Effect of Line-Magnet Stimulation on HRV: A Double-Blind, Randomized, Crossover Trial
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- White, A.; Ernst, E. A brief history of acupuncture. Rheumatology 2004, 43, 662–663. [Google Scholar] [CrossRef] [PubMed]
- Longhurst, J.C. Defining Meridians: A Modern Basis of Understanding. J. Acupunct. Meridian Stud. 2010, 3, 67–74. [Google Scholar] [CrossRef]
- World Health Organization. WHO International Standard Terminologies on Traditional Medicine in the Western Pacific Region; WHO Regional Office for the Western Pacific: Manila, Philippines, 2007; p. 243. [Google Scholar]
- Spaulding, K.; Chamberlin, K. The Transport of Extremely Low-Frequency Electrical Signals Through an Acupuncture Meridian Compared to Nonmeridian Tissue. J. Altern. Complement. Med. 2011, 17, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Ahn, A.C.; Wu, J.; Badger, G.J.; Hammerschlag, R.; Langevin, H.M. Electrical impedance along connective tissue planes as-sociated with acupuncture meridians. BMC Complement. Altern. Med. 2005, 5, 1–9. [Google Scholar] [CrossRef]
- Chen, K.-G. Electrical properties of meridians. IEEE Eng. Med. Biol. Mag. 1996, 15, 58. [Google Scholar] [CrossRef]
- Lee, M.S.; Jeong, S.Y.; Lee, Y.H.; Jeong, D.M.; Eo, Y.G.; Ko, S.B. Differences in electrical conduction properties between me-ridians and non-meridians. Am. J. Chin. Med. 2005, 33, 723–728. [Google Scholar] [CrossRef]
- Jo, H.-G.; Jo, G.-H. Effect of Acu-Magnetic Stimulation on Heart Rate Variability. Med. Acupunct. 2011, 23, 35–38. [Google Scholar] [CrossRef]
- Jo, H.-G.; Jo, G.-H. Electroencephalogram activity induced by magnetic stimulation on heart meridian. Neurosci. Lett. 2011, 495, 107–109. [Google Scholar] [CrossRef]
- Shaffer, F.; McCraty, R.; Zerr, C.L. A healthy heart is not a metronome: An integrative review of the heart’s anatomy and heart rate variability. Front Psychol. 2017, 30, 5–1040. [Google Scholar] [CrossRef]
- Del Paso, G.A.R.; Langewitz, W.; Mulder, L.J.M.; Van Roon, A.; Duschek, S. The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: A review with emphasis on a reanalysis of previous studies. Psychophysiology 2013, 50, 477–487. [Google Scholar] [CrossRef]
- World Health Organization. WHO Standard Acupuncture Point Locations in the Western Pacific Region; WHO Regional Office for the Western Pacific: Manila, Phillipines, 2008; pp. 81–86. [Google Scholar]
- Niskanen, J.P.; Tarvainen, M.P.; Ranta-Aho, P.O.; Karjalainen, P.A. Software for advanced HRV analysis. Comput. Methods Programs Biomed. 2004, 76, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Tarvainen, M.P.; Niskanen, J.-P.; Lipponen, J.A.; Ranta-Aho, P.O.; Karjalainen, P.A. Kubios HRV—Heart rate variability analysis software. Comput. Methods Programs Biomed. 2014, 113, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Pumprla, J.; Howorka, K.; Groves, D.; Chester, M.; Nolan, J. Functional assessment of heart rate variability: Physiological basis and practical applications. Int. J. Cardiol. 2002, 84, 1–14. [Google Scholar] [CrossRef]
- Vanderlei, L.C.M.; Pastre, C.M.; Hoshi, R.A.; Carvalho, T.D.; Godoy, M.F. Basic notions of heart rate variability and its clinical applicability. Rev. Bras. Cir. Cardiovasc. 2009, 24, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Task Force of The European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: Standards of Measurement, Physiological Interpretation and Clinical Use; Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef]
- Malliani, A.; Pagani, M.; Lombardi, F.; Cerutti, S. Cardiovascular neural regulation explored in the frequency domain. Circulation 1991, 84, 482–492. [Google Scholar] [CrossRef]
- Pagani, M.; Montano, N.; Porta, A.; Malliani, A.; Abboud, F.M.; Birkett, C.; Somers, V.K. Relationship Between Spectral Components of Cardiovascular Variabilities and Direct Measures of Muscle Sympathetic Nerve Activity in Humans. Circulation 1997, 95, 1441–1448. [Google Scholar] [CrossRef]
- Brown, T.E.; Beightol, L.A.; Koh, J.; Eckberg, D.L. Important influence of respiration on human R-R interval power spectra is largely ignored. J. Appl. Physiol. 1993, 75, 2310–2317. [Google Scholar] [CrossRef]
- Schipke, J.D.; Pelzer, M.; Arnold, G. Effect of respiration rate on short-term heart rate variability. J. Clin. Basic Cardiol. 1999, 2, 92–95. [Google Scholar]
- Billman, G.E. The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front. Physiol. 2013, 4, 26. [Google Scholar] [CrossRef]
- Ahn, A.C.; Colbert, A.P.; Anderson, B.J.; Martinsen, Ø.G.; Hammerschlag, R.; Cina, S.; Wayne, P.M.; Langevin, H.M. Electrical properties of acupuncture points and meridians: A systematic review. Bioelectromagnetics 2008, 29, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Ahn, A.C.; Park, M.; Shaw, J.R.; McManus, C.A.; Kaptchuk, T.J.; Langevin, H.M. Electrical impedance of acupuncture me-ridians: The relevance of subcutaneous collagenous bands. PLoS ONE 2010, 30, e11907. [Google Scholar]
- Qiu, C.; Zhao, T.; Li, Q.; Wang, X.; Xiao, K.; Wang, B. A Low-Power Stable Wideband Current Source for Acupuncture Point Skin Impedance Measurements. J. Health Eng. 2021, 2021, 1–9. [Google Scholar] [CrossRef]
- Chang, S.-A.; Weng, Y.-X.; Cheng, S.-C.; Chang, Y.-J.; Lee, T.-H.; Chang, C.-H.; Chang, T.-Y.; Huang, K.-L.; Liu, C.-H.; Hsu, C.-Y. Application of Meridian Electrical Conductance in the Setting of Acute Ischemic Stroke: A Cross-Sectional Study. Evid. Based Complement. Altern. Med. 2019, 2019, 3098095-8. [Google Scholar] [CrossRef] [PubMed]
HRV | Post-FT | Post-BT | p Value | 95% Confidence Interval of the Difference | Cohen’s d | |
---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Lower | Upper | |||
mHR (bpm) | 77.027 ± 0.193 | 77.185 ± 0.193 | 0.762 | −1.21 | 0.89 | 0.045 |
SDNN (ms) * | 55.374 ± 0.357 | 59.892 ± 0.449 | 0.029 | −8.55 | −0.50 | 0.338 |
RMSSD (ms) | 37.731 ± 0.327 | 38.448 ± 0.361 | 0.536 | −3.03 | 1.60 | 0.092 |
pNN50 (%) | 18.345 ± 0.334 | 18.904 ± 0.342 | 0.630 | −2.88 | 1.76 | 0.072 |
VLF (ms2) | 1295.012 ± 22.724 | 1552.13 ± 27.637 | 0.193 | −648.68 | 134.45 | 0.197 |
LF (ms2) ** | 774.7 ± 10.764 | 1062.04 ± 16.310 | 0.001 | −453.37 | −121.31 | 0.520 |
HF (ms2) | 557.341 ± 8.646 | 608.045 ± 9.626 | 0.179 | −125.45 | 24.04 | 0.204 |
LF/HF ** | 1.783 ± 0.024 | 2.426 ± 0.036 | 0.002 | −1.03 | −0.25 | 0.496 |
SD1 (ms) | 26.717 ± 0.231 | 27.225 ± 0.255 | 0.536 | −2.15 | 1.13 | 0.093 |
SD2 (ms) * | 73.262 ± 0.474 | 79.485 ± 0.684 | 0.022 | −12.14 | −1.00 | 0.354 |
SD1/SD2 * | 0.366 ± 0.002 | 0.339 ± 0.002 | 0.013 | 0.01 | 0.05 | 0.384 |
HRV | F, p | Group A | Group B | |||||
---|---|---|---|---|---|---|---|---|
Time | Time × Group | Pre-Test | Test 1 | Test 2 | Pre-Test | Test 1 | Test 2 | |
mHR (bpm) † | 6.392, 0.003 | 0.503, 0.928 | 79.30 ± 1.88 | 77.40 ± 1.83 | 77.65 ± 1.83 | 78.22 ± 1.92 | 76.38 ± 1.87 | 76.96 ± 1.88 |
SDNN (ms) †,‡ | 16.640, <0.001 | 6.597, 0.002 | 49.46 ± 3.57 | 55.91 ± 4.01 | 52.74 ± 3.54 | 47.82 ± 3.65 | 58.13 ± 4.10 | 64.06 ± 3.62 |
RMSSD (ms) | 1.517, 0.228 | 0.877, 0.394 | 34.91 ± 3.87 | 36.17 ± 3.29 | 34.83 ± 3.14 | 36.97 ± 3.69 | 40.77 ± 3.36 | 40.83 ± 3.21 |
pNN50 (%) | 1.376, 0.257 | 0.721, 0.462 | 15.24 ± 3.56 | 16.43 ± 3.16 | 14.44 ± 3.11 | 18.95 ± 3.63 | 22.43 ± 3.23 | 21.49 ± 3.18 |
VLF (ms2) † | 4.869, 0.014 | 1.262, 0.288 | 1025.88 ± 127.90 | 1567.53 ± 273.69 | 1222.65 ± 200.41 | 874.07 ± 130.78 | 1370.66 ± 279.84 | 1536.02 ± 204.91 |
LF (ms2) †,‡ | 3.640, 0.030 | 4.880, 0.010 | 696.87 ± 130.53 | 1111.03 ± 149.88 | 730.31 ± 108.32 | 743.99 ± 133.46 | 821.11 ± 153.24 | 1010.83 ± 110.76 |
HF (ms2) | 0.396, 0.572 | 0.977, 0.344 | 635.14 ± 161.89 | 542.80 ± 85.31 | 449.76 ± 83.98 | 643.65 ± 165.52 | 669.81 ± 87.22 | 676.25 ± 85.87 |
LF/HF ‡ | 2.016, 0.139 | 4.572, 0.013 | 1.82 ± 0.32 | 2.31 ± 0.23 | 1.95 ± 0.34 | 1.83 ± 0.33 | 1.61 ± 0.23 | 2.55 ± 0.34 |
SD1 (ms) | 1.519, 0.228 | 0.877, 0.394 | 24.72 ± 2.74 | 25.61 ± 2.33 | 24.66 ± 2.22 | 26.18 ± 2.80 | 28.87 ± 2.38 | 28.91 ± 2.27 |
SD2 (ms) †,‡ | 18.294, <0.001 | 7.091, 0.002 | 65.15 ± 4.45 | 74.56 ± 5.35 | 70.10 ± 4.67 | 62.00 ± 4.55 | 76.57 ± 5.47 | 85.35 ± 4.78 |
SD1/SD2 †,‡ | 6.514, 0.004 | 6.205, 0.005 | 0.36 ± 0.02 | 0.35 ± 0.02 | 0.36 ± 0.02 | 0.42 ± 0.02 | 0.37 ± 0.02 | 0.33 ± 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jo, H.-G. Effect of Line-Magnet Stimulation on HRV: A Double-Blind, Randomized, Crossover Trial. Healthcare 2021, 9, 421. https://doi.org/10.3390/healthcare9040421
Jo H-G. Effect of Line-Magnet Stimulation on HRV: A Double-Blind, Randomized, Crossover Trial. Healthcare. 2021; 9(4):421. https://doi.org/10.3390/healthcare9040421
Chicago/Turabian StyleJo, Han-Gue. 2021. "Effect of Line-Magnet Stimulation on HRV: A Double-Blind, Randomized, Crossover Trial" Healthcare 9, no. 4: 421. https://doi.org/10.3390/healthcare9040421
APA StyleJo, H.-G. (2021). Effect of Line-Magnet Stimulation on HRV: A Double-Blind, Randomized, Crossover Trial. Healthcare, 9(4), 421. https://doi.org/10.3390/healthcare9040421