Mechanism of Fast NO Response in a WO3-Nanorod-Based Gas Sensor
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Morphological Results
3.2. NO-Sensing Measurements
3.3. NO-Sensing Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Censabella, M.; Iacono, V.; Scandurra, A.; Moulaee, K.; Neri, G.; Ruffino, F.; Mirabella, S. Low Temperature Detection of Nitric Oxide by CuO Nanoparticles Synthesized by Pulsed Laser Ablation. Sens. Actuators B Chem. 2022, 358, 131489. [Google Scholar] [CrossRef]
- Tao, P.; Xu, Y.; Zhou, Y.; Song, C.; Qiu, Y.; Dong, W.; Zhang, M.; Shao, M. Nitrogen Oxide (NO) Gas-Sensing Properties of Bi2MoO6 Nanosheets Synthesized by a Hydrothermal Method. Mater. Res. 2017, 20, 786–790. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Yin, L.; Ge, L.; Fan, B.; Zhang, R.; Sun, J.; Shao, G. Low-Temperature and Highly Selective NO-Sensing Performance of WO3 Nanoplates Decorated with Silver Nanoparticles. Sens. Actuators B Chem. 2013, 185, 445–455. [Google Scholar] [CrossRef]
- Cai, Z.X.; Li, H.Y.; Ding, J.C.; Guo, X. Hierarchical Flowerlike WO3 Nanostructures Assembled by Porous Nanoflakes for Enhanced NO Gas Sensing. Sens. Actuators B Chem. 2017, 246, 225–234. [Google Scholar] [CrossRef]
- Wu, M.R.; Li, W.Z.; Tung, C.Y.; Huang, C.Y.; Chiang, Y.H.; Liu, P.L.; Horng, R.H. NO Gas Sensor Based on ZnGa2O4 Epilayer Grown by Metalorganic Chemical Vapor Deposition. Sci. Rep. 2019, 9, 7459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samanta, C.; Ghatak, A.; Raychaudhuri, A.K.; Ghosh, B. ZnO/Si Nanowires Heterojunction Array-Based Nitric Oxide (NO) Gas Sensor with Noise-Limited Detectivity Approaching 10 Ppb. Nanotechnology 2019, 30, 305501. [Google Scholar] [CrossRef]
- Available online: https://www.cdc.gov/niosh/npg/npgd0448.html (accessed on 2 November 2022).
- Murali, G.; Reddeppa, M.; Seshendra Reddy, C.; Park, S.; Chandrakalavathi, T.; Kim, M.D.; In, I. Enhancing the Charge Carrier Separation and Transport via Nitrogen-Doped Graphene Quantum Dot-TiO2 Nanoplate Hybrid Structure for an Efficient NO Gas Sensor. ACS Appl. Mater. Interfaces 2020, 12, 13428–13436. [Google Scholar] [CrossRef]
- Ramu, S.; Chandrakalavathi, T.; Murali, G.; Kumar, K.S.; Sudharani, A.; Ramanadha, M.; Peta, K.R.; Jeyalakshmi, R.; Vijayalakshmi, R.P. UV Enhanced NO Gas Sensing Properties of the MoS2 Monolayer Gas Sensor. Mater. Res. Express 2019, 6, 085075. [Google Scholar] [CrossRef]
- Yadav, A.A.; Lokhande, A.C.; Kim, J.H.; Lokhande, C.D. Improvement in CO2 Sensing Characteristics Using Pd Nanoparticles Decorated La2O3 Thin Films. J. Ind. Eng. Chem. 2017, 49, 76–81. [Google Scholar] [CrossRef]
- Cai, Z.X.; Li, H.Y.; Yang, X.N.; Guo, X. NO Sensing by Single Crystalline WO3 Nanowires. Sens. Actuators B Chem. 2015, 219, 346–353. [Google Scholar] [CrossRef]
- Moon, H.G.; Choi, Y.R.; Shim, Y.S.; Choi, K.I.; Lee, J.H.; Kim, J.S.; Yoon, S.J.; Park, H.H.; Kang, C.Y.; Jang, H.W. Extremely Sensitive and Selective NO Probe Based on Villi-like WO3 Nanostructures for Application to Exhaled Breath Analyzers. ACS Appl. Mater. Interfaces 2013, 5, 10591–10596. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Zhou, Q.; Wang, J.; Zeng, W. Hydrothermal Synthesis of Hierarchical WO3/NiO Porous Microsphere with Enhanced Gas Sensing Performances. Mater. Lett. 2020, 264, 127383. [Google Scholar] [CrossRef]
- Wei, Z.; Zhou, Q.; Zeng, W. Hierarchical WO3–NiO microflower for high sensitivity detection of SF6 decomposition byproduct H2S. Nanotechnology 2020, 31, 215701. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Zhou, Q.; Lu, Z.; Xu, L.; Gui, Y.; Tang, C. Morphology Controllable Synthesis of Hierarchical WO3 Nanostructures and C2H2 Sensing Properties. Phys. E Low Dimens. Syst. Nanostruct. 2019, 109, 253–260. [Google Scholar] [CrossRef]
- Yadav, A.A.; Hunge, Y.M.; Kang, S.W. Porous Nanoplate-like Tungsten Trioxide/Reduced Graphene Oxide Catalyst for Sonocatalytic Degradation and Photocatalytic Hydrogen Production. Surf. Interfaces 2021, 24, 101075. [Google Scholar] [CrossRef]
- Li, Z.; Jia, L.; Chen, J.; Cui, X.; Zhou, Q. Adsorption and Sensing Performances of Pristine and Au-Decorated Gallium Nitride Monolayer to Noxious Gas Molecules: A DFT Investigation. Front. Chem. 2022, 10, 898154. [Google Scholar] [CrossRef]
- Peng, R.; Zhou, Q.; Zeng, W. First-Principles Insight into Pd-Doped C3N Monolayer as a Promising Scavenger for NO, NO2 and SO2. Nanomaterials 2021, 11, 1267. [Google Scholar] [CrossRef]
- Mineo, G.; Moulaee, K.; Neri, G.; Mirabella, S.; Bruno, E. H2 Detection Mechanism in Chemoresistive Sensor Based on Low-Cost Synthesized WO3 Nanorods. Sens. Actuators B Chem. 2021, 348, 130704. [Google Scholar] [CrossRef]
- Urso, M.; Gianluca, S.; Neri, G.; Petralia, S.; Conoci, S.; Priolo, F.; Mirabella, S. Sensors and Actuators B: Chemical Room Temperature Detection and Modelling of Sub-Ppm NO2 by Low-Cost Nanoporous NiO Fi Lm. Sens. Actuators B Chem. 2020, 305, 127481. [Google Scholar] [CrossRef]
- Czepirski, L.; Balys, M.R.; Komorowska-Czepirska, E. Some generalization of Langmuir adsorption isotherm. Internet J. Chem. 2000, 3, 1099–8292. [Google Scholar]
- Chang, C.H.; Chou, T.C.; Chen, W.C.; Niu, J.S.; Lin, K.W.; Cheng, S.Y.; Tsai, J.H.; Liu, W.C. Study of a WO3 Thin Film Based Hydrogen Gas Sensor Decorated with Platinum Nanoparticles. Sens. Actuators B Chem. 2020, 317, 128145. [Google Scholar] [CrossRef]
Temperature (°C) | S0 (%) | (s) | (s) | w (%) | (s) | (s) | w* (%) |
---|---|---|---|---|---|---|---|
250 | 53 | 17 | 461 | 0.6 | 12 | 288 | 0.5 |
300 | 23 | 39 | - | - | 7 | 93 | 0.8 |
350 | 12 | 35 | - | 17 | 121 | 0.6 |
Concentration (ppm) | S0 (%) | (s) | (s) | w (%) | (s) | (s) | w* (%) |
---|---|---|---|---|---|---|---|
250 | 2 | 8 | - | - | 14 | - | - |
500 | 12 | 35 | - | - | 67 | - | - |
1000 | 26 | 20 | 254 | 0.8 | 8 | 117 | 0.4 |
2500 | 43 | 18 | 103 | 0.9 | 13 | 272 | 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mineo, G.; Moulaee, K.; Neri, G.; Mirabella, S.; Bruno, E. Mechanism of Fast NO Response in a WO3-Nanorod-Based Gas Sensor. Chemosensors 2022, 10, 492. https://doi.org/10.3390/chemosensors10110492
Mineo G, Moulaee K, Neri G, Mirabella S, Bruno E. Mechanism of Fast NO Response in a WO3-Nanorod-Based Gas Sensor. Chemosensors. 2022; 10(11):492. https://doi.org/10.3390/chemosensors10110492
Chicago/Turabian StyleMineo, Giacometta, Kaveh Moulaee, Giovanni Neri, Salvo Mirabella, and Elena Bruno. 2022. "Mechanism of Fast NO Response in a WO3-Nanorod-Based Gas Sensor" Chemosensors 10, no. 11: 492. https://doi.org/10.3390/chemosensors10110492
APA StyleMineo, G., Moulaee, K., Neri, G., Mirabella, S., & Bruno, E. (2022). Mechanism of Fast NO Response in a WO3-Nanorod-Based Gas Sensor. Chemosensors, 10(11), 492. https://doi.org/10.3390/chemosensors10110492