Visible-Light-Driven Room Temperature NO2 Gas Sensor Based on Localized Surface Plasmon Resonance: The Case of Gold Nanoparticle Decorated Zinc Oxide Nanorods (ZnO NRs)
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Sensor Preparation
2.2. Materials Characterization
2.3. Gas Measurement
3. Results
3.1. Active Material Characteristic
3.2. Sensor Measurement
4. Discussion
Light-Activated and Sensing Mechanism
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Casals, O.; Markiewicz, N.; Fabrega, C.; Gràcia, I.; Cané, C.; Wasisto, H.S.; Waag, A.; Prades, J.D. A Parts Per Billion (Ppb) Sensor for NO2 with Microwatt (ΜW) Power Requirements Based on Micro Light Plates. ACS Sens. 2019, 4, 822–826. [Google Scholar] [CrossRef] [PubMed]
- Chinh, N.D.; Hien, T.T.; Do Van, L.; Hieu, N.M.; Quang, N.D.; Lee, S.-M.; Kim, C.; Kim, D. Adsorption/Desorption Kinetics of Nitric Oxide on Zinc Oxide Nano Film Sensor Enhanced by Light Irradiation and Gold-Nanoparticles Decoration. Sens. Actuators B Chem. 2019, 281, 262–272. [Google Scholar] [CrossRef]
- Barsan, N.; Koziej, D.; Weimar, U. Metal Oxide-Based Gas Sensor Research: How To? Sens. Actuators B Chem. 2007, 121, 18–35. [Google Scholar] [CrossRef]
- Park, S.; An, S.; Mun, Y.; Lee, C. UV-Enhanced NO2 Gas Sensing Properties of SnO2-Core/ZnO-Shell Nanowires at Room Temperature. ACS Appl. Mater. Interfaces 2013, 5, 4285–4292. [Google Scholar] [CrossRef]
- Fabbri, B.; Gaiardo, A.; Giberti, A.; Guidi, V.; Malagù, C.; Martucci, A.; Sturaro, M.; Zonta, G.; Gherardi, S.; Bernardoni, P. Chemoresistive Properties of Photo-Activated Thin and Thick ZnO Films. Sens. Actuators B Chem. 2016, 222, 1251–1256. [Google Scholar] [CrossRef]
- Zhang, Q.; Xie, G.; Xu, M.; Su, Y.; Tai, H.; Du, H.; Jiang, Y. Visible Light-Assisted Room Temperature Gas Sensing with ZnO-Ag Heterostructure Nanoparticles. Sens. Actuators B Chem. 2018, 259, 269–281. [Google Scholar] [CrossRef]
- Zhang, C.; Geng, X.; Li, J.; Luo, Y.; Lu, P. Role of Oxygen Vacancy in Tuning of Optical, Electrical and NO2 Sensing Properties of ZnO1−x Coatings at Room Temperature. Sens. Actuators B Chem. 2017, 248, 886–893. [Google Scholar] [CrossRef]
- Chakrabarty, P.; Banik, M.; Gogurla, N.; Santra, S.; Ray, S.K.; Mukherjee, R. Light Trapping-Mediated Room-Temperature Gas Sensing by Ordered ZnO Nano Structures Decorated with Plasmonic Au Nanoparticles. ACS Omega 2019, 4, 12071–12080. [Google Scholar] [CrossRef]
- Chen, R.; Wang, J.; Xia, Y.; Xiang, L. Near Infrared Light Enhanced Room-Temperature NO2 Gas Sensing by Hierarchical ZnO Nanorods Functionalized with PbS Quantum Dots. Sens. Actuators B Chem. 2018, 255, 2538–2545. [Google Scholar] [CrossRef]
- Brunelli, D.; Rossi, M. CH4 Monitoring with Ultra-Low Power Wireless Sensor Network. In Applications in Electronics Pervading Industry, Environment and Society; De Gloria, A., Ed.; Springer International Publishing: Cham, Switzerland, 2014; Volume 289, pp. 13–25. ISBN 978-3-319-04369-2. [Google Scholar]
- Fàbrega, C.; Casals, O.; Hernández-Ramírez, F.; Prades, J.D. A Review on Efficient Self-Heating in Nanowire Sensors: Prospects for Very-Low Power Devices. Sens. Actuators B Chem. 2018, 256, 797–811. [Google Scholar] [CrossRef]
- Kim, J.-H.; Mirzaei, A.; Kim, H.W.; Kim, S.S. Low Power-Consumption CO Gas Sensors Based on Au-Functionalized SnO2-ZnO Core-Shell Nanowires. Sens. Actuators B Chem. 2018, 267, 597–607. [Google Scholar] [CrossRef]
- Markiewicz, N.; Casals, O.; Fabrega, C.; Gràcia, I.; Cané, C.; Wasisto, H.S.; Waag, A.; Prades, J.D. Micro Light Plates for Low-Power Photoactivated (Gas) Sensors. Appl. Phys. Lett. 2019, 114, 053508. [Google Scholar] [CrossRef]
- Monereo, O.; Casals, O.; Prades, J.D.; Cirera, A. A Low-Cost Approach to Low-Power Gas Sensors Based on Self-Heating Effects in Large Arrays of Nanostructures. Procedia Eng. 2015, 120, 787–790. [Google Scholar] [CrossRef][Green Version]
- Prades, J.D.; Jimenez-Diaz, R.; Hernandez-Ramirez, F.; Barth, S.; Cirera, A.; Romano-Rodriguez, A.; Mathur, S.; Morante, J.R. Ultralow Power Consumption Gas Sensors Based on Self-Heated Individual Nanowires. Appl. Phys. Lett. 2008, 93, 123110. [Google Scholar] [CrossRef]
- Qomaruddin; Casals, O.; Šutka, A.; Granz, T.; Waag, A.; Wasisto, H.S.; Prades, J.D.; Fàbrega, C. Visible Light-Driven P-Type Semiconductor Gas Sensors Based on CaFe2O4 Nanoparticles. Sensors 2020, 20, 850. [Google Scholar] [CrossRef]
- Qomaruddin; Fàbrega, C.; Waag, A.; Šutka, A.; Casals, O.; Wasisto, H.S.; Prades, J.D. Visible Light Activated Room Temperature Gas Sensors Based on CaFe2O4 Nanopowders. Proceedings 2018, 2, 834. [Google Scholar] [CrossRef]
- Franke, M.E.; Koplin, T.J.; Simon, U. Metal and Metal Oxide Nanoparticles in Chemiresistors: Does the Nanoscale Matter? Small 2006, 2, 36–50. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Lv, H.-F.; Wu, S.-Y.; Ho, H.-P. Light-Activated Gas Sensing Activity of ZnO Nanotetrapods Enhanced by Plasmonic Resonant Energy from Au Nanoparticles. Sens. Actuators B Chem. 2018, 259, 709–716. [Google Scholar] [CrossRef]
- Fallah, H.; Asadishad, T.; Shafiei, M.; Shokri, B.; Javadianaghezi, S.; Mohammed, W.S.; Hamidi, S.M. Utilizing ZnO Nanorods for CO Gas Detection by SPR Technique. Opt. Commun. 2020, 463, 125490. [Google Scholar] [CrossRef]
- Kwon, D.-K.; Porte, Y.; Ko, K.Y.; Kim, H.; Myoung, J.-M. High-Performance Flexible ZnO Nanorod UV/Gas Dual Sensors Using Ag Nanoparticle Templates. ACS Appl. Mater. Interfaces 2018, 10, 31505–31514. [Google Scholar] [CrossRef]
- Lupan, O.; Postica, V.; Wolff, N.; Su, J.; Labat, F.; Ciofini, I.; Cavers, H.; Adelung, R.; Polonskyi, O.; Faupel, F.; et al. Low-Temperature Solution Synthesis of Au-Modified ZnO Nanowires for Highly Efficient Hydrogen Nanosensors. ACS Appl. Mater. Interfaces 2019, 11, 32115–32126. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Xu, X.-H.N. Synthesis and Characterization of Tunable Rainbow Colored Colloidal Silver Nanoparticles Using Single-Nanoparticle Plasmonic Microscopy and Spectroscopy. J. Mater. Chem. 2010, 20, 9867. [Google Scholar] [CrossRef] [PubMed]
- Wan, Q.; Wang, T.H.; Zhao, J.C. Enhanced Photocatalytic Activity of ZnO Nanotetrapods. Appl. Phys. Lett. 2005, 87, 083105. [Google Scholar] [CrossRef]
- Khan, R.; Yun, J.-H.; Bae, K.-B.; Lee, I.-H. Enhanced Photoluminescence of ZnO Nanorods via Coupling with Localized Surface Plasmon of Au Nanoparticles. J. Alloys Compd. 2016, 682, 643–646. [Google Scholar] [CrossRef]
- Jin, Y.; Wang, J.; Sun, B.; Blakesley, J.C.; Greenham, N.C. Solution-Processed Ultraviolet Photodetectors Based on Colloidal ZnO Nanoparticles. Nano Lett. 2008, 8, 1649–1653. [Google Scholar] [CrossRef] [PubMed]
- Prades, J.D.; Jimenez-Diaz, R.; Manzanares, M.; Hernandez-Ramirez, F.; Cirera, A.; Romano-Rodriguez, A.; Mathur, S.; Morante, J.R. A Model for the Response towards Oxidizing Gases of Photoactivated Sensors Based on Individual SnO2 Nanowires. Phys. Chem. Chem. Phys. 2009, 11, 10881–10889. [Google Scholar] [CrossRef] [PubMed]
- Bora, T.; Zoepfl, D.; Dutta, J. Importance of Plasmonic Heating on Visible Light Driven Photocatalysis of Gold Nanoparticle Decorated Zinc Oxide Nanorods. Sci. Rep. 2016, 6, 26913. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Li, Y.; Deng, Y. UV and Visible Light Controllable Depletion Zone of ZnO-Polyaniline p–n Junction and Its Application in a Photoresponsive Sensor. Phys. Chem. Chem. Phys. 2010, 12, 14864–14867. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Li, X.; Wang, J.; Tang, Z. UV Activated Hollow ZnO Microspheres for Selective Ethanol Sensors at Low Temperatures. Sens. Actuators B Chem. 2016, 232, 158–164. [Google Scholar] [CrossRef]
- Cui, J.; Shi, L.; Xie, T.; Wang, D.; Lin, Y. UV-Light Illumination Room Temperature HCHO Gas-Sensing Mechanism of ZnO with Different Nanostructures. Sens. Actuators B Chem. 2016, 227, 220–226. [Google Scholar] [CrossRef]
- Comini, E.; Faglia, G.; Sberveglieri, G. UV Light Activation of Tin Oxide Thin Films for NO2 Sensing at Low Temperatures. Sens. Actuators B Chem. 2001, 78, 73–77. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, Q.; Pan, H.; Xie, G.; Su, Y.; Tai, H.; Du, X. Visible Light-Activated Room Temperature NO2 Sensing with Au-ZnO Nanorod Array Thin Films. In Proceedings of the 2019 IEEE SENSORS, Montreal, QC, Canada, 27–30 October 2019; pp. 1–4. [Google Scholar]
- Zhu, Q.; Lu, J.; Wang, Y.; Qin, F.; Shi, Z.; Xu, C. Burstein-Moss Effect Behind Au Surface Plasmon Enhanced Intrinsic Emission of ZnO Microdisks. Sci. Rep. 2016, 6, 36194. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Pan, X.; He, H.; Chen, W.; Chen, C.; Dai, W.; Zhang, H.; Ding, P.; Huang, J.; Lu, B.; et al. Enhanced Photoluminescence of Nonpolar P-Type ZnO Film by Surface Plasmon Resonance and Electron Transfer. Opt. Lett. OL 2015, 40, 649–652. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Brinzari, V.; Cho, B.K. Conductometric Gas Sensors Based on Metal Oxides Modified with Gold Nanoparticles: A Review. Microchim. Acta 2016, 183, 1033–1054. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, Q.; Xie, G.; Yao, M.; Pan, H.; Du, H.; Tai, H.; Du, X.; Su, Y. Enhancing Visible Light-Activated NO2 Sensing Properties of Au NPs Decorated ZnO Nanorods by Localized Surface Plasmon Resonance and Oxygen Vacancies. Mater. Res. Express 2020, 7, 015924. [Google Scholar] [CrossRef]
- Fan, J.; Fábrega, C.; Zamani, R.; Shavel, A.; Güell, F.; Carrete, A.; Andreu, T.; López, A.M.; Morante, J.R.; Arbiol, J.; et al. Solution-Growth and Optoelectronic Properties of ZnO:Cl@ZnS Core–Shell Nanowires with Tunable Shell Thickness. J. Alloys Compd. 2013, 555, 213–218. [Google Scholar] [CrossRef]
- Khan, A.; Jadwisienczak, W.M.; Kordesch, M.E. From Zn Microspheres to Hollow ZnO Microspheres: A Simple Route to the Growth of Large Scale Metallic Zn Microspheres and Hollow ZnO Microspheres. Phys. E Low-Dimens. Syst. Nanostruct. 2006, 33, 331–335. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Z.; Zhang, Y.; Dong, Z.; Zhang, T. Preparation of Zinc Oxide Nanoparticle–Reduced Graphene Oxide–Gold Nanoparticle Hybrids for Detection of NO2. RSC Adv. 2015, 5, 91760–91765. [Google Scholar] [CrossRef]
- Rai, P.; Kim, Y.-S.; Song, H.-M.; Song, M.-K.; Yu, Y.-T. The Role of Gold Catalyst on the Sensing Behavior of ZnO Nanorods for CO and NO2 Gases. Sens. Actuators B Chem. 2012, 165, 133–142. [Google Scholar] [CrossRef]
- Wongrat, E.; Chanlek, N.; Chueaiarrom, C.; Samransuksamer, B.; Hongsith, N.; Choopun, S. Low Temperature Ethanol Response Enhancement of ZnO Nanostructures Sensor Decorated with Gold Nanoparticles Exposed to UV Illumination. Sens. Actuators A Phys. 2016, 251, 188–197. [Google Scholar] [CrossRef]
- Barsan, N.; Weimar, U. Conduction Model of Metal Oxide Gas Sensors. J. Electroceram. 2001, 7, 143–167. [Google Scholar] [CrossRef]
- Liao, Z.-M.; Liu, K.-J.; Zhang, J.-M.; Xu, J.; Yu, D.-P. Effect of Surface States on Electron Transport in Individual ZnO Nanowires. Phys. Lett. A 2007, 367, 207–210. [Google Scholar] [CrossRef]
- Barry, T.I.; Stone, F.S.; Tompkins, F.C. The Reactions of Oxygen at Dark and Irradiated Zinc Oxide Surfaces. Proc. R. Soc. Ser. A. Math. Phys. Eng. Sci. 1960, 255, 124–144. [Google Scholar] [CrossRef]
Materials | Target Gas | Operating Condition * | Sensitivity (%) | Ref |
---|---|---|---|---|
Au/ZnO thin film | NO2—10 ppm | RT, λblue = 439 nm, 0.76 mW/cm2 | ~10.00 | [2] |
ZnO/Au NPs | NOx—6 ppm | RT, white light (~400 μW/cm2) | 130.00 | [8] |
ZnO-rGO-Au | NO2—100 ppm | 80 °C | 32.55 | [40] |
Au/ZnO NRs | CO—1000 ppm NO2—50 ppm | 150 °C 300 °C | 12.00 4.14 | [41] |
ZnO:Au NPs | Ethanol—1000 ppm | RT, UV = 254 nm, 4.1 mW/cm2 125 °C, UV = 254 nm, 4.1 mW/cm2 | 1.46 6.30 | [42] |
Au-ZnO NRs array films | NO2—1–5 ppm | RT, λ = 495 nm, 50 mW/cm2 | 1.25 | [37] |
ZnO NRs/Au NPs | NO2—10 ppm | RT, vis-light (465–640 nm), 10 mW/cm2 | 891.00 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qomaruddin; Casals, O.; Wasisto, H.S.; Waag, A.; Prades, J.D.; Fàbrega, C. Visible-Light-Driven Room Temperature NO2 Gas Sensor Based on Localized Surface Plasmon Resonance: The Case of Gold Nanoparticle Decorated Zinc Oxide Nanorods (ZnO NRs). Chemosensors 2022, 10, 28. https://doi.org/10.3390/chemosensors10010028
Qomaruddin, Casals O, Wasisto HS, Waag A, Prades JD, Fàbrega C. Visible-Light-Driven Room Temperature NO2 Gas Sensor Based on Localized Surface Plasmon Resonance: The Case of Gold Nanoparticle Decorated Zinc Oxide Nanorods (ZnO NRs). Chemosensors. 2022; 10(1):28. https://doi.org/10.3390/chemosensors10010028
Chicago/Turabian StyleQomaruddin, Olga Casals, Hutomo Suryo Wasisto, Andreas Waag, Joan Daniel Prades, and Cristian Fàbrega. 2022. "Visible-Light-Driven Room Temperature NO2 Gas Sensor Based on Localized Surface Plasmon Resonance: The Case of Gold Nanoparticle Decorated Zinc Oxide Nanorods (ZnO NRs)" Chemosensors 10, no. 1: 28. https://doi.org/10.3390/chemosensors10010028
APA StyleQomaruddin, Casals, O., Wasisto, H. S., Waag, A., Prades, J. D., & Fàbrega, C. (2022). Visible-Light-Driven Room Temperature NO2 Gas Sensor Based on Localized Surface Plasmon Resonance: The Case of Gold Nanoparticle Decorated Zinc Oxide Nanorods (ZnO NRs). Chemosensors, 10(1), 28. https://doi.org/10.3390/chemosensors10010028