mater. 2015, 282, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Khattab, F.; Salem, H.; Riad, S.; Elbalkiny, H. Determination of fluoroquinolone antibiotics in industrial wastewater by high-pressure liquid chromatography and thin-layer chromatography-densitometric methods. J. Planar Chromatogr. Mod. TLC 2014, 27, 287–293. [Google Scholar] [CrossRef]
- Gracia-Lor, E.; Sancho, J.V.; Hernández, F. Multi-class determination of around 50 pharmaceuticals, including 26 antibiotics, in environmental and wastewater samples by ultra-high performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2011, 1218, 2264–2275. [Google Scholar] [CrossRef]
- Stradiotto, N.R.; Yamanaka, H.; Zanoni, M.V.B. Electrochemical Sensors: A Powerful Tool in Analytical Chemistry. J. Braz. Chem. Soc. 2003, 14, 159–173. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Gawad, S.A.; Arab, H.H. Potentiometric Sensors for the Selective Determination of Benzodiazepine Drug Residues in Real Wastewater Effluents. Chemosensors 2022, 10, 74. [Google Scholar] [CrossRef]
- Lindner, E.; Gyurcsányi, R.E. Quality control criteria for solid-contact, solvent polymeric membrane ion-selective electrodes. J. Solid State Electrochem. 2009, 13, 51–68. [Google Scholar] [CrossRef]
- Cattrall, R.; Freiser, H. Coated wire ion-selective electrodes. Anal. Chem. 1971, 43, 1905–1906. [Google Scholar] [CrossRef]
- Bakker, E.; Qin, Y. Electrochemical sensors. Anal. Chem. 2006, 78, 3965–3984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salem, A.A.; Barsoum, B.N.; Izake, E.L. Potentiometric determination of diazepam, bromazepam, and clonazepam using solid contact ion-selective electrodes. Anal. Chim. Acta 2003, 498, 79–91. [Google Scholar] [CrossRef]
- Bakker, E.; Pretsch, E. Potentiometric sensors for trace-level analysis. Trends Anal. Chem. 2005, 24, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Lindner, E.; Umezawa, Y. Performance evaluation criteria for preparation and measurement of macro-and microfabricated ion-selective electrodes (IUPAC Technical Report). Pure Appl. Chem. 2008, 80, 85–104. [Google Scholar] [CrossRef]
- Singh, A.K.; Mehtab, S.; Jain, A.K. Selective electrochemical sensor for copper (II) ion based on chelating ionophores. Anal. Chim. Acta. 2006, 575, 25–31. [Google Scholar] [CrossRef]
- El-Kosasy, A.M.; Shehata, M.A.; Hassan, N.Y.; Fayed, A.S.; El-Zeany, B.A. Membrane electrodes for the determination of glutathione. Talanta 2005, 66, 746–754. [Google Scholar] [CrossRef]
- Abdel Ghani, N.T.; Rizk, M.S.; El-Nashar, R.M. Salbutamol plastic membrane electrodes based on individual and mixed ion-exchangers of salbutamolium phosphotungstate and phosphomolybdate. Analyst 2000, 125, 1129–1133. [Google Scholar] [CrossRef]
- Guangrong, Y.E.; Yaqin, C.; Yuan, R.; Zhou, L.; Zhang, L.I.Y. Salicylate Ion-Selective Electrode Based on New Tetranuclear Copper Complexes of O-Vannlin-methionine as Neutral Carriers. Anal. Sci. 2007, 23, 171–176. [Google Scholar]
- Schaller, U.; Bakker, E.; Spichiger, U.E.; Pretsch, E. Ionic additives for ion-selective electrodes based on electrically charged carriers. Anal. Chem. 1994, 66, 391–398. [Google Scholar] [CrossRef]
- Moody, G.J.; Thomas, J.D.R. Poly (Vinyl Chloride) Matrix Membrane Ion-Selective Electrodes. In Ion-Selective Electrodes in Analytical Chemistry; Modern Analytical Chemistry; Freiser, H., Ed.; Springer: Boston, MA, USA, 1978. [Google Scholar] [CrossRef]
- Simon, M.A.; Kusy, R.P. The molecular, physical and mechanical properties of highly plasticized poly(vinyl chloride) membranes. Polymer 1993, 34, 5106–5115. [Google Scholar] [CrossRef]
Parameter | Sensor 1 (MOX-TPB) | Sensor 2 (MOX-PTA) |
---|---|---|
Slope (mV decade−1) * | 59.2 ± 0.60 | 58.4 ± 0.50 |
Response time (sec) | 10–20 | 10–20 |
Working pH range | 1.0–5.0 | 1.0–5.0 |
Concentration range (M) | 1 × 10−6–1 × 10−3 | 1 × 10−6–1 × 10−3 |
Concentration range (µg/mL) | 0.44–439.90 | 0.44–439.90 |
Stability (days) | 21 | 21 |
Accuracy (Mean * ± SD) | 99.41 ± 0.64 | 100.14 ± 0.71 |
Limit of detection (µg/mL) | 0.24 | 0.24 |
Ruggedness † | 99.51 * ± 1.28 | 98.41 * ± 1.66 |
Robustness Ψ | 101.14 * ± 1.13 | 101.64 * ± 0.84 |
−log Conc. (M) | E (mV) | |||||
---|---|---|---|---|---|---|
Sensor 1 (MOX-TPB) | Sensor 2 (MOX-PTA) | |||||
25 °C | 30 °C | 40 °C | 25 °C | 30 °C | 40 °C | |
2 | 313 | 313 | 313 | 295 | 295 | 295 |
3 | 254 | 254 | 254 | 237 | 237 | 237 |
4 | 195 | 194 | 195 | 179 | 178 | 179 |
5 | 136 | 135 | 136 | 121 | 120 | 121 |
6 | 77 | 76 | 76 | 63 | 62 | 63 |
7 | 65 | 64 | 64 | 55 | 54 | 54 |
8 | 63 | 62 | 62 | 53 | 52 | 52 |
Interferent | Sensor 1 (MOX-TPB) (Mean * ± S.D.) | Sensor 2 (MOX-PTA) (Mean * ± S.D.) |
---|---|---|
Magnesium chloride | 1.9 × 10−4 ± 0.67 | 1.8 × 10−4 ± 0.83 |
Potassium sulfate | 2.5 × 10−4 ± 0.86 | 2.4 × 10−4 ± 0.64 |
Potassium phosphate | 1.6 × 10−4 ± 0.93 | 1.5 × 10−4 ± 1.21 |
Ammonium nitrate | 2.4 × 10−3 ± 0.78 | 2.5 × 10−3 ± 0.67 |
Potassium carbonate | 3.1 × 10−4 ± 0.56 | 3.2 × 10−4 ± 0.76 |
Sodium fluoride | 2.7 × 10−3 ± 0.71 | 2.8 × 10−3 ± 0.81 |
Sodium iodide | 1.2 × 10−3 ± 0.54 | 1.3 × 10−3 ± 0.44 |
Norfloxacin hydrochloride | 1.9 × 10−4 ± 0.55 | 1.8 × 10−4 ± 0.74 |
Ciprofloxacin hydrochloride | 2.1 × 10−4 ± 0.37 | 2.2 × 10−4 ± 0.53 |
Levofloxacin hydrochloride | 4.1 × 10−4 ± 0.66 | 4.2 × 10−4 ± 0.77 |
Specimen | Sensor 1 (MOX-TPB) (Rec.% * ± S.D.) | Sensor 2 (MOX-PTA) (Rec.% * ± S.D.) |
---|---|---|
Distilled water | 99.92 ± 0.58 | 98.73 ± 0.78 |
Tap water | 100.79 ± 0.76 | 99.91 ± 0.62 |
Sample Number | Sensor 1 (MOX-TPB) Conc. β (µg/mL) ± S.D. | Sensor 2 (MOX-PTA) Conc. β (µg/mL) ± S.D. | Reference Method [12] * Conc. β (µg/mL) ± S.D. |
---|---|---|---|
Sample 1 | 4.32 ± 0.43 | 4.31 ± 0.52 | 4.29 ± 0.68 |
Sample 2 | 20.59 ± 0.72 | 20.32 ± 0.92 | 20.22 ± 0.68 |
Sample 3 | 51.78 ± 0.69 | 51.25 ± 0.79 | 51.55 ± 0.45 |
Sample 4 | 35.02 ± 0.78 | 35.12 ± 0.67 | 34.97 ± 0.56 |
Sample 5 | 10.05 ± 0.43 | 10.31± 0.56 | 10.56 ± 0.86 |
Sample 6 | 27.53 ± 0.86 | 27.89 ± 0.45 | 27.13 ± 0.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel-Gawad, S.A.; Arab, H.H.; Albassam, A.A. Potentiometric Determination of Moxifloxacin by Solid-Contact ISEs in Wastewater Effluents. Chemosensors 2022, 10, 146. https://doi.org/10.3390/chemosensors10040146
Abdel-Gawad SA, Arab HH, Albassam AA. Potentiometric Determination of Moxifloxacin by Solid-Contact ISEs in Wastewater Effluents. Chemosensors. 2022; 10(4):146. https://doi.org/10.3390/chemosensors10040146
Chicago/Turabian StyleAbdel-Gawad, Sherif A., Hany H. Arab, and Ahmed A. Albassam. 2022. "Potentiometric Determination of Moxifloxacin by Solid-Contact ISEs in Wastewater Effluents" Chemosensors 10, no. 4: 146. https://doi.org/10.3390/chemosensors10040146
APA StyleAbdel-Gawad, S. A., Arab, H. H., & Albassam, A. A. (2022). Potentiometric Determination of Moxifloxacin by Solid-Contact ISEs in Wastewater Effluents. Chemosensors, 10(4), 146. https://doi.org/10.3390/chemosensors10040146