Antibacterial Treatment of Selected High-Touch Objects and Surfaces within Provision of Nursing Care in Terms of Prevention of Healthcare-Associated Infections
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Selection of Research Samples
2.3. Preparation and Application of the Nanolayer
2.4. Sampling Plan and Technique
2.5. Bacterial Culture
2.6. Data Analysis
2.7. Ethical Considerations
3. Results
3.1. Culture Results in Emesis Basins
3.2. Culture Results in Trays
3.3. Culture Results in Boxes for Storing Medical Supplies
3.4. Evaluation of the Experiment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Slawomirski, L.; Auraaen, A.; Klazinga, N. OECD Health Working Papers No. 96: The Economics of Patient Safety: Strengthening a Value-Based Approach to Reducing Patient Harm at National Level, 1st ed.; OECD: Paris, France, 2017; p. 67. [Google Scholar] [CrossRef]
- Kumar, S.; Sen, P.; Gaind, R.; Verma, P.K.; Gupta, P.; Suri, P.R.; Nagpal, S.; Rai, A.K. Prospective surveillance of device-associated health care-associated infection in an intensive care unit of a tertiary care hospital in New Delhi, India. Am. J. Infect. Control. 2018, 46, 202–206. [Google Scholar] [CrossRef]
- Revelas, A. Healthcare—Associated infections: A public health problem. Niger. Med. J. 2012, 53, 59–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Parliament. Safer healthcare in Europe: European Parliament Resolution of 19 May 2015 on Safer Healthcare in Europe: Improving Patient Safety and Fighting Antimicrobial Resistance (2014/2207(INI)). 2016. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52015IP0197&from=EN (accessed on 10 January 2021).
- World Health Organization (WHO). Global Guidelines for the Prevention of Surgical Site Infection, 1st ed.; World Health Organization: Geneva, Switzerland, 2016; p. 184. [Google Scholar]
- World Health Organization (WHO). Global Guidelines for the Prevention of Surgical Site Infection, 2nd ed.; World Health Organization: Geneva, Switzerland, 2018; p. 184. [Google Scholar]
- Schmidt, M.G.; Dessauer, B.; Benavente, C.; Cifuentes, P.; Elgueta, A.; Duran, C.; Navarrete, M.S. Copper surfaces are associated with significantly lower concentrations of bacteria on selected surfaces within a pediatric intensive care unit. Am. J. Infect. Control. 2016, 44, 203–209. [Google Scholar] [CrossRef] [Green Version]
- Suleyman, G.; Alangaden, G.; Bardossy, A.C. The Role of Environmental Contamination in the Transmission of Nosocomial Pathogens and Healthcare-Associated Infections. Curr. Infect. Dis. Rep. 2018, 20, 1–12. [Google Scholar] [CrossRef]
- Weber, D.J.; Rutala, W.A.; Miller, M.B.; Huslage, K.; Sickbert-Bennett, E. Role of hospital surfaces in the transmission of emerging health care-associated pathogens: Norovirus, Clostridium difficile, and Acinetobacter species. Am. J. Infect. Control. 2010, 38, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Olmsted, R.N. Prevention by Design: Construction and Renovation of Health Care Facilities for Patient Safety and Infection Prevention. Infect. Dis. Clin. North. Am. 2016, 30, 713–728. [Google Scholar] [CrossRef] [PubMed]
- Han, J.H.; Sullivan, N.; Leas, B.F.; Pegues, D.A.; Kaczmarek, J.L.; Umscheid, C.A. Cleaning Hospital Room Surfaces to Prevent Health Care-Associated Infections: A Technical Brief. Ann. Intern. Med. 2015, 163, 598–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russotto, V.; Cortegiani, A.; Raineri, S.M.; Giarratano, A. Bacterial contamination of inanimate surfaces and equipment in the intensive care unit. J. Intensive Care 2015, 3, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Cheng, V.C.; Chau, P.H.; Lee, W.M.; Ho, S.K.; Lee, D.W.; So, S.Y.; Wong, S.C.; Tai, J.W.; Yuen, K.Y. Hand-touch contact assessment of high-touch and mutual-touch surfaces among healthcare workers, patients, and visitors. J. Hosp. Infect. 2015, 90, 220–225. [Google Scholar] [CrossRef]
- Darge, A.; Kahsay, A.G.; Hailekiros, H.; Niguse, S.; Abdulkader, M. Bacterial contamination and antimicrobial susceptibility patterns of intensive care units medical equipment and inanimate surfaces at Ayder Comprehensive Specialized Hospital, Mekelle, Northern Ethiopia. BMC Res. Notes 2019, 12, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Link, T.; Kleiner, C.; Mancuso, M.P.; Dziadkowiec, O.; Halverson-Carpenter, K. Determining high touch areas in the operating room with levels of contamination. Am. J. Infect. Control. 2016, 44, 1350–1355. [Google Scholar] [CrossRef]
- Lei, H.; Jones, R.M.; Li, Y. Exploring surface cleaning strategies in hospital to prevent contact transmission of methicillin-resistant Staphylococcus aureus. BMC Infect. Dis. 2017, 85, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Federation of Infection Control. Cleaning, Disinfection and Sterilisation. 2016. Available online: https://www.theific.org/wp-content/uploads/2016/04/12-Cleaning_2016.pdf (accessed on 10 January 2021).
- World Health Organization (WHO). Prevention and Control. of Healthcare–Associated Infections. Basic Recommendations, 1st ed.; Pan American Health Organization: Washington, DC, USA, 2018; p. 148. [Google Scholar]
- Donskey, C. Beyond High-Touch Surfaces: Portable Equipment and Floors as Potential Sources of Transmission of Health Care–Associated Pathogens. Am. J. Infect. Control. 2019, 47, 90–95. [Google Scholar] [CrossRef] [PubMed]
- National Health and Medical Research Council (NHMRC). Australian Guidelines for the Prevention and Control. of Infection in Healthcare, 1st ed.; National Health and Medical Research Council: Canberra, Australia, 2019; p. 363. [Google Scholar]
- Hasan, J.; Chatterjee, K. Recent Advances in Engineering Topography Mediated Antibacterial Surfaces. Nanoscale 2015, 7, 15568–15575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dancer, S. Controlling Hospital-Acquired Infection: Focus on the Role of the Environment and New Technologies for Decontamination. Clin. Microbiol Rev. 2014, 27, 665–690. [Google Scholar] [CrossRef] [Green Version]
- Mann, E.E.; Manna, D.; Mettetal, M.R.; May, R.M.; Dannemiller, E.M.; Chung, K.K.; Brennan, A.B.; Reddy, S.T. Surface micropattern limits bacterial contamination. Antimicrob. Resist. Infect. Control. 2014, 17, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ndegwa, S. Antimicrobial Copper Surfaces for the Reduction of Health Care–Associated Infections in Intensive Care Settings. Issues Emerg. Health Technol. 2015, 133, 1–11. [Google Scholar]
- Deshmukh, S.P.; Patil, S.M.; Mullani, S.B.; Delekar, S.D. Silver nanoparticles as an effective disinfectant: A review. Mater. Sci Eng. C Mater. Biol. Appl. 2019, 97, 954–965. [Google Scholar] [CrossRef]
- Zhang, X.F.; Liu, Z.G.; Shen, W.; Gurunathan, S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int J. Mol. Sci. 2016, 17, 1534. [Google Scholar] [CrossRef]
- Gonçalves, L.P.; Miñán, A.; Benítez, G.; de Mele, M.F.L.; Vela, M.E.; Schilardi, P.L.; Ferreira-Neto, E.P.; Noveletto, J.C.; Correr, W.R.; Rodrigues-Filho, U.P. Self-sterilizing ormosils surfaces based on photo-synzthesized silver nanoparticles. Colloids Surf. B Biointerfaces 2018, 164, 144–154. [Google Scholar] [CrossRef] [Green Version]
- Krause, M.; Dolák, F. Risk objects and surfaces in terms of transmission of infections in the provision of health care. General Practitioner 2020, 100, 203–206. [Google Scholar]
- Czech Republic. Antibakteriální Vrstva Působící Proti Patogenním Bakteriím, Zejména Proti Bakteriálnímu Kmeni MRSA, a Způsob Vytvoření Této Vrstvy; CZ303861/2013; Technical University of Liberec: Liberec, Czech Republic, 2015. [Google Scholar]
- KNL. SOP B013 Bakteriologické Vyšetření Stěrů z Prostředí a Kontroly Sterility (Internal Guidelines of the Hospital); KNL: Liberec, Czech Republic, 2020. [Google Scholar]
- Kolářová, L. Obecná a Klinická Mikrobiologie; Galén: Prague, Czech Republic, 2020. [Google Scholar]
- Czech Republic. Vyhláška č. 306/2012 Sb. o Podmínkách Předcházení Vzniku a šíření infekčních Onemocnění a o Hygienických Požadavcích na Provoz Zdravotnických Zařízení a ústavů Sociální péče. 2012. Available online: http://aplikace.mvcr.cz/sbirka-zakonu/ViewFile.aspx?type=z&id=24731 (accessed on 10 January 2021).
- Rutala, W.A.; Weber, D.J. Best practices for disinfection of noncritical environmental surfaces and equipment in health care facilities: A bundle approach. Am. J. Infect. Control. 2019, 47, 96–105. [Google Scholar] [CrossRef]
- Colin, M.; Klingelschmitt, F.; Charpentier, E.; Josse, J.; Kanagaratnam, L.; De Champs, C.; Gangloff, S.C. Copper alloy touch surfaces in healthcare facilities: An effective solution to prevent bacterial spreading. Materials 2018, 11, 2479. [Google Scholar] [CrossRef] [Green Version]
- Colin, M.; Charpentier, E.; Klingelschmitt, F.; Bontemps, C.; De Champs, C.; Reffuveille, F.; Gangloff, S.C. Specific antibacterial activity of copper alloy touch surfaces in five long-term care facilities for older adults. J. Hosp. Infect. 2020, 104, 283–292. [Google Scholar] [CrossRef]
- Erkoc, P.; Ulucan-Karnak, F. Nanotechnology-Based Antimicrobial and Antiviral Surface Coating Strategies. Prosthesis 2021, 3, 25–52. [Google Scholar] [CrossRef]
- Piedade, A.P.; Pinho, A.C.; Branco, R.; Morais, P.V. Evaluation of antimicrobial activity of ZnO based nanocomposites for the-coating of non-critical equipment in medical-care facilities. Appl. Surf. Sci 2020, 513, 145818. [Google Scholar] [CrossRef]
- Boyce, J.M. Modern technologies for improving cleaning and disinfection of environmental surfaces in hospitals. Antimicrob Resist. Infect. Control. 2016, 5, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salgado, C.D.; Sepkowitz, K.A.; John, J.F.; Cantey, J.R.; Attaway, H.H.; Freeman, K.D.; Sharpe, P.A.; Michels, H.T.; Schmidt, M.G. Copper surfaces reduce the rate of healthcare-acquired infections in the intensive care unit. Infect. Control. Hosp. Epidemiol. 2013, 34, 479–486. [Google Scholar] [CrossRef] [Green Version]
- von Dessauer, B.; Navarrete, M.S.; Benadof, D.; Benavente, C.; Schmidt, M.G. Potential effectiveness of copper surfaces in reducing health care-associated infection rates in a pediatric intensive and intermediate care unit: A nonrandomized controlled trial. Am. J. Infect. Control. 2016, 44, 133–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nas, M.Y.; Ibiebele, J.; Dolgin, G.; Malczynski, M.; Qi, C.; Bolon, M.; Zembower, T. The intersection of hand hygiene, infusion pump contamination, and high alarm volume in the health care environment. Am. J. Infect. Control. 2020, 48, 1311–1314. [Google Scholar] [CrossRef]
- Queiroz Júnior, J.R.A.; Melo, I.O.; Calado, G.H.D.S.; Cavalcanti, L.R.C.; Sobrinho, C.R.W. Identification and resistance profile of bacteria isolated on stethoscopes by health care professionals: Systematic review. Am. J. Infect. Control. 2021, 49, 229–237. [Google Scholar] [CrossRef]
- Santella, B.; Folliero, V.; Pirofalo, G.M.; Serretiello, E.; Zannella, C.; Moccia, G.; Santoro, E.; Sanna, G.; Motta, O.; De Caro, F.; et al. Sepsis-A Retrospective Cohort Study of Bloodstream Infections. Antibiotics 2020, 9, 851. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Decontamination and Reprocessing of Medical Devices for Health-Care Facilities, 1st ed.; World Health Organization: Geneva, Switzerland, 2016; p. 118. [Google Scholar]
- Donskey, C.J. Does improving surface cleaning and disinfection reduce health care-associated infections? Am. J. Infect. Control. 2013, 41, 12–19. [Google Scholar] [CrossRef]
- Dogra, S.; Mahajan, R.; Jad, B.; Mahajan, B. Educational interventions to improve knowledge and skills of interns towards prevention and control of hospital-associated infections. Int. J. Appl. Basic Med. Res. 2015, 5, 54–57. [Google Scholar] [CrossRef] [Green Version]
- Krause, M.; Dolák, F.; Froňková, M. The knowledge of nurses on the disinfection of reusable objects and surfaces in clinical practice. Kontakt 2021, 23, 8–13. [Google Scholar] [CrossRef]
- Krause, M.; Dolák, F. Knowledge of nurses of disinfection of selected objects and surfaces in the provision of health services. General Practitioner 2021, 101, 110–115. [Google Scholar]
Nano | Control | ||||
---|---|---|---|---|---|
Category | Number of finding | % | Category | Number of finding | % |
Without bacterial contamination | 94 | 71.2 | Without bacterial contamination | 104 | 66.7 |
With bacterial contamination | 38 | 28.8 | With bacterial contamination | 52 | 33.3 |
p-value of Nano versus Control emesis basins 0.407. | |||||
Detailed analysis of culture finding from single swabs | |||||
Micrococcus species | 2 | 1.5 | Micrococcus species | 3 | 1.9 |
Sporulating microorganisms | 5 | 3.7 | Sporulating microorganisms | 11 | 7.1 |
Coagulase negative Staphylococcus | 27 | 20.4 | Coagulase negative Staphylococcus | 34 | 21.8 |
Streptococcus species | 1 | 0.8 | Coagulase negative Staphylococcus, Micrococcus species | 1 | 0.6 |
Enterococcus species | 1 | 0.8 | Coagulase negative Staphylococcus, Sporulating microorganisms | 1 | 0.6 |
Pseudomonas aeruginosa | 1 | 0.8 | Staphylococcus aureus (MRSA negative) | 2 | 1.3 |
Acinetobacter species | 1 | 0.8 |
Nano | Control | ||||
---|---|---|---|---|---|
Category | Number of finding | % | Category | Number of finding | % |
Without bacterial contamination | 88 | 61.1 | Without bacterial contamination | 90 | 62.5 |
With bacterial contamination | 56 | 38.9 | With bacterial contamination | 54 | 37.5 |
p-value of Nano versus Control trays 0.808. | |||||
Detailed analysis of culture finding from single swabs | |||||
Micrococcus species | 3 | 2.1 | Corynebacterium species | 1 | 0.7 |
Sporulating microorganisms | 23 | 16.0 | Micrococcus species | 3 | 2.1 |
Coagulase negative Staphylococcus | 29 | 20.1 | Sporulating microorganisms | 16 | 11.1 |
Coagulase negative Staphylococcus, Sporulating microorganisms | 1 | 0.7 | Coagulase negative Staphylococcus | 31 | 21.5 |
Acinetobacter species | 1 | 0.7 | |||
Enterobacter cloacae (ESBL negative) | 1 | 0.7 | |||
Serratia rubidaea (ESBL negative) | 1 | 0.7 |
Nano | Control | ||||
---|---|---|---|---|---|
Category | Number of finding | % | Category | Number of finding | % |
Without bacterial contamination | 18 | 50.0 | Without bacterial contamination | 18 | 50.0 |
With bacterial contamination | 18 | 50.0 | With bacterial contamination | 18 | 50.0 |
p-value of Nano versus Control boxes for storing medical supplies 1.000. | |||||
Detailed analysis of culture finding from single swabs | |||||
Coagulase negative Staphylococcus | 10 | 27.8 | Coagulase negative Staphylococcus | 11 | 30.5 |
Sporulating microorganisms | 7 | 19.4 | Sporulating microorganisms | 5 | 13.9 |
Staphylococcus aureus (MRSA positive, oxa-R) | 1 | 2.8 | Coagulase negative Staphylococcus, Micrococcus species | 1 | 2.8 |
Enterobacter cloacae (ESBL negative) | 1 | 2.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krause, M.; Dolák, F. Antibacterial Treatment of Selected High-Touch Objects and Surfaces within Provision of Nursing Care in Terms of Prevention of Healthcare-Associated Infections. Healthcare 2021, 9, 675. https://doi.org/10.3390/healthcare9060675
Krause M, Dolák F. Antibacterial Treatment of Selected High-Touch Objects and Surfaces within Provision of Nursing Care in Terms of Prevention of Healthcare-Associated Infections. Healthcare. 2021; 9(6):675. https://doi.org/10.3390/healthcare9060675
Chicago/Turabian StyleKrause, Martin, and František Dolák. 2021. "Antibacterial Treatment of Selected High-Touch Objects and Surfaces within Provision of Nursing Care in Terms of Prevention of Healthcare-Associated Infections" Healthcare 9, no. 6: 675. https://doi.org/10.3390/healthcare9060675
APA StyleKrause, M., & Dolák, F. (2021). Antibacterial Treatment of Selected High-Touch Objects and Surfaces within Provision of Nursing Care in Terms of Prevention of Healthcare-Associated Infections. Healthcare, 9(6), 675. https://doi.org/10.3390/healthcare9060675