Highly Sensitive Detection of Carbaryl Pesticides Using Potentiometric Biosensor with Nanocomposite Ag/r-Graphene Oxide/Chitosan Immobilized Acetylcholinesterase Enzyme
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Apparatus and Instruments
2.3. Synthesis of Reduced Graphene Oxide
2.4. Preparation of Ag/rGO/CS
2.5. Preparation of Acetylcholinesterase Enzyme Immobilization
2.6. Measurement of Potential Value Biosensor
2.7. Limit of Detection
2.8. Reproducibility
3. Results and Discussion
3.1. Characterizations of Ag/rGO/CS
3.2. The Modified Electrodes of Ag/rGO/CS Nanocomposite
3.3. Carbaryl Detection
3.4. Precision of Measurements and Stability of Biosensor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalyani, N.; Goel, S.; Jaiswal, S. On-site sensing of pesticides using point-of-care biosensors: A review. Environ. Chem. Lett. 2021, 19, 345–354. [Google Scholar] [CrossRef]
- Patel, H.; Rawtani, D.; Agrawal, Y.K. A newly emerging trend of chitosan-based sensing platform for the organophosphate pesticide detection using Acetylcholinesterase—A review. Trends Food Sci. Technol. 2019, 85, 78–91. [Google Scholar] [CrossRef]
- Yan, X.; Li, H.; Su, X. Review of optical sensors for pesticides. TrAC-Trends Anal. Chem. 2018, 103, 1–20. [Google Scholar] [CrossRef]
- Verma, M.L. Nanobiotechnology advances in enzymatic biosensors for the agri-food industry. Environ. Chem. Lett. 2017, 15, 555–560. [Google Scholar] [CrossRef]
- Bacciu, A.; Arrigo, P.; Delogu, G.; Marceddu, S.; Monti, P.; Rocchitta, G.; Serra, P.A. A new perspective on using glycols in glutamate biosensor design: From stabilizing agents to a new containment net. Chemosensors 2020, 8, 23. [Google Scholar] [CrossRef] [Green Version]
- Mashuni; Ramadhan, L.O.A.N.; Jahiding, M. Syarfiah Design of Pesticide Biosensor Using Glutaraldehyde Crosslinked-Cellulose Acetate Membrane in Gold Electrode. In Proceedings of the International Journal of Chemical, Environmental & Biological Sciences; Hakim, L., Ed.; Brawijaya University: Malang, India, 2016; Volume 4, pp. 147–151. [Google Scholar]
- Rahmani, T.; Bagheri, H.; Behbahani, M.; Hajian, A.; Afkhami, A. Modified 3D Graphene-Au as a Novel Sensing Layer for Direct and Sensitive Electrochemical Determination of Carbaryl Pesticide in Fruit, Vegetable, and Water Samples. Food Anal. Methods 2018, 11, 3005–3014. [Google Scholar] [CrossRef]
- Anshori, A.; Prasetiyono, C. Pestisida Pada Budidaya Kedelai Di Kabupaten Bantul D. I. Yogyakarta. Caraka Tani J. Sustain. Agric. 2016, 31, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Sudarma, N.; Luh, N.; Dilisca, N.; Putri, D.; Prihatiningsih, D. Identifikasi Residu Pestisida Organofosfat dan Karbamat Pada Buah dan Sayur yang Dijual di Pasar Badung Desa Dauh Puri Kangin Denpasar Bali Tahun 2019. J. Kesehat. Terpadu 2020, 4, 13–17. [Google Scholar]
- Song, N.E.; Lee, J.Y.; Mansur, A.R.; Jang, H.W.; Lim, M.C.; Lee, Y.; Yoo, M.; Nam, T.G. Determination of 60 pesticides in hen eggs using the QuEChERS procedure followed by LC-MS/MS and GC-MS/MS. Food Chem. 2019, 298, 1–10. [Google Scholar] [CrossRef]
- Anagnostopoulos, C.; Miliadis, G.E. Development and validation of an easy multiresidue method for the determination of multiclass pesticide residues using GC-MS/MS and LC-MS/MS in olive oil and olives. Talanta 2013, 112, 1–10. [Google Scholar] [CrossRef]
- Huang, Y.; Shi, T.; Luo, X.; Xiong, H.; Min, F.; Chen, Y.; Nie, S.; Xie, M. Determination of multi-pesticide residues in green tea with a modified QuEChERS protocol coupled to HPLC-MS/MS. Food Chem. 2018, 275, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Mashuni, M.; Ritonga, H.; Jahiding, M.; La Ode Ahmad Nur, R.; Kurniawati, D.; Hamid, F.H. The Performance of Organophosphate Pesticides Determination Using Biosensor Based on Small Device Potentiometer as a Transducer. Chem. Proc. 2021, 5, 69. [Google Scholar] [CrossRef]
- Loguercio, L.F.; Thesing, A.; Demingos, P.; de Albuquerque, C.D.L.; Rodrigues, R.S.B.; Brolo, A.G.; Santos, J.F.L. Efficient acetylcholinesterase immobilization for improved electrochemical performance in polypyrrole nanocomposite-based biosensors for carbaryl pesticide. Sens. Actuators B Chem. 2021, 339, 129875. [Google Scholar] [CrossRef]
- Pop, A.; Lung, S.; Orha, C.; Manea, F. Silver/graphene-modified boron doped diamond electrode for selective detection of carbaryl and paraquat from water. Int. J. Electrochem. Sci. 2018, 13, 2651–2660. [Google Scholar] [CrossRef]
- Thanh, C.T.; Binh, N.H.; Van Tu, N.; Thu, V.T.; Bayle, M.; Paillet, M.; Sauvajol, J.L.; Thang, P.B.; Lam, T.D.; Minh, P.N.; et al. An interdigitated ISFET-type sensor based on LPCVD grown graphene for ultrasensitive detection of carbaryl. Sens. Actuators B Chem. 2018, 260, 78–85. [Google Scholar] [CrossRef]
- Sundarmurugasan, R.; Gumpu, M.B.; Ramachandra, B.L.; Nesakumar, N.; Sethuraman, S.; Krishnan, U.M.; Rayappan, J.B.B. Simultaneous detection of monocrotophos and dichlorvos in orange samples using acetylcholinesterase-zinc oxide modified platinum electrode with linear regression calibration. Sens. Actuators B Chem. 2016, 230, 306–313. [Google Scholar] [CrossRef]
- Cui, H.F.; Wu, W.W.; Li, M.M.; Song, X.; Lv, Y.; Zhang, T.T. A highly stable acetylcholinesterase biosensor based on chitosan-TiO2-graphene nanocomposites for detection of organophosphate pesticides. Biosens. Bioelectron. 2018, 99, 223–229. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H.; Yang, Z.; Ji, S.; Wang, J.; Pang, P.; Feng, L.; Wang, H.; Wu, Z.; Yang, W. An acetylcholinesterase inhibition biosensor based on a reduced graphene oxide/silver nanocluster/chitosan nanocomposite for detection of organophosphorus pesticides. Anal. Methods 2015, 7, 6213–6219. [Google Scholar] [CrossRef]
- Ge, S.; Lan, F.; Liang, L.; Ren, N.; Li, L.; Liu, H.; Yan, M.; Yu, J. Ultrasensitive Photoelectrochemical Biosensing of Cell Surface N-Glycan Expression Based on the Enhancement of Nanogold-Assembled Mesoporous Silica Amplified by Graphene Quantum Dots and Hybridization Chain Reaction. ACS Appl. Mater. Interfaces 2017, 9, 6670–6678. [Google Scholar] [CrossRef]
- Bao, J.; Huang, T.; Wang, Z.; Yang, H.; Geng, X.; Xu, G.; Samalo, M.; Sakinati, M.; Huo, D.; Hou, C. 3D graphene/copper oxide nano-flowers based acetylcholinesterase biosensor for sensitive detection of organophosphate pesticides. Sens. Actuators B Chem. 2019, 279, 95–101. [Google Scholar] [CrossRef]
- Dong, P.; Jiang, B.; Zheng, J. A novel acetylcholinesterase biosensor based on gold nanoparticles obtained by electroless plating on three-dimensional graphene for detecting organophosphorus pesticides in water and vegetable samples. Anal. Methods 2019, 11, 2428–2434. [Google Scholar] [CrossRef]
- Zhu, Y.; Tian, Q.; Li, X.; Wu, L.; Yu, A.; Lai, G.; Fu, L.; Dai, D.; Jiang, N.; Li, H.; et al. A double-deck structure of reduced graphene oxide modified porous ti3c2tx electrode towards ultrasensitive and simultaneous detection of dopamine and uric acid. Biosensors 2021, 11, 462. [Google Scholar] [CrossRef]
- Li, Y.; Shi, L.; Han, G.; Xiao, Y.; Zhou, W. Electrochemical biosensing of carbaryl based on acetylcholinesterase immobilized onto electrochemically inducing porous graphene oxide network. Sens. Actuators B Chem. 2017, 238, 945–953. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, R.; Shi, L.; Han, G.; Xiao, Y. Acetylcholinesterase biosensor based on electrochemically inducing 3D graphene oxide network/multi-walled carbon nanotube composites for detection of pesticides. RSC Adv. 2017, 7, 53570–53577. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Hu, H.; Wang, P.; Zhang, C.; Wu, M.; Yang, L. A stable biosensor for organophosphorus pesticide detection based on chitosan modified graphene. Biotechnol. Appl. Biochem. 2021, 1–9. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Wu, A.; Wei, G. Designed graphene-peptide nanocomposites for biosensor applications: A review. Anal. Chim. Acta 2017, 985, 24–40. [Google Scholar] [CrossRef]
- Kaur, R.; Rana, S.; Lalit, K.; Singh, P.; Kaur, K. Electrochemical detection of methyl parathion via a novel biosensor tailored on highly biocompatible electrochemically reduced graphene oxide-chitosan-hemoglobin coatings. Biosens. Bioelectron. 2020, 167, 112486. [Google Scholar] [CrossRef]
- Xie, X.; Zhou, B.; Zhang, Y.; Zhao, G.; Zhao, B. A multi-residue electrochemical biosensor based on graphene/chitosan/parathion for sensitive organophosphorus pesticides detection. Chem. Phys. Lett. 2021, 767, 138355. [Google Scholar] [CrossRef]
- Christian, G.D.; Dasgupta, P.K.; Kevin, A. Schug Analytical Chemistry, 7th ed.; Wiley: Hoboken, NJ, USA, 2014; ISBN 9780470887578. [Google Scholar]
- Mark, H.; Workman, J. Limitations in Analytical Accuracy: Part 1—Horwitz’s Trumpet, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Khawaja, H.; Zahir, E.; Asghar, M.A.; Asghar, M.A. Graphene oxide, chitosan and silver nanocomposite as a highly effective antibacterial agent against pathogenic strains. Colloids Surfaces A Physicochem. Eng. Asp. 2018, 555, 246–255. [Google Scholar] [CrossRef]
- An, J.; Guo, G.; Yin, R.; Luo, Q.; Li, X.; Liu, F.; Wang, D. Facile preparation of silver/reduced graphene oxide/chitosan colloid and application of the nanocomposite in antibacterial and catalytic activity. Polym. Int. 2018, 67, 515–527. [Google Scholar] [CrossRef]
- Akyüz, D.; Koca, A. An electrochemical sensor for the detection of pesticides based on the hybrid of manganese phthalocyanine and polyaniline. Sens. Actuators B Chem. 2019, 283, 848–856. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, G.; Li, C.; Zhou, Q.; Wang, M.; Yang, L. A novel acetylcholinesterase biosensor based on carboxylic graphene coated with silver nanoparticles for pesticide detection. Mater. Sci. Eng. C 2014, 35, 253–258. [Google Scholar] [CrossRef]
- Pundir, C.S.; Malik, A. Preety Bio-sensing of organophosphorus pesticides: A review. Biosens. Bioelectron. 2019, 140, 1–13. [Google Scholar] [CrossRef]
- Barkauskas, J.; Mikoliunaite, L.; Paklonskaite, I.; Genys, P.; Petroniene, J.J.; Morkvenaite-Vilkonciene, I.; Ramanaviciene, A.; Samukaite-Bubniene, U.; Ramanavicius, A. Single-walled carbon nanotube based coating modified with reduced graphene oxide for the design of amperometric biosensors. Mater. Sci. Eng. C 2019, 98, 515–523. [Google Scholar] [CrossRef] [PubMed]
Modified Electrode | Measurement Method | Linear Range (μg mL−1) | LoD (μg mL−1) | Ref. |
---|---|---|---|---|
Ag/rGO/CS/AChE | Potentiometer | 1.0 × 10−8 to 1.0 | 1.0 × 10−9 | This work |
3DG-Au/GCE/AChE | Voltammetry | 8.0 × 10−4 to 6.0 × 10−2 | 2.4 × 10−4 | [7] |
GA/urease enzyme/graphene/Pt | Ion selective field effect transistor (ISFET) | 2.58 × 10−7 to 2.58 × 10−2 | 1.0 × 10−8 | [16] |
Ag NPs–CGR–NF/GCE/AChE | Electrochemical | 2.0 × 10−7 to 2.0 × 10−3 | 1.0 × 10−7 | [35] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mashuni, M.; Ritonga, H.; Jahiding, M.; Rubak, B.; Hamid, F.H. Highly Sensitive Detection of Carbaryl Pesticides Using Potentiometric Biosensor with Nanocomposite Ag/r-Graphene Oxide/Chitosan Immobilized Acetylcholinesterase Enzyme. Chemosensors 2022, 10, 138. https://doi.org/10.3390/chemosensors10040138
Mashuni M, Ritonga H, Jahiding M, Rubak B, Hamid FH. Highly Sensitive Detection of Carbaryl Pesticides Using Potentiometric Biosensor with Nanocomposite Ag/r-Graphene Oxide/Chitosan Immobilized Acetylcholinesterase Enzyme. Chemosensors. 2022; 10(4):138. https://doi.org/10.3390/chemosensors10040138
Chicago/Turabian StyleMashuni, Mashuni, Halimahtussaddiyah Ritonga, M. Jahiding, Bonni Rubak, and Fitri Handayani Hamid. 2022. "Highly Sensitive Detection of Carbaryl Pesticides Using Potentiometric Biosensor with Nanocomposite Ag/r-Graphene Oxide/Chitosan Immobilized Acetylcholinesterase Enzyme" Chemosensors 10, no. 4: 138. https://doi.org/10.3390/chemosensors10040138
APA StyleMashuni, M., Ritonga, H., Jahiding, M., Rubak, B., & Hamid, F. H. (2022). Highly Sensitive Detection of Carbaryl Pesticides Using Potentiometric Biosensor with Nanocomposite Ag/r-Graphene Oxide/Chitosan Immobilized Acetylcholinesterase Enzyme. Chemosensors, 10(4), 138. https://doi.org/10.3390/chemosensors10040138