Effect of e-Health Literacy on COVID-19 Infection-Preventive Behaviors of Undergraduate Students Majoring in Healthcare
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Setting and Participants
2.3. Data Collection and Procedure
2.4. Measures
2.4.1. General Characteristics of Participants
2.4.2. e-Health Literacy
2.4.3. Infection-Preventive Behaviors
2.5. Analysis
3. Results
3.1. Characteristics of Participants and the Level of e-HL and Infection-Preventive Behaviors
3.2. e-HL and Infection-Preventive Behaviors according to the General Characteristics
3.3. Correlations between e-HL and Infection-Preventive Behaviors
3.4. Regression Results on Infection-Preventive Behaviors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Winker, M.A.; Flanagin, A.; Chi-Lum, B.; White, J.; Andrews, K.; Kennett, R.L.; DeAngelis, C.D.; Musacchio, R.A. Guidelines for medical and health information sites on the Internet. JAMA 2000, 283, 1600–1606. [Google Scholar] [CrossRef]
- Stellefson, M.; Hanik, B.; Chaney, B.; Chaney, D.; Tennant, B.; Chavarria, E.A. eHealth literacy among college students: A systematic review with implications for eHealth education. J. Med. Internet Res. 2011, 13, e102. [Google Scholar] [CrossRef] [PubMed]
- Sundar, S.S.; Nass, C. Conceptualizing sources in online news. J. Commun. 2001, 51, 52–72. [Google Scholar] [CrossRef]
- WHO. The COVID-19 Timeline. Available online: https://www.who.int/news-room/detail/27-04-2020-who-timeline---covid-19 (accessed on 27 January 2021).
- WHO. WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19–11 March 2020. Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 (accessed on 27 January 2021).
- Greenhalgh, T.; Schmid, M.B.; Czypionka, T.; Bassler, D.; Gruer, L. Face masks for the public during the COVID-19 crisis. BMJ 2020, 369, m1435. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Liu, W.; Lee, T.-Y.; Zhao, H.; Ji, J. Risk perception, knowledge, information sources and emotional states among COVID-19 patients in Wuhan, Chna. Nurs. Outlook 2021, 69, 13–21. [Google Scholar] [CrossRef]
- Nielsen, R.K.; Fletcher, R.; Newman, N.; Brennen, J.S.; Howard, P.N. Navigating the ‘Infodemic’: How People in Six Countries Access and Rate News and Information about Coronavirus. 2020. Available online: https://reutersinstitute.politics.ox.ac.uk/sites/default/files/2020-04/Navigating%20the%20Coronavirus%20Infodemic%20FINAL.pdf (accessed on 27 May 2020).
- Okan, O.; Bollweg, T.M.; Berens, E.-M.; Hurrelmann, K.; Bauer, U.; Schaeffer, D. Coronavirus-related health literacy: A cross-sectional study in adults during the COVID-19 Infodemic in Germany. Int. J. Environ. Res. Public Health 2020, 17, 5503. [Google Scholar] [CrossRef]
- Duong, T.V.; Aringazina, A.; Baisunova, G.; Pham, T.V.; Pham, K.M.; Truong, T.Q.; Nguyen, K.T.; Oo, W.M.; Mohamad, E.; Su, T.T.; et al. Measuring health literacy in Asia: Validation of the HLS-EU-Q47 survey tool in six Asian countries. J. Epidemiol. 2017, 27, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.B.; Oh, H.J.; Hong, D.Y.; Shim, J.C.; Jang, J.H. The impact of media on the risk perception and preventive behavior intentions related to a new infectious disease. J. Advert. Res. 2018, 119, 123–152. [Google Scholar] [CrossRef]
- Norman, C.D.; Skinner, H.A. eHEALS: The eHealth Literacy Scale. J. Med. Internet Res. 2006, 8, e27. [Google Scholar] [CrossRef]
- Li, X.; Liu, Q. Social media use, eHealth literacy, disease knowledge, and preventive behaviors in the COVID-19 pandemic: Cross-sectional study on Chinese netizens. J. Med. Internet Res. 2020, 22, e19684. [Google Scholar] [CrossRef]
- Yang, B.X.; Xia, L.; Huang, R.; Chen, P.; Luo, D.; Liu, Q.; Kang, L.J.; Zhang, Z.-J.; Liu, Z.; Yu, S.; et al. Relationship between eHealth literacy and psychological status during COVID-19 pandemic: A survey of Chinese residents. J. Nurs. Manag. 2020, 1–8. [Google Scholar] [CrossRef]
- National Information Society Agency. Internet Usage Survey of Korea. 2019. Available online: https://www.nia.or.kr/site/nia_kor/ex/bbs/View.do?cbIdx=99870&bcIdx=21930&parentSeq=21930 (accessed on 25 May 2020).
- Newspaper Report. “You’ll be Infected to COVID-19 if You’re unlucky, but I’m Healthy,” A Statement from a Woman in Her 20s. Available online: https://www.hankookilbo.com/News/Read/202005111722745947 (accessed on 25 May 2020).
- Gilmour, J.A. Reducing disparities in the access and use of Internet health information. A discussion paper. Int. J. Nurs. Stud. 2007, 44, 1270–1278. [Google Scholar] [CrossRef]
- Tsukahara, S.; Yamaguchi, S.; Igarashi, F.; Uruma, R.; Ikuina, N.; Iwakura, K.; Sato, Y. Association of eHealth literacy with lifestyle behaviors in university students: Questionnaire-based cross-sectional study. J. Med. Internet Res. 2020, 22, e18155. [Google Scholar] [CrossRef]
- Tubaishat, A.; Habiballah, L. eHealth literacy among undergraduate nursing students. Nurs. Educ. Today. 2016, 42, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Barranco, R.; Vallega Bernucci Du Tremoul, L.; Ventura, F. Hospital-acquired SARS-CoV-2 infections in patients: Inevitable conditions or medical malpractice? Int. J. Environ. Res. Public Health 2021, 18, 489. [Google Scholar] [CrossRef]
- Lee, S.R. A Study for Developing eHealth Literacy Scale. Ph.D. Thesis, Hanyang University, Seoul, Korea, 18 April 2018. [Google Scholar]
- Lee, S.Y.; Yang, H.J.; Kim, G.; Cheong, H.K.; Choi, B.Y. Preventive behaviors by the level of perceived infection sensitivity during the Korea outbreak of Middle East Respiratory Syndrome in 2015. Epidemiol. Health 2016, 38, e2016051. [Google Scholar] [CrossRef]
- Hwang, A.R.; Gang, H.W. Influence of eHealth Literacy on health promoting behaviors among university students. J. Korean Soc. Sch. Health 2019, 32, 165–174. [Google Scholar] [CrossRef]
- Hsu, W.C.; Chiang, C.H.; Yang, S.C. The effect of individual factors on health behaviors among college students: The mediating effects of eHealth literacy. J. Med. Internet Res. 2014, 16, e287. [Google Scholar] [CrossRef]
- Yang, S.-C.; Luo, Y.F.; Chiang, C.H. The associations among individual factors, eHealth literacy, and health-promoting lifestyles among college students. J. Med. Internet Res. 2017, 19, e15. [Google Scholar] [CrossRef]
- Ministry of Health and Welfare, COVID-19 Infection Prevention Measures. Available online: http://ncov.mohw.go.kr/baroView4.do?brdId=4&brdGubun=44 (accessed on 10 February 2021).
- Jacobs, R.J.; Lou, J.Q.; Ownby, R.L.; Caballero, J. A systematic review of eHealth interventions to improve health literacy. J. Health Inform. 2016, 22, 81–98. [Google Scholar] [CrossRef] [PubMed]
- Britt, R.K.; Collins, W.B.; Wilson, K.; Linnemeier, G.; Englebert, A.M. eHealth literacy and health behaviors affecting modern college students: A pilot study of issues identified by the American college health association. J. Med. Internet Res. 2017, 19, e392. [Google Scholar] [CrossRef]
- Yuan, T.; Liu, H.; Li, X.D.; Liu, H.R. Factors affecting infection control behaviors to prevent COVID-19: An online survey of nursing students in Anhui, China in March and April 2020. Med. Sci. Monit. 2020, 26, e925877. [Google Scholar] [CrossRef] [PubMed]
- Do, B.N.; Tran, T.V.; Phan, D.T.; Nguyen, H.C.; Nguyen, T.T.P.; Nguyen, H.C.; Ha, T.H.; Dao, H.K.; Trinh, M.V.; Do, T.V.; et al. Health literacy, e-health literacy, adherence to infection prevention and control procedures, lifestyle changes, and suspected COVID-19 symptoms among health care workers during lockdown: Online survey. J. Med. Internet Res. 2020, 22, e22894. [Google Scholar] [CrossRef] [PubMed]
- Haque, A.; Mumtaz, S.; Khattak, O.; Mumtaz, R.; Ahmed, A. Comparing the preventive behavior of medical students and physicians in the era of COVID-19: Novel medical problems demand novel curricular interventions. Biochem. Mol. Biol. Edu. 2020, 48, 473–481. [Google Scholar] [CrossRef]
- Xie, B. Effects of an eHealth literacy intervention for older adults. J. Med. Internet Res. 2011, 13. [Google Scholar] [CrossRef] [PubMed]
Variables | Categories | N (%) or M ± SD | Range (Min-Max) |
---|---|---|---|
Gender | Male | 37 (13.5) | |
Female | 237 (86.5) | ||
Major | Nursing | 138 (50.4) | |
Clinical pathology | 43 (15.7) | ||
Occupational therapy | 93 (33.9) | ||
Grade | 1 | 79 (28.8) | |
2 | 90 (32.8) | ||
3 | 60 (21.9) | ||
4 | 45 (16.4) | ||
Health status | Poor or moderate | 100 (36.4) | |
Healthy | 174 (63.5) | ||
Health concerns | Low or moderate | 99 (36.1) | |
High | 175 (63.8) | ||
Health management time (h) | <1 | 122 (44.5) | |
1–<4 | 85 (31.0) | ||
≥4 | 67 (24.4) | ||
e-Health literacy | Overall | 3.62 ± 0.60 | 1–5 (2.06–5.00) |
Functional | 3.98 ± 0.66 | 1–5 (1.13–5.00) | |
Communicative | 3.41 ± 0.80 | 1–5 (1.09–5.00) | |
Critical | 3.58 ± 0.66 | 1–5 (1.92–5.00) | |
Preventive behaviors | Overall | 4.22 ± 0.51 | 1–5 (2.50–5.00) |
Not touching eyes or mouth with unwashed hands | 3.46 ± 1.04 | 1–5 (1–5) | |
Covering mouth when sneezing or coughing | 3.71 ± 1.13 | 1–5 (1–5) | |
Avoiding someone showing respiratory symptoms or fever | 4.46 ± 0.80 | 1–5 (1–5) | |
Wearing a mask outdoors | 4.91 ± 0.36 | 1–5 (3–5) | |
Avoiding crowded places | 4.41 ± 0.78 | 1–5 (2–5) | |
Refraining from visiting hospitals | 4.37 ± 0.87 | 1–5 (1–5) |
Variables | Categories | e-Health Literacy | Preventive Behavior | ||
---|---|---|---|---|---|
M ± SD | t or F | M ± SD | t or F | ||
Gender | Male | 3.74 ± 0.62 | 1.29 (0.199) | 4.20 ± 0.55 | −0.22 (0.824) |
Female | 3.61 ± 0.60 | 4.22 ± 0.51 | |||
Major | Nursing | 3.75 ± 0.57 | 6.54 (0.002) a > b, c | 4.29 ± 0.50 | 2.56 (0.079) |
Clinical pathology | 3.44 ± 0.47 | 4.12 ± 0.54 | |||
Occupational therapy | 3.52 ± 0.67 | 4.17 ± 0.52 | |||
Grade | 1 | 3.59 ± 0.61 | 1.19 (0.313) | 4.30 ± 0.52 | 2.46 (0.063) |
2 | 3.63 ± 0.57 | 4.24 ± 0.48 | |||
3 | 3.55 ± 0.67 | 4.07 ± 0.55 | |||
4 | 3.76 ± 0.55 | 4.24 ± 0.50 | |||
Health status | Poor or moderate | 3.50 ± 0.56 | −2.71 (0.007) | 4.09 ± 0.54 | −3.23 (0.001) |
Healthy | 3.70 ± 0.61 | 4.30 ± 0.48 | |||
Health concerns | Low or moderate | 3.40 ± 0.58 | −4.71 (<0.001) | 4.09 ± 0.55 | −3.27 (0.001) |
High | 3.75 ± 0.58 | 4.30 ± 0.48 | |||
Health management time (h) | <1 | 3.54 ± 0.60 | 2.52 (0.082) | 4.16 ± 0.54 | 2.55 (0.080) |
1–<4 | 3.64 ± 0.60 | 4.21 ± 0.47 | |||
≥4 | 3.75 ± 0.60 | 4.34 ± 0.51 |
Variables | Functional e-HL | Communicative e-HL | Critical e-HL | Overall e-HL | Preventive Behaviors |
---|---|---|---|---|---|
Functional e-HL | 1.00 | ||||
Communicative e-HL | 0.47 (<0.001) | 1.00 | |||
Critical e-HL | 0.62 (<0.001) | 0.60 (<0.001) | 1.00 | ||
Overall e-HL | 0.77 (<0.001) | 0.86 (<0.001) | 0.88 (<0.001) | 1.00 | |
Preventive behaviors | 0.24 (0.001) | 0.19 (0.001) | 0.30 (<0.001) | 0.29 (<0.001) | 1.00 |
Variables | Categories | Beta | SE | t | p |
---|---|---|---|---|---|
e-Health literacy | 0.23 | 0.05 | 3.81 | <0.001 | |
Gender (vs. male) | Female | 0.08 | 0.09 | 1.37 | 0.173 |
Major (vs. nursing) | Clinical pathology | −0.01 | 0.09 | −0.20 | 0.840 |
Occupational therapy | −0.03 | 0.07 | −0.41 | 0.685 | |
Grade (vs. 1) | 2 | −0.05 | 0.08 | −0.74 | 0.457 |
3 | −0.17 | 0.09 | −2.41 | 0.016 | |
4 | −0.07 | 0.09 | −1.09 | 0.277 | |
Health status (vs. poor or moderate) | Healthy | 0.11 | 0.06 | 1.87 | 0.062 |
Health concerns (vs. low or moderate) | High | 0.09 | 0.07 | 1.42 | 0.157 |
Health management time (h, vs. <1) | 1–<4 | −0.02 | 0.07 | −0.24 | 0.810 |
≥4 | 0.07 | 0.08 | 1.07 | 0.284 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, K.J.; Park, N.L.; Heo, S.Y.; Jung, S.H.; Lee, Y.B.; Hwang, J.H. Effect of e-Health Literacy on COVID-19 Infection-Preventive Behaviors of Undergraduate Students Majoring in Healthcare. Healthcare 2021, 9, 573. https://doi.org/10.3390/healthcare9050573
Hong KJ, Park NL, Heo SY, Jung SH, Lee YB, Hwang JH. Effect of e-Health Literacy on COVID-19 Infection-Preventive Behaviors of Undergraduate Students Majoring in Healthcare. Healthcare. 2021; 9(5):573. https://doi.org/10.3390/healthcare9050573
Chicago/Turabian StyleHong, Kyung Jin, Noo Lee Park, Soo Yeon Heo, Seo Hyun Jung, Ye Been Lee, and Ji Hoon Hwang. 2021. "Effect of e-Health Literacy on COVID-19 Infection-Preventive Behaviors of Undergraduate Students Majoring in Healthcare" Healthcare 9, no. 5: 573. https://doi.org/10.3390/healthcare9050573
APA StyleHong, K. J., Park, N. L., Heo, S. Y., Jung, S. H., Lee, Y. B., & Hwang, J. H. (2021). Effect of e-Health Literacy on COVID-19 Infection-Preventive Behaviors of Undergraduate Students Majoring in Healthcare. Healthcare, 9(5), 573. https://doi.org/10.3390/healthcare9050573