Perioperative Pain Management and Opioid Stewardship: A Practical Guide
Abstract
:1. Introduction
2. Statistics and Definitions
2.1. The Burdens of Perioperative Opioid Overuse and of Uncontrolled Postoperative Pain
2.2. Opioid Stewardship, Multimodal Analgesia, and Equianalgesic Opioid Dosing
3. Pain Management and Opioid Stewardship across the Perioperative Continuum of Care
3.1. Pre-Admission Phase
3.1.1. Patient Pain History, Evaluation and Education
3.1.2. Pre-Admission Opioid Use Assessment, Risk Stratification for Perioperative ORAEs, and Optimization
3.1.3. Planning for Perioperative Management of Chronic Long-Acting Opioids and/or Medication Assisted Treatment (MAT)
3.1.4. Perioperative Planning for the Patient with Active Substance Use
3.2. Preoperative Phase
3.3. Intraoperative Phase
3.3.1. Regional and Local Anesthesia
Category, General Considerations | Anesthetic Strategy | Application | Specific Clinical Considerations |
---|---|---|---|
Neuraxial Regional Anesthesia Provides motor, sensory, and sympathetic blockade Includes local anesthetics +/− opioids May serve as primary or adjunctive anesthetic or analgesic strategy Significantly improves pain control and decreases use of systemic narcotics May decrease postop morbidity and mortality Increases risks of urinary retention, hypotension Rare catastrophic complications Requires interruption and careful management of antithrombotics | |||
Spinal (intrathecal) injections | Single injection of local anesthetic +/− opioid 1 into subarachnoid space; for surgeries below umbilicus | Hypotension, pruritus (if opioid used); Requires careful assessment and monitoring of postop narcotics if opioid used | |
Epidural infusions | Continuous infusion +/− PCEA or PIEB of local anesthetic +/− opioid into posterior epidural space; wide range of procedures (thoracic, abdominal, lower extremity) | Infusion pumps and catheters require special monitoring; may complicate or delay postop mobility or pose other logistical challenges; require careful postop narcotic management if opioid used | |
Para-vertebral blocks | Single/multiple injections or catheter placement for continuous local anesthetic infusion along vertebra near spinal nerve emergence; for thoracic or abdominal procedures | Effective blockade of complete hemithorax or hemiabdomen but technically difficult; modern practice generally favors fascial plane blocks or alternative neuraxial modalities | |
Peripheral Regional Anesthesia Includes local anesthetic injections or infusions (CRA), +/− pharmacologic adjuvants Can limit/avoid need for general anesthesia for some procedures, or can be combined with anesthesia as analgesic strategy Fewer risks and contraindications than neuraxial techniques as most are IM injections Most do not provide sympathetic block Significantly improves analgesia, decreases narcotic requirements May decrease morbidity Rare risks of nerve injury, bleeding, infection, LAST Use of ultrasound guidance has increased safety and consistency | |||
Plexus blocks | Brachial plexus blocks for unilateral upper extremity procedures; lumbar plexus blocks for hip or lower extremity | Requires significant clinician expertise of anatomy; proximal brachial plexus blockade risks hemidiaphragmatic paresis | |
Peripheral nerve blocks | Provide targeted anesthesia and/or analgesia of specific nerve or nerve bundles for extremity procedures | Numb limb or distribution must be protected from inadvertent injury, such as thermal injuries, hyperextension, or falls | |
Fascial plane blocks (e.g., TAP, ESPB, FIB, PECS-2) | Use higher volumes of dilute local anesthetics to target dermatomes/nerve planes; for thoracic, abdominal, spinal or extremity procedures | Provide unilateral, dermatomal, or regional analgesia; increasing use in modern practice due to safety, ease of administration and broad applications | |
Intravenous blocks (IVRA) | Use high doses of short-acting local anesthetic injected into venous system of an exsanguinated distal extremity to provide anesthesia and analgesia | High doses of local anesthetic are used so dual tourniquets must be used and their release carefully timed to prevent LAST; use limited to procedures less than 1 h | |
Local Anesthesia Mild sensory blockade of superficial/cutaneous nerves Minimal side effects Caution with type of local anesthetic, total exposure, and comorbid conditions (e.g., Reynaud) Avoid open wounds and compromised dermis with some techniques/products | |||
Wound infiltration | SC and/or intradermal injection(s) by surgeon for incisional pain | Less effective if injected into areas of tissue infection | |
Periarticular injections | Generally injected by surgeon without use of ultrasound guidance, such as in TKA | Provides effective postop analgesia, in some cases minimizing the need for peripheral nerve blockade | |
Topical | Applied as sprays, creams, gels, patches, or oral rinses for superficial pain | Some can be safely self-administered by patient |
3.3.2. Systemic Multimodal Adjuncts
3.4. Recovery Phase
3.5. Postoperative Phase
3.5.1. Postoperative Nonopioid Considerations
Category | Examples |
---|---|
Behavioral/cognitive | Progressive muscle relaxation, mindfulness meditation, art therapy, guided imagery/audio-visual distraction |
Psychological | Cognitive behavioral therapy (CBT), acceptance and commitment therapy (ACT), locus of control assessment |
Environmental | Music, lighting, comfort items, sleep hygiene (e.g., ear plugs, eye shield), personal hygiene (e.g., shower, hair or nail care) |
Physical | Heat, ice/cooling, physical therapy, repositioning, acupuncture, massage, osteopathic manipulation, tai chi, yoga, nutrition counseling, healing touch therapy, reiki |
Activities | Hobbies/leisure (e.g., playing cards, magazines/books, puzzles, games, journaling, knitting), relaxation (e.g., stress ball, television), pet visitation |
Spiritual | Religious literature & services, onsite spiritual counseling |
3.5.2. Postoperative Opioid Considerations
Opioid (Structural Class) | Major Metabolic Pathways | Active Metabolites | Effects of End Organ Function 1 |
---|---|---|---|
Phenanthrene opium alkaloids–highest rate of histamine release | |||
Morphine, Codeine (after bioactivation) 2 | UGT2B7 (phase II metabolism) | Extensive production of active metabolites | Renal impairment significantly increases exposure |
Semisynthetic phenanthrene derivatives of opium alkaloids–cross-reactivity possible between agents | |||
Oxycodone | CYP3A4 (primary), CYP2D6 (minor) | Produces small amounts of oxymorphone and other active metabolites | Renal impairment mildly increases exposure |
Hydrocodone | CYP3A4 (primary), CYP2D6 (minor) | Produces small amount of hydromorphone and other active metabolites | Not significantly altered by renal impairment |
Hydromorphone | UGT2B7 (phase II metabolism) | Multiple active metabolites but clinically unimportant | Not significantly altered by renal impairment |
Oxymorphone | UGT2B7 (phase II metabolism) | Metabolites have little activity | Not significantly altered by renal impairment |
Synthetic phenylpropylamine derivatives of opioid alkaloids–cross-reactivity with phenanthrenes unlikely | |||
Tapentadol | Unspecified glucuronidation | No active metabolites | Renal impairment significantly increases exposure |
Tramadol | CYP2D6, CYP3A4 | Extensive production of active metabolites by CYP2D6 | Renal impairment increases exposure |
3.5.3. Postoperative Considerations in the Opioid-Tolerant and/or Substance Use Disorder Populations
- (a)
- oxycodone 10 mg PO q4hr PRN moderate-to-severe pain, may repeat 5 mg dose within 1 h if pain unrelieved; oxycodone 5 mg SL q4hr PRN moderate-to-severe breakthrough pain × 24 h
- (b)
- oxycodone 10 mg PO q4hr scheduled while awake; oxycodone 5 mg PO q4hr PRN moderate-to-severe pain; oxycodone 5 mg SL q4hr PRN moderate-to-severe breakthrough pain × 24 h
- (c)
- oxycodone 10 mg q3hr PRN moderate-to-severe pain; oxycodone 5 mg SL q4hr PRN moderate-to-severe breakthrough pain × 24 h.
3.6. Discharge Phase
3.7. Follow-Up Phase
4. Interprofessional Collaboration in Sustaining Perioperative Performance Measures Related to Pain Management and Opioid Prescribing
4.1. From the Surgical Institution Perspective
4.2. From the Surgeon Perspective
4.3. From the Patient Perspective
4.3.1. Preparing for Surgery
4.3.2. The Enhanced Recovery Program, Phone Applications, and Opioid Use
4.3.3. Lessons Learned
5. Conclusions and Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Meara, J.G.; Leather, A.J.M.; Hagander, L.; Alkire, B.C.; Alonso, N.; Ameh, E.A.; Bickler, S.W.; Conteh, L.; Dare, A.J.; Davies, J.; et al. Global Surgery 2030: Evidence and solutions for achieving health, welfare, and economic development. Lancet 2015, 386, 569–624. [Google Scholar] [CrossRef]
- Gan, T.J. Poorly controlled postoperative pain: Prevalence, consequences, and prevention. J. Pain Res. 2017, 10, 2287–2298. [Google Scholar] [CrossRef] [Green Version]
- Baker, D.W. History of The Joint Commission’s Pain Standards. JAMA 2017, 317, 1117–1118. [Google Scholar] [CrossRef]
- El Moheb, M.; Mokhtari, A.; Han, K.; Van Erp, I.; Kongkaewpaisan, N.; Jia, Z.; Rodriguez, G.; Kongwibulwut, M.; Kaafarani, H.M.; Sakran, J.V.; et al. Pain or No Pain, We Will Give You Opioids: Relationship Between Number of Opioid Pills Prescribed and Severity of Pain after Operation in US vs Non-US Patients. J. Am. Coll. Surg. 2020, 231, 639–648. [Google Scholar] [CrossRef]
- Loh, F.E.; Herzig, S.J. Pain in the United States: Time for a Culture Shift in Expectations, Messaging, and Management. J. Hosp. Med. 2019, 14, 787–788. [Google Scholar] [CrossRef]
- Oderda, G.M.; Senagore, A.J.; Morland, K.; Iqbal, S.U.; Kugel, M.; Liu, S.; Habib, A.S. Opioid-related respiratory and gastrointestinal adverse events in patients with acute postoperative pain: Prevalence, predictors, and burden. J. Pain Palliat. Care Pharmacother. 2019, 33, 82–97. [Google Scholar] [CrossRef]
- Kane-Gill, S.L.; Rubin, E.C.; Smithburger, P.L.; Buckley, M.S.; Dasta, J.F. The Cost of Opioid-Related Adverse Drug Events. J. Pain Palliat. Care Pharmacother. 2014, 28, 282–293. [Google Scholar] [CrossRef]
- Oderda, G.M.; Said, Q.; Evans, R.S.; Stoddard, G.J.; Lloyd, J.; Jackson, K.; Rublee, D.; Samore, M.H. Opioid-Related Adverse Drug Events in Surgical Hospitalizations: Impact on Costs and Length of Stay. Ann. Pharmacother. 2007, 41, 400–407. [Google Scholar] [CrossRef]
- Brat, G.A.; Agniel, D.; Beam, A.; Yorkgitis, B.; Bicket, M.; Homer, M.; Fox, K.P.; Knecht, D.B.; McMahill-Walraven, C.N.; Palmer, N.; et al. Postsurgical prescriptions for opioid naive patients and association with overdose and misuse: Retrospective cohort study. BMJ 2018, 360, j5790. [Google Scholar] [CrossRef] [Green Version]
- Brummett, C.M.; Waljee, J.F.; Goesling, J.; Moser, S.; Lin, P.; Englesbe, M.J.; Bohnert, A.S.B.; Kheterpal, S.; Nallamothu, B.K. New Persistent Opioid Use After Minor and Major Surgical Procedures in US Adults. JAMA Surg. 2017, 152, e170504. [Google Scholar] [CrossRef]
- Kharasch, E.D.; Brunt, L.M. Perioperative Opioids and Public Health. Anesthesiology 2016, 124, 960–965. [Google Scholar] [CrossRef] [Green Version]
- Kaafarani, H.M.A.; Han, K.; El Moheb, M.; Kongkaewpaisan, N.; Jia, Z.; El Hechi, M.W.; Van Wijck, S.; Breen, K.; Eid, A.; Rodriguez, G.; et al. Opioids After Surgery in the United States Versus the Rest of the World. Ann. Surg. 2020, 272, 879–886. [Google Scholar] [CrossRef]
- Echeverria-Villalobos, M.; Stoicea, N.; Todeschini, A.B.; Fiorda-Diaz, J.; Uribe, A.A.; Weaver, T.; Bergese, S.D. Enhanced Recovery After Surgery (ERAS). Clin. J. Pain 2020, 36, 219–226. [Google Scholar] [CrossRef]
- Ladha, K.S.; Neuman, M.D.; Broms, G.; Bethell, J.; Bateman, B.T.; Wijeysundera, D.N.; Bell, M.; Hallqvist, L.; Svensson, T.; Newcomb, C.W.; et al. Opioid Prescribing After Surgery in the United States, Canada, and Sweden. JAMA Netw. Open 2019, 2, e1910734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chou, R.; Gordon, D.B.; de Leon-Casasola, O.A.; Rosenberg, J.M.; Bickler, S.; Brennan, T.; Carter, T.; Cassidy, C.L.; Chittenden, E.H.; Degenhardt, E.; et al. Management of Postoperative Pain: A Clinical Practice Guideline From the American Pain Society, the American Society of Regional Anesthesia and Pain Medicine, and the American Society of Anesthesiologists’ Committee on Regional Anesthesia, Executive Committee, and Administrative Council. J. Pain 2016, 17, 131–157. [Google Scholar] [CrossRef] [Green Version]
- Ansari, A.; Rizk, D.; Whinney, C. The Society of Hospital Medicine. The Society of Hospital Medicine’s (SHM’s) Multimodal Pain Strategies Guide for Postoperative Pain Management. 2017. Available online: https://www.hospitalmedicine.org/globalassets/clinical-topics/clinical-pdf/ctr-17-0004-multi-model-pain-project-pdf-version-m1.pdf (accessed on 14 September 2020).
- American Society of Anesthesiologists Task Force on Acute Pain. Management Practice Guidelines for Acute Pain Management in the Perioperative Setting. Anesthesiology 2012, 116, 248–273. [Google Scholar] [CrossRef] [Green Version]
- Edwards, D.A.; Hedrick, T.L.; Jayaram, J.; Argoff, C.; Gulur, P.; Holubar, S.D.; Gan, T.J.; Mythen, M.G.; Miller, T.E.; Shaw, A.D.; et al. American Society for Enhanced Recovery and Perioperative Quality Initiative Joint Consensus Statement on Perioperative Management of Patients on Preoperative Opioid Therapy. Anesth. Analg. 2019, 129, 553–566. [Google Scholar] [CrossRef]
- McEvoy, M.D.; Scott, M.J.; Gordon, D.B.; Grant, S.A.; Thacker, J.K.; Wu, C.L.; Gan, T.J.; Mythen, M.G.; Shaw, A.D.; Miller, T.E.; et al. American Society for Enhanced Recovery (ASER) and Perioperative Quality Initiative (POQI) joint consensus statement on optimal analgesia within an enhanced recovery pathway for colorectal surgery: Part 1—From the preoperative period to PACU. Perioper. Med. 2017, 6, 1–13. [Google Scholar] [CrossRef]
- Joshi, G.P.; Van De Velde, M.; Kehlet, H.; Pogatzki-Zahn, E.; Schug, S.; Bonnet, F.; Rawal, N.; Delbos, A.; Lavand’Homme, P.; Beloeil, H.; et al. Development of evidence-based recommendations for procedure-specific pain management: PROSPECT methodology. Anaesthesia 2019, 74, 1298–1304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Society for Regional Anesthesia & Pain Therapy. Procedure Specific Postoperative Pain Management (PROSPECT) Guidelines. Available online: http://postoppain.org/ (accessed on 14 September 2020).
- List of Guidelines. Enhanced Recovery After Surgery (ERAS) (R) Society. Available online: https://erassociety.org/guidelines/list-of-guidelines/ (accessed on 14 September 2020).
- Memtsoudis, S.G.; Cozowicz, C.; Bekeris, J.; Bekere, D.; Liu, J.; Soffin, E.M.; Mariano, E.R.; Johnson, R.L.; Hargett, M.J.; Lee, B.H.; et al. Anaesthetic care of patients undergoing primary hip and knee arthroplasty: Consensus recommendations from the International Consensus on Anaesthesia-Related Outcomes after Surgery group (ICAROS) based on a systematic review and meta-analysis. Br. J. Anaesth. 2019, 123, 269–287. [Google Scholar] [CrossRef]
- McEvoy, M.D.; Scott, M.J.; Gordon, D.B.; Grant, S.A.; Thacker, J.K.; Wu, C.L.; Gan, T.J.; Mythen, M.G.; Shaw, A.D.; Miller, T.E.; et al. American Society for Enhanced Recovery (ASER) and Perioperative Quality Initiative (POQI) Joint Consensus Statement on Optimal Analgesia within an Enhanced Recovery Pathway for Colorectal Surgery: Part 2—From PACU to the Transition Home. Perioper. Med. 2017, 6, 1–10. [Google Scholar] [CrossRef]
- Schwenk, E.S.; Viscusi, E.R.; Buvanendran, A.; Hurley, R.W.; Wasan, A.D.; Narouze, S.; Bhatia, A.; Davis, F.N.; Hooten, W.M.; Cohen, S.P. Consensus Guidelines on the Use of Intravenous Ketamine Infusions for Acute Pain Management From the American Society of Regional Anesthesia and Pain Medicine, the American Academy of Pain Medicine, and the American Society of Anesthesiologists. Reg. Anesth. Pain Med. 2018, 43, 456–466. [Google Scholar] [CrossRef]
- Foo, I.; Macfarlane, A.J.R.; Srivastava, D.; Bhaskar, A.; Barker, H.; Knaggs, R.; Eipe, N.; Smith, A.F. The use of intravenous lidocaine for postoperative pain and recovery: International consensus statement on efficacy and safety. Anaesthesia 2021, 76, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Bicket, M.C.; Brat, G.A.; Hutfless, S.; Wu, C.L.; Nesbit, S.A.; Alexander, G.C. Optimizing opioid prescribing and pain treatment for surgery: Review and conceptual framework. Am. J. Health-Syst. Pharm. 2019, 76, 1403–1412. [Google Scholar] [CrossRef]
- Yorkgitis, B.K.; Brat, G.A. Postoperative opioid prescribing: Getting it RIGHTT. Am. J. Surg. 2018, 215, 707–711. [Google Scholar] [CrossRef] [PubMed]
- Varley, P.R.; Zuckerbraun, B.S. Opioid Stewardship and the Surgeon. JAMA Surg. 2018, 153, e174875. [Google Scholar] [CrossRef]
- Overton, H.N.; Hanna, M.N.; Bruhn, W.E.; Hutfless, S.; Bicket, M.C.; Makary, M.A.; Matlaga, B.; Johnson, C.; Sheffield, J.; Shechter, R.; et al. Opioid-Prescribing Guidelines for Common Surgical Procedures: An Expert Panel Consensus. J. Am. Coll. Surg. 2018, 227, 411–418. [Google Scholar] [CrossRef]
- Dr. Robert Bree Collaborative and Washington State Agency Medical Directors’ Group. Prescribing Opioids for Postoperative Pain—Supplemental Guidance. July 2018. Available online: http://www.agencymeddirectors.wa.gov/Files/FinalSupBreeAMDGPostopPain091318wcover.pdf (accessed on 14 September 2020).
- Michigan OPEN. Prescribing Recommendations. Available online: https://michigan-open.org/prescribing-recommendations/ (accessed on 14 September 2020).
- Wu, C.L.; King, A.B.; Geiger, T.M.; Grant, M.C.; Grocott, M.P.W.; Gupta, R.; Hah, J.M.; Miller, T.E.; Shaw, A.D.; Gan, T.J.; et al. American Society for Enhanced Recovery and Perioperative Quality Initiative Joint Consensus Statement on Perioperative Opioid Minimization in Opioid-Naïve Patients. Anesth. Analg. 2019, 129, 567–577. [Google Scholar] [CrossRef]
- Kent, M.L.; Hurley, R.W.; Oderda, G.M.; Gordon, D.B.; Sun, E.; Mythen, M.; Miller, T.E.; Shaw, A.D.; Gan, T.J.; Thacker, J.K.M.; et al. American Society for Enhanced Recovery and Perioperative Quality Initiative-4 Joint Consensus Statement on Persistent Postoperative Opioid Use. Anesth. Analg. 2019, 129, 543–552. [Google Scholar] [CrossRef]
- Pharmacy Times. Opioid Prescribing Limits Across the States. Available online: https://www.pharmacytimes.com/contributor/marilyn-bulloch-pharmd-bcps/2019/02/opioid-prescribing-limits-across-the-states (accessed on 14 September 2020).
- The Joint Commission. R3 Report: Pain Assessment and Management Standards for Hospitals. 2017 Aug. Report No.: Issue 11. Available online: https://www.jointcommission.org/-/media/tjc/documents/standards/r3-reports/r3_report_issue_11_2_11_19_rev.pdf (accessed on 14 September 2020).
- Meissner, W.; Huygen, F.; Neugebauer, E.A.; Osterbrink, J.; Benhamou, D.; Betteridge, N.; Coluzzi, F.; De Andres, J.; Fawcett, W.; Fletcher, D.; et al. Management of acute pain in the postoperative setting: The importance of quality indicators. Curr. Med. Res. Opin. 2017, 34, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Rizk, E.; Swan, J.T.; Cheon, O.; Colavecchia, A.C.; Bui, L.N.; Kash, B.A.; Chokshi, S.P.; Chen, H.; Johnson, M.L.; Liebl, M.G.; et al. Quality indicators to measure the effect of opioid stewardship interventions in hospital and emergency department settings. Am. J. Health Pharm. 2019, 76, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Gan, T.J.; Habib, A.S.; Miller, T.E.; White, W.; Apfelbaum, J.L. Incidence, patient satisfaction, and perceptions of post-surgical pain: Results from a US national survey. Curr. Med. Res. Opin. 2014, 30, 149–160. [Google Scholar] [CrossRef]
- Ladha, M.K.S.; Patorno, M.E.; Huybrechts, M.K.F.; Liu, M.J.; Rathmell, M.J.P.; Bateman, M.B.T. Variations in the Use of Perioperative Multimodal Analgesic Therapy. Anesthesiology 2016, 124, 837–845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shafi, S.; Collinsworth, A.W.; Copeland, L.A.; Ogola, G.O.; Qiu, T.; Kouznetsova, M.; Liao, I.-C.; Mears, N.; Pham, A.T.; Wan, G.J.; et al. Association of Opioid-Related Adverse Drug Events With Clinical and Cost Outcomes Among Surgical Patients in a Large Integrated Health Care Delivery System. JAMA Surg. 2018, 153, 757–763. [Google Scholar] [CrossRef] [Green Version]
- Bicket, M.C.; White, E.; Pronovost, P.J.; Wu, C.L.; Yaster, M.; Alexander, G.C. Opioid Oversupply After Joint and Spine Surgery. Anesth. Analg. 2019, 128, 358–364. [Google Scholar] [CrossRef]
- Neuman, M.D.; Bateman, B.T.; Wunsch, H. Inappropriate opioid prescription after surgery. Lancet 2019, 393, 1547–1557. [Google Scholar] [CrossRef]
- Huang, P.S.; Copp, S.N. Oral Opioids Are Overprescribed in the Opiate-Naive Patient Undergoing Total Joint Arthroplasty. J. Am. Acad. Orthop. Surg. 2019, 27, e702–e708. [Google Scholar] [CrossRef]
- Saini, S.; McDonald, E.L.; Shakked, R.; Nicholson, K.; Rogero, R.; Chapter, M.; Winters, B.S.; Pedowitz, D.I.; Raikin, S.M.; Daniel, J.N. Prospective Evaluation of Utilization Patterns and Prescribing Guidelines of Opioid Consumption Following Orthopedic Foot and Ankle Surgery. Foot Ankle Int. 2018, 39, 1257–1265. [Google Scholar] [CrossRef]
- Bicket, M.C.; Long, J.J.; Pronovost, P.J.; Alexander, G.C.; Wu, C.L. Prescription Opioid Analgesics Commonly Unused After Surgery. JAMA Surg. 2017, 152, 1066–1071. [Google Scholar] [CrossRef]
- Kim, N.; Matzon, J.L.; Abboudi, J.; Jones, C.; Kirkpatrick, W.; Leinberry, C.F.; Liss, F.E.; Lutsky, K.F.; Wang, M.L.; Maltenfort, M.; et al. A Prospective Evaluation of Opioid Utilization After Upper-Extremity Surgical Procedures: Identifying Consumption Patterns and Determining Prescribing Guidelines. J. Bone Jt. Surg. Am. Vol. 2016, 98, e89. [Google Scholar] [CrossRef]
- Jones, C.M. Heroin use and heroin use risk behaviors among nonmedical users of prescription opioid pain relievers—United States, 2002–2004 and 2008–2010. Drug Alcohol Depend. 2013, 132, 95–100. [Google Scholar] [CrossRef]
- Lipari, R.N.; Hughes, A. How People Obtain the Prescription Pain Relievers They Misuse. The CBHSQ Report. Rockville (MD): Substance Abuse and Mental Health Services Administration (US). 2017. Available online: https://www.ncbi.nlm.nih.gov/pubmed/28252901 (accessed on 14 September 2020).
- Glare, P.; Aubrey, K.R.; Myles, P.S. Transition from acute to chronic pain after surgery. Lancet 2019, 393, 1537–1546. [Google Scholar] [CrossRef]
- Núñez-Cortés, R.; Chamorro, C.; Ortega-Palavecinos, M.; Mattar, G.; Paredes, O.; Besoaín-Saldaña, Á.; Cruz-Montecinos, C. Social determinants associated to chronic pain after total knee arthroplasty. Int. Orthop. 2019, 43, 2767–2771. [Google Scholar] [CrossRef]
- Weinrib, A.Z.; Azam, M.A.; Birnie, K.A.; Burns, L.C.; Clarke, H.; Katz, J. The psychology of chronic post-surgical pain: New frontiers in risk factor identification, prevention and management. Br. J. Pain 2017, 11, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Ravindran, D. Chronic Postsurgical Pain: Prevention and Management. J. Pain Palliat. Care Pharmacother. 2014, 28, 51–53. [Google Scholar] [CrossRef]
- Dowell, D.; Haegerich, T.M.; Chou, R. CDC Guideline for Prescribing Opioids for Chronic Pain—United States, 2016. JAMA 2016, 315, 1624–1645. [Google Scholar] [CrossRef] [Green Version]
- Kaye, A.D.; Granier, A.L.; Garcia, A.J.; Carlson, S.F.; Fuller, M.C.; Haroldson, A.R.; White, S.W.; Krueger, O.L.; Novitch, M.B.; Cornett, E.M. Non-Opioid Perioperative Pain Strategies for the Clinician: A Narrative Review. Pain Ther. 2020, 9, 25–39. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, M.F.; Kamdar, B.B.; Cata, J.P. Optimizing Perioperative Use of Opioids: A Multimodal Approach. Curr. Anesthesiol. Rep. 2020, 10, 404–415. [Google Scholar] [CrossRef]
- Wick, E.C.; Grant, M.C.; Wu, C.L. Postoperative Multimodal Analgesia Pain Management with Nonopioid Analgesics and Techniques. JAMA Surg. 2017, 152, 691–697. [Google Scholar] [CrossRef]
- Ogura, Y.; Gum, J.L.; Steele, P.; Iii, C.H.C.; Djurasovic, M.; Ii, R.K.O.; Laratta, J.L.; Davis, E.; Brown, M.; Daniels, C.; et al. Multi-modal pain control regimen for anterior lumbar fusion drastically reduces in-hospital opioid consumption. J. Spine Surg. 2020, 6, 681–687. [Google Scholar] [CrossRef]
- Hajewski, C.J.; Westermann, R.W.; Holte, A.; Shamrock, A.; Bollier, M.; Wolf, B.R. Impact of a Standardized Multimodal Analgesia Protocol on Opioid Prescriptions After Common Arthroscopic Procedures. Orthop. J. Sports Med. 2019, 7. [Google Scholar] [CrossRef]
- Kurd, M.F.; Kreitz, T.; Schroeder, G.; Vaccaro, A.R. The Role of Multimodal Analgesia in Spine Surgery. J. Am. Acad. Orthop. Surg. 2017, 25, 260–268. [Google Scholar] [CrossRef]
- Weingarten, T.N.; Jacob, A.K.; Njathi, C.W.; Wilson, G.A.; Sprung, J. Multimodal Analgesic Protocol and Postanesthesia Respiratory Depression During Phase I Recovery After Total Joint Arthroplasty. Reg. Anesth. Pain Med. 2015, 40, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Dunkman, W.J.; Manning, M.W. Enhanced Recovery After Surgery and Multimodal Strategies for Analgesia. Surg. Clin. North Am. 2018, 98, 1171–1184. [Google Scholar] [CrossRef]
- Beverly, A.; Kaye, A.D.; Ljungqvist, O.; Urman, R.D. Essential Elements of Multimodal Analgesia in Enhanced Recovery After Surgery (ERAS) Guidelines. Anesthesiol. Clin. 2017, 35, e115–e143. [Google Scholar] [CrossRef]
- Kaye, A.D.; Urman, R.D.; Rappaport, Y.; Siddaiah, H.; Cornett, E.M.; Belani, K.; Salinas, O.J.; Fox, C.J. Multimodal analgesia as an essential part of enhanced recovery protocols in the ambulatory settings. J. Anaesthesiol. Clin. Pharmacol. 2019, 35, S40–S45. [Google Scholar] [CrossRef]
- Ljungqvist, O.; Scott, M.; Fearon, K.C. Enhanced Recovery After Surgery. JAMA Surg. 2017, 152, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Fawcett, W.; Levy, N.; Scott, M.; Ljunqvist, O.; Lobo, D. The ERAS® society’s 2018 survey on post-operative opioid stewardship. Clin. Nutr. ESPEN 2019, 31, 122. [Google Scholar] [CrossRef]
- Frazee, R.; Garmon, E.; Isbell, C.; Bird, E.; Papaconstantinou, H. Postoperative Opioid Prescription Reduction Strategy in a Regional Healthcare System. J. Am. Coll. Surg. 2020, 230, 631–635. [Google Scholar] [CrossRef] [Green Version]
- Uritsky, T.J.; Busch, M.E.; Chae, S.G.; Genord, C. Opioid Stewardship: Building on Antibiotic Stewardship Principles. J. Pain Palliat. Care Pharmacother. 2020, 1–3. [Google Scholar] [CrossRef]
- Agency Medical Directors’ Group. AMDG—Interagency Guidelines. Available online: http://www.agencymeddirectors.wa.gov/guidelines.asp (accessed on 1 December 2020).
- CDC Guideline for Prescribing Opioids for Chronic Pain. 28 August 2019. Available online: https://www.cdc.gov/drugoverdose/prescribing/guideline.html (accessed on 1 December 2020).
- McPherson, M.L. Demystifying Opioid Conversion Calculations: A Guide for Effective Dosing, 2nd ed.; American Society of Health-System Pharmacists: Bethesda, MD, USA, 2019; Available online: https://play.google.com/store/books/details?id=1g9uDwAAQBAJ (accessed on 14 September 2020).
- Von Korff, M.; Saunders, K.; Ray, G.T.; Boudreau, D.; Campbell, C.; Merrill, J.; Sullivan, M.D.; Rutter, C.M.; Silverberg, M.J.; Banta-Green, C.; et al. De Facto Long-term Opioid Therapy for Noncancer Pain. Clin. J. Pain 2008, 24, 521–527. [Google Scholar] [CrossRef] [Green Version]
- American Society of Regional Anesthesia and Pain Medicine. Advisories & Guidelines. Available online: https://www.asra.com/advisory-guidelines (accessed on 28 December 2020).
- Huxtable, C.A.; Roberts, L.J.; Somogyi, A.A.; MacIntyre, P.E. Acute Pain Management in Opioid-Tolerant Patients: A Growing Challenge. Anaesth. Intensiv. Care 2011, 39, 804–823. [Google Scholar] [CrossRef] [Green Version]
- Doan, L.V.; Blitz, J. Preoperative Assessment and Management of Patients with Pain and Anxiety Disorders. Curr. Anesthesiol. Rep. 2020, 10, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Banning, L.B.; El Moumni, M.; Visser, L.; van Leeuwen, B.L.; Zeebregts, C.J.; Pol, R.A. Frailty leads to poor long-term survival in patients undergoing elective vascular surgery. J. Vasc. Surg. 2020. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.; Attwood, K.; Arya, S.; Hall, D.E.; Johanning, J.M.; Gabriel, E.; Visioni, A.; Nurkin, S.; Kukar, M.; Hochwald, S.; et al. Association of Frailty With Failure to Rescue After Low-Risk and High-Risk Inpatient Surgery. JAMA Surg. 2018, 153, e180214. [Google Scholar] [CrossRef] [Green Version]
- Feldman, L.S.; Carli, F. From Preoperative Assessment to Preoperative Optimization of Frailty. JAMA Surg. 2018, 153, e180213. [Google Scholar] [CrossRef]
- Dindo, L.; Zimmerman, M.B.; Hadlandsmyth, K.; StMarie, B.; Embree, J.; Marchman, J.; Tripp-Reimer, T.; Rakel, B. Acceptance and Commitment Therapy for Prevention of Chronic Postsurgical Pain and Opioid Use in At-Risk Veterans: A Pilot Randomized Controlled Study. J. Pain 2018, 19, 1211–1221. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Duncan, P.W.; Groban, L.; Segal, H.; Abbott, R.M.; Williamson, J.D. Patient-Reported Outcome Measures (PROM) as A Preoperative Assessment Tool. J. Anesth. Perioper. Med. 2017, 4, 274–281. [Google Scholar] [CrossRef] [Green Version]
- Nyman, M.H.; Nilsson, U.; Dahlberg, K.; Jaensson, M. Association Between Functional Health Literacy and Postoperative Recovery, Health Care Contacts, and Health-Related Quality of Life Among Patients Undergoing Day Surgery. JAMA Surg. 2018, 153, 738–745. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, G.S.; Errea, M.; Bialek, J.; Kendall, M.C.; McCarthy, R.J. The impact of health literacy on shared decision making before elective surgery: A propensity matched case control analysis. BMC Health Serv. Res. 2018, 18, 958. [Google Scholar] [CrossRef]
- De Oliveira, G.S., Jr.; McCarthy, R.J.; Wolf, M.S.; Holl, J.L. The impact of health literacy in the care of surgical patients: A qualitative systematic review. BMC Surg. 2015, 15, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Roy, M.; Corkum, J.P.; Urbach, D.R.; Novak, C.B.; Von Schroeder, H.P.; McCabe, S.J.; Okrainec, K. Health Literacy Among Surgical Patients: A Systematic Review and Meta-analysis. World J. Surg. 2019, 43, 96–106. [Google Scholar] [CrossRef]
- Chang, M.E.; Baker, S.J.; Marques, I.C.D.S.; Liwo, A.N.; Chung, S.K.; Richman, J.S.; Knight, S.J.; Fouad, M.N.; Gakumo, C.A.; Davis, T.C.; et al. Health Literacy in Surgery. HLRP Health Lit. Res. Prract. 2020, 4, e46–e65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, B.D.; Mays, M.Z.; Martz, W.; Castro, K.M.; DeWalt, D.A.; Pignone, M.P.; Mockbee, J.; Hale, F.A. Quick Assessment of Literacy in Primary Care: The Newest Vital Sign. Ann. Fam. Med. 2005, 3, 514–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chew, L.D.; Bradley, K.A.; Boyko, E.J. Brief questions to identify patients with inadequate health literacy. Health 2004, 11, 12. [Google Scholar]
- Wolmeister, A.S.; Schiavo, C.L.; Nazário, K.C.K.; Castro, S.M.D.J.; De Souza, A.; Caetani, R.P.; Caumo, W.; Stefani, L.C. The Brief Measure of Emotional Preoperative Stress (B-MEPS) as a new predictive tool for postoperative pain: A prospective observational cohort study. PLoS ONE 2020, 15, e0227441. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.M.; Riva-Cambrin, J. Prediction tools for postoperative pain. PAIN Rep. 2021, 6, e875. [Google Scholar] [CrossRef]
- Braun, M.; Bello, C.; Riva, T.; Hönemann, C.; Doll, D.; Urman, R.D.; Luedi, M.M. Quantitative Sensory Testing to Predict Postoperative Pain. Curr. Pain Headache Rep. 2021, 25, 1–8. [Google Scholar] [CrossRef]
- Palanisami, D.R.; Reddy, D.A.; Huggi, V.; Rajasekaran, R.B.; Natesan, R.; Shanmuganathan, R. Assessing Preoperative Pain Sensitivity Predicts the Postoperative Analgesic Requirement and Recovery after Total Knee Arthroplasty: A Prospective Study of 178 Patients. J. Arthroplast. 2020, 35, 3545–3553. [Google Scholar] [CrossRef]
- Horn, A.; Kaneshiro, K.; Tsui, B.C.H. Preemptive and Preventive Pain Psychoeducation and Its Potential Application as a Multimodal Perioperative Pain Control Option. Anesth. Analg. 2020, 130, 559–573. [Google Scholar] [CrossRef]
- Bohan, P.M.K.; Chick, R.C.; Wall, M.E.; Hale, D.F.; Tzeng, C.-W.D.; Peoples, G.E.; Vreeland, T.J.; Clifton, G.T. An Educational Intervention Reduces Opioids Prescribed Following General Surgery Procedures. J. Surg. Res. 2021, 257, 399–405. [Google Scholar] [CrossRef]
- Khorfan, R.; Shallcross, M.L.; Yu, B.; Sanchez, N.; Parilla, S.; Coughlin, J.M.; Johnson, J.K.; Bilimoria, K.Y.; Stulberg, J.J. Preoperative patient education and patient preparedness are associated with less postoperative use of opioids. Surgery 2020, 167, 852–858. [Google Scholar] [CrossRef]
- Rucinski, K.; Cook, J.L. Effects of preoperative opioid education on postoperative opioid use and pain management in orthopaedics: A systematic review. J. Orthop. 2020, 20, 154–159. [Google Scholar] [CrossRef]
- Rief, W.; Shedden-Mora, M.C.; Laferton, J.A.C.; Auer, C.; Petrie, K.J.; Salzmann, S.; Schedlowski, M.; Moosdorf, R. Preoperative optimization of patient expectations improves long-term outcome in heart surgery patients: Results of the randomized controlled PSY-HEART trial. BMC Med. 2017, 15, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Martin, L.A.; Finlayson, S.R.G.; Brooke, B.S. Patient Preparation for Transitions of Surgical Care: Is Failing to Prepare Surgical Patients Preparing Them to Fail? World J. Surg. 2017, 41, 1447–1453. [Google Scholar] [CrossRef]
- Poland, F.; Spalding, N.; Gregory, S.; McCulloch, J.; Sargen, K.; Vicary, P. Developing patient education to enhance recovery after colorectal surgery through action research: A qualitative study. BMJ Open 2017, 7, e013498. [Google Scholar] [CrossRef] [Green Version]
- Liebner, L.T. I Can’t Read That! Improving Perioperative Literacy for Ambulatory Surgical Patients. AORN J. 2015, 101, 416–427. [Google Scholar] [CrossRef] [PubMed]
- Michigan OPEN. Patient Education. Available online: https://michigan-open.org/wp-content/uploads/2019/07/POP-education.7.01.19.pdf (accessed on 21 December 2020).
- Michigan OPEN. Patient Counseling. Available online: https://michigan-open.org/prescribing-recommendations/patient-counseling/ (accessed on 22 December 2020).
- Northwestern Medicine. Prescription Opioids—What You Need to Know. Available online: https://www.surgjournal.com/cms/10.1016/j.surg.2020.01.002/attachment/49637b3a-9996-4d9b-a612-935c44f0923f/mmc1.pdf (accessed on 22 December 2020).
- Patient Information. Enhanced Recovery After Surgery (ERAS) (R) Society. Available online: https://erassociety.org/patient-information/ (accessed on 21 December 2020).
- MacIntyre, P.E.; Roberts, L.J.; Huxtable, C.A. Management of Opioid-Tolerant Patients with Acute Pain: Approaching the Challenges. Drugs 2019, 80, 9–21. [Google Scholar] [CrossRef] [PubMed]
- McAnally, H.B.; Freeman, L.W.; Darnall, B. Preoperative Optimization of the Chronic Pain Patient: Enhanced Recovery Before Surgery; Oxford University Press: Oxford, UK, 2019; Available online: https://play.google.com/store/books/details?id=jpCqDwAAQBAJ (accessed on 14 September 2020).
- Hannon, C.P.; Fillingham, Y.A.; Nam, D.; Courtney, P.M.; Curtin, B.M.; Vigdorchik, J.M.; Buvanendran, A.; Hamilton, W.G.; Della Valle, C.J.; Deen, J.T.; et al. Opioids in Total Joint Arthroplasty: The Clinical Practice Guidelines of the American Association of Hip and Knee Surgeons, American Society of Regional Anesthesia and Pain Medicine, American Academy of Orthopaedic Surgeons, Hip Society, and Knee Society. J. Arthroplast. 2020, 35, 2709–2714. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.-C.L.; Sing, D.C.; Bozic, K.J. Preoperative Reduction of Opioid Use Before Total Joint Arthroplasty. J. Arthroplast. 2016, 31, 282–287. [Google Scholar] [CrossRef]
- McAnally, H. Rationale for and approach to preoperative opioid weaning: A preoperative optimization protocol. Perioper. Med. 2017, 6, 19. [Google Scholar] [CrossRef] [Green Version]
- Pergolizzi, J.V.; Varrassi, G.; Paladini, A.; LeQuang, J. Stopping or Decreasing Opioid Therapy in Patients on Chronic Opioid Therapy. Pain Ther. 2019, 8, 163–176. [Google Scholar] [CrossRef] [Green Version]
- Opioid Taper Decision Tool. Veterans Affairs. Available online: https://www.pbm.va.gov/AcademicDetailingService/Documents/Pain_Opioid_Taper_Tool_IB_10_939_P96820.pdf (accessed on 23 December 2020).
- Buys, M.J. Multidisciplinary Transitional Pain Service for the Veteran Population. Fed. Pract. 2020, 37, 472–478. [Google Scholar] [CrossRef]
- Vetter, T.R.; Kain, Z.N. Role of the Perioperative Surgical Home in Optimizing the Perioperative Use of Opioids. Anesth. Analg. 2017, 125, 1653–1657. [Google Scholar] [CrossRef]
- Katz, J.; Weinrib, A.; Fashler, S.R.; Katznelson, R.; Shah, B.R.; Ladak, S.S.; Jiang, J.; Li, Q.; McMillan, K.; Mina, D.S.; et al. The Toronto General Hospital Transitional Pain Service: Development and implementation of a multidisciplinary program to prevent chronic postsurgical pain. J. Pain Res. 2015, 8, 695–702. [Google Scholar] [CrossRef] [Green Version]
- Montbriand, J.J.; Weinrib, A.Z.; Azam, M.A.; Ladak, S.S.J.; Shah, B.R.; Jiang, J.; McRae, K.; Tamir, D.; Lyn, S.; Katznelson, R.; et al. Smoking, Pain Intensity, and Opioid Consumption 1–3 Months After Major Surgery: A Retrospective Study in a Hospital-Based Transitional Pain Service. Nicotine Tob. Res. 2018, 20, 1144–1151. [Google Scholar] [CrossRef]
- Veazie, S.; Mackey, K.; Peterson, K.; Bourne, D. Managing Acute Pain in Patients Taking Medication for Opioid Use Disorder: A Rapid Review. J. Gen. Intern. Med. 2020, 35, 945–953. [Google Scholar] [CrossRef] [PubMed]
- Compton, P. Acute Pain Management for Patients Receiving Medication-Assisted Therapy. AACN Adv. Crit. Care 2019, 30, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Simpson, G.; Jackson, M. Perioperative management of opioid-tolerant patients. BJA Educ. 2016, 17, 124–128. [Google Scholar] [CrossRef] [Green Version]
- Colvin, L.A.; Bull, F.; Hales, T.G. Perioperative opioid analgesia—When is enough too much? A review of opioid-induced tolerance and hyperalgesia. Lancet 2019, 393, 1558–1568. [Google Scholar] [CrossRef] [Green Version]
- Goel, A.; Azargive, S.; Weissman, J.S.; Shanthanna, H.; Hanlon, J.G.; Samman, B.; Dominicis, M.; Ladha, K.S.; Lamba, W.; Duggan, S.; et al. Perioperative Pain and Addiction Interdisciplinary Network (PAIN) clinical practice advisory for perioperative management of buprenorphine: Results of a modified Delphi process. Br. J. Anaesth. 2019, 123, e333–e342. [Google Scholar] [CrossRef]
- Mehta, D.; Thomas, V.; Johnson, J.; Scott, B.; Cortina, S.; Berger, L. Continuation of Buprenorphine to Facilitate Postoperative Pain Management for Patients on Buprenorphine Opioid Agonist Therapy. Pain Physician 2020, 23, E163–E174. [Google Scholar] [PubMed]
- Buresh, M.; Ratner, J.; Zgierska, A.; Gordin, V.; Alvanzo, A. Treating Perioperative and Acute Pain in Patients on Buprenorphine: Narrative Literature Review and Practice Recommendations. J. Gen. Intern. Med. 2020, 35, 3635–3643. [Google Scholar] [CrossRef]
- Lembke, A.; Ottestad, E.; Schmiesing, C. Patients Maintained on Buprenorphine for Opioid Use Disorder Should Continue Buprenorphine Through the Perioperative Period. Pain Med. 2019, 20, 425–428. [Google Scholar] [CrossRef] [Green Version]
- Ward, E.N.; Quaye, A.N.-A.; Wilens, T.E. Opioid use disorders: Perioperative management of a special population. Anesth. Analg. 2018, 127, 539–547. [Google Scholar] [CrossRef]
- Harrison, T.K.; Kornfeld, H.; Aggarwal, A.K.; Lembke, A. Perioperative Considerations for the Patient with Opioid Use Disorder on Buprenorphine, Methadone, or Naltrexone Maintenance Therapy. Anesthesiol. Clin. 2018, 36, 345–359. [Google Scholar] [CrossRef]
- Sritapan, Y.; Clifford, S.; Bautista, A. Perioperative Management of Patients on Buprenorphine and Methadone: A Narrative Review. Balk. Med. J. 2020, 37, 247–252. [Google Scholar] [CrossRef]
- Quaye, A.N.-A.; Zhang, Y. Perioperative Management of Buprenorphine: Solving the Conundrum. Pain Med. 2018, 20, 1395–1408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonan, A.B.; Kaye, A.D.; Urman, R.D. Buprenorphine Formulations: Clinical Best Practice Strategies Recommendations for Perioperative Management of Patients Undergoing Surgical or Interventional Pain Procedures. Pain Physician 2018, 21, e1–e12. [Google Scholar] [PubMed]
- Coluzzi, F.; Bifulco, F.; Cuomo, A.; Dauri, M.; Leonardi, C.; Melotti, R.M.; Natoli, S.; Romualdi, P.; Savoia, G.; Corcione, A. The challenge of perioperative pain management in opioid-tolerant patients. Ther. Clin. Risk Manag. 2017, 13, 1163–1173. [Google Scholar] [CrossRef] [Green Version]
- Pergolizzi, J.; Aloisi, A.M.; Dahan, A.; Filitz, J.; Langford, R.; Likar, R.; Mercadante, S.; Morlion, B.; Raffa, R.B.; Sabatowski, R.; et al. Current Knowledge of Buprenorphine and Its Unique Pharmacological Profile. Pain Pract. 2010, 10, 428–450. [Google Scholar] [CrossRef]
- Dahan, A.; Yassen, A.; Romberg, R.; Sarton, E.; Teppema, L.; Olofsen, E.; Danhof, M. Buprenorphine induces ceiling in respiratory depression but not in analgesia. Br. J. Anaesth. 2006, 96, 627–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richardson, M.G.; Raymond, B.L. Lack of Evidence for Ceiling Effect for Buprenorphine Analgesia in Humans. Anesth. Analg. 2018, 127, 310–311. [Google Scholar] [CrossRef]
- Warner, N.S.; Warner, M.A.; Cunningham, J.L.; Gazelka, H.M.; Hooten, W.M.; Kolla, B.P.; Warner, D.O. A Practical Approach for the Management of the Mixed Opioid Agonist-Antagonist Buprenorphine During Acute Pain and Surgery. Mayo Clin. Proc. 2020, 95, 1253–1267. [Google Scholar] [CrossRef] [Green Version]
- MacIntyre, P.E.; Russell, R.A.; Usher, K.A.N.; Gaughwin, M.; Huxtable, C.A. Pain Relief and Opioid Requirements in the First 24 Hours after Surgery in Patients Taking Buprenorphine and Methadone Opioid Substitution Therapy. Anaesth. Intensive Care 2013, 41, 222–230. [Google Scholar] [CrossRef] [Green Version]
- Dean, R.L.; Todtenkopf, M.S.; Deaver, D.R.; Arastu, M.F.; Dong, N.; Reitano, K.; O’Driscoll, K.; Kriksciukaite, K.; Gastfriend, D.R. Overriding the blockade of antinociceptive actions of opioids in rats treated with extended-release naltrexone. Pharmacol. Biochem. Behav. 2008, 89, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Petri, C.R.; Richards, J.B. Management of Sedation and Analgesia in Critically Ill Patients Receiving Long-Acting Naltrexone Therapy for Opioid Use Disorder. Ann. Am. Thorac. Soc. 2020, 17, 1352–1357. [Google Scholar] [CrossRef]
- Yoburn, B.C.; Sierra, V.; Lutfy, K. Chronic opioid antagonist treatment: Assessment of receptor upregulation. Eur. J. Pharmacol. 1989, 170, 193–200. [Google Scholar] [CrossRef]
- Menendez, M.E.; Ring, D.; Bateman, B.T. Preoperative Opioid Misuse is Associated With Increased Morbidity and Mortality After Elective Orthopaedic Surgery. Clin. Orthop. Relat. Res. 2015, 473, 2402–2412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wesson, D.R.; Ling, W. The Clinical Opiate Withdrawal Scale (COWS). J. Psychoact. Drugs 2003, 35, 253–259. [Google Scholar] [CrossRef]
- Vadivelu, N.; Kai, A.M.; Kodumudi, V.; Zhu, R.; Hines, R. Pain Management of Patients with Substance Abuse in the Ambulatory Setting. Curr. Pain Headache Rep. 2017, 21, 9. [Google Scholar] [CrossRef] [PubMed]
- Quinlan, F.F.J.; Cox, F.F. Acute pain management in patients with drug dependence syndrome. Pain Rep. 2017, 2, e611. [Google Scholar] [CrossRef] [PubMed]
- Makdissi, R.; Stewart, S.H. Care for hospitalized patients with unhealthy alcohol use: A narrative review. Addict. Sci. Clin. Pract. 2013, 8, 11. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, J.T.; Sykora, K.; Schneiderman, J.; Naranjo, C.A.; Sellers, E.M. Assessment of Alcohol Withdrawal: The revised clinical institute withdrawal assessment for alcohol scale (CIWA-Ar). Br. J. Addict. 1989, 84, 1353–1357. [Google Scholar] [CrossRef]
- Babalonis, S.; Walsh, S.L. Warnings Unheeded:The Risks of Co-Prescribing Opioids and Benzodiazepines. Pain Clin. Updates. 2015, 23, 1–7. Available online: https://www.ncbi.nlm.nih.gov/pubmed/33343182 (accessed on 14 September 2020).
- Aviram, J.; Samuelly-Leichtag, G. Efficacy of Cannabis-Based Medicines for Pain Management: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Pain Physician 2017, 20, E755–E796. [Google Scholar] [CrossRef] [PubMed]
- Lucas, P.; Boyd, S.; Milloy, M.-J.; Walsh, Z. Cannabis Significantly Reduces the Use of Prescription Opioids and Improves Quality of Life in Authorized Patients: Results of a Large Prospective Study. Pain Med. 2020, pnaa396. [Google Scholar] [CrossRef]
- Lucas, P.; Baron, E.P.; Jikomes, N. Medical cannabis patterns of use and substitution for opioids & other pharmaceutical drugs, alcohol, tobacco, and illicit substances; results from a cross-sectional survey of authorized patients. Harm Reduct. J. 2019, 16, 9. [Google Scholar] [CrossRef]
- Alexander, J.C.; Joshi, G.P. A review of the anesthetic implications of marijuana use. Bayl. Univ. Med. Cent. Proc. 2019, 32, 364–371. [Google Scholar] [CrossRef]
- Goel, A.; McGuinness, B.; Jivraj, N.K.; Wijeysundera, D.N.; Mittleman, M.A.; Bateman, B.T.; Clarke, H.; Kotra, L.P.; Ladha, K.S. Cannabis Use Disorder and Perioperative Outcomes in Major Elective Surgeries. Anesthesiology 2020, 132, 625–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.W.; Bhatia, A.; Buzon-Tan, A.; Walker, S.; Ilangomaran, D.; Kara, J.; Venkatraghavan, L.; Prabhu, A.J. Weeding Out the Problem. Anesth. Analg. 2019, 129, 874–881. [Google Scholar] [CrossRef]
- Salottolo, K.; Peck, L.; Ii, A.T.; Carrick, M.M.; Madayag, R.; McGuire, E.; Bar-Or, D. The grass is not always greener: A multi-institutional pilot study of marijuana use and acute pain management following traumatic injury. Patient Saf. Surg. 2018, 12, 1–8. [Google Scholar] [CrossRef] [Green Version]
- American Society of Anesthesiologists. Cannabis and Postoperative Pain. Available online: https://www.asahq.org/about-asa/newsroom/news-releases/2020/10/cannabis-and-postoperative-pain (accessed on 10 January 2021).
- Twardowski, M.A.; Link, M.M.; Twardowski, N.M. Effects of Cannabis Use on Sedation Requirements for Endoscopic Procedures. J. Am. Osteopat. Assoc. 2019, 119, 307. [Google Scholar] [CrossRef] [Green Version]
- Paulsen, R.T.; Burrell, B.D. Comparative studies of endocannabinoid modulation of pain. Philos. Trans. R. Soc. B Biol. Sci. 2019, 374, 20190279. [Google Scholar] [CrossRef]
- Pernía-Andrade, A.J.; Kato, A.; Witschi, R.; Nyilas, R.; Katona, I.; Freund, T.F.; Watanabe, M.; Filitz, J.; Koppert, W.; Schüttler, J.; et al. Spinal Endocannabinoids and CB1 Receptors Mediate C-Fiber-Induced Heterosynaptic Pain Sensitization. Science 2009, 325, 760–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonnet, U.; Preuss, U.W. The cannabis withdrawal syndrome: Current insights. Subst. Abus. Rehabil. 2017, 8, 9–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradt, J.; Dileo, C.; Shim, M. Music interventions for preoperative anxiety. Cochrane Database Syst. Rev. 2013, CD006908. [Google Scholar] [CrossRef] [PubMed]
- Gasti, V.; Kurdi, M.S. Intraoperative meditation music as an adjunct to subarachnoid block for the improvement of postoperative outcomes following cesarean section: A randomized placebo-controlled comparative study. Anesth. Essays Res. 2018, 12, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Matsota, P.; Christodoulopoulou, T.; Smyrnioti, M.E.; Pandazi, A.; Kanellopoulos, I.; Koursoumi, E.; Karamanis, P.; Kostopanagiotou, G. Music’s Use for Anesthesia and Analgesia. J. Altern. Complement. Med. 2013, 19, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Kühlmann, A.Y.R.; de Rooij, A.; Kroese, L.F.; van Dijk, M.; Hunink, M.G.M.; Jeekel, J. Meta-analysis evaluating music interventions for anxiety and pain in surgery. BJS 2018, 105, 773–783. [Google Scholar] [CrossRef] [Green Version]
- Poulsen, M.J.; Coto, J. Nursing Music Protocol and Postoperative Pain. Pain Manag. Nurs. 2018, 19, 172–176. [Google Scholar] [CrossRef]
- Koo, C.-H.; Park, J.-W.; Ryu, J.-H.; Han, S.-H. The Effect of Virtual Reality on Preoperative Anxiety: A Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2020, 9, 3151. [Google Scholar] [CrossRef]
- Eijlers, R.; Dierckx, B.; Staals, L.M.; Berghmans, J.M.; Van Der Schroeff, M.P.; Strabbing, E.M.; Wijnen, R.M.; Hillegers, M.H.; Legerstee, J.S.; Utens, E.M. Virtual reality exposure before elective day care surgery to reduce anxiety and pain in children. Eur. J. Anaesthesiol. 2019, 36, 728–737. [Google Scholar] [CrossRef]
- Ding, L.; Hua, H.; Zhu, H.; Zhu, S.; Lu, J.; Zhao, K.; Xu, Q. Effects of virtual reality on relieving postoperative pain in surgical patients: A systematic review and meta-analysis. Int. J. Surg. 2020, 82, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Pogatzki-Zahn, E.M.; Segelcke, D.; Schug, S.A. Postoperative pain—From mechanisms to treatment. Pain Rep. 2017, 2, e588. [Google Scholar] [CrossRef] [PubMed]
- Urman, R.D.; Vadivelu, N.; Mitra, S.; Kodumudi, V.; Kaye, A.D.; Schermer, E. Preventive analgesia for postoperative pain control: A broader concept. Local Reg. Anesth. 2014, 7, 17–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dilip, C.R.S.; Shetty, A.P.; Subramanian, B.; Kanna, R.M.; Rajasekaran, S. A prospective randomized study to analyze the efficacy of balanced pre-emptive analgesia in spine surgery. Spine J. 2019, 19, 569–577. [Google Scholar] [CrossRef]
- Haffner, M.; Saiz, A.M.; Nathe, R.; Hwang, J.; Migdal, C.; Klineberg, E.; Roberto, R. Preoperative multimodal analgesia decreases 24-hour postoperative narcotic consumption in elective spinal fusion patients. Spine J. 2019, 19, 1753–1763. [Google Scholar] [CrossRef]
- Nir, R.-R.; Nahman-Averbuch, H.; Moont, R.; Sprecher, E.; Yarnitsky, D. Preoperative preemptive drug administration for acute postoperative pain: A systematic review and meta-analysis. Eur. J. Pain 2016, 20, 1025–1043. [Google Scholar] [CrossRef] [Green Version]
- Barker, J.C.; DiBartola, K.; Wee, C.; Andonian, N.; Abdel-Rasoul, M.; Lowery, D.; Janis, J.E. Preoperative Multimodal Analgesia Decreases Postanesthesia Care Unit Narcotic Use and Pain Scores in Outpatient Breast Surgery. Plast. Reconstr. Surg. 2018, 142, 443e–450e. [Google Scholar] [CrossRef]
- Moucha, C.S.; Weiser, M.C.; Levin, E.J. Current Strategies in Anesthesia and Analgesia for Total Knee Arthroplasty. J. Am. Acad. Orthop. Surg. 2016, 24, 60–73. [Google Scholar] [CrossRef]
- Doleman, B.; Read, D.; Lund, J.N.; Williams, J.P. Preventive Acetaminophen Reduces Postoperative Opioid Consumption, Vomiting, and Pain Scores After Surgery. Reg. Anesth. Pain Med. 2015, 40, 706–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarke, H.; Bonin, R.P.; Orser, B.A.; Englesakis, M.; Wijeysundera, D.N.; Katz, J. The Prevention of Chronic Postsurgical Pain Using Gabapentin and Pregabalin. Anesth. Analg. 2012, 115, 428–442. [Google Scholar] [CrossRef]
- Cain, K.E.; Iniesta, M.D.; Fellman, B.M.; Suki, T.S.; Siverand, A.; Corzo, C.; Lasala, J.D.; Cata, J.P.; Mena, G.E.; Meyer, L.A.; et al. Effect of preoperative intravenous vs oral acetaminophen on postoperative opioid consumption in an enhanced recovery after surgery (ERAS) program in patients undergoing open gynecologic oncology surgery. Gynecol. Oncol. 2021, 160, 464–468. [Google Scholar] [CrossRef]
- Johnson, R.J.; Nguyen, D.K.; Acosta, J.M.; O’Brien, A.L.; Doyle, P.D.; Medina-Rivera, G. Intravenous Versus Oral Acetaminophen in Ambulatory Surgical Center Laparoscopic Cholecystectomies: A Retrospective Analysis. PT Peer-Rev. J. Formul. Manag. 2019, 44, 359–363. [Google Scholar]
- Westrich, G.H.; Birch, G.A.; Muskat, A.R.; Padgett, D.E.; Goytizolo, E.A.; Bostrom, M.P.; Mayman, D.J.; Lin, Y.; YaDeau, J.T. Intravenous vs Oral Acetaminophen as a Component of Multimodal Analgesia After Total Hip Arthroplasty: A Randomized, Blinded Trial. J. Arthroplast. 2019, 34, S215–S220. [Google Scholar] [CrossRef] [PubMed]
- Hickman, S.R.; Mathieson, K.M.; Bradford, L.M.; Garman, C.D.; Gregg, R.W.; Lukens, D.W. Randomized trial of oral versus intravenous acetaminophen for postoperative pain control. Am. J. Health Pharm. 2018, 75, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Ohnuma, T.; Raghunathan, K.; Ellis, A.R.; Whittle, J.; Pyati, S.; Bryan, W.E.; Pepin, M.J.; Bartz, R.R.; Krishnamoorthy, V. Effects of Acetaminophen, NSAIDs, Gabapentinoids, and Their Combinations on Postoperative Pulmonary Complications After Total Hip or Knee Arthroplasty. Pain Med. 2020, 21, 2385–2393. [Google Scholar] [CrossRef]
- Dwyer, J.P.; Jayasekera, C.; Nicoll, A. Analgesia for the cirrhotic patient: A literature review and recommendations. J. Gastroenterol. Hepatol. 2014, 29, 1356–1360. [Google Scholar] [CrossRef] [Green Version]
- Doleman, B.; Leonardi-Bee, J.; Heinink, T.P.; Bhattacharjee, D.; Lund, J.N.; Williams, J.P. Pre-emptive and preventive opioids for postoperative pain in adults undergoing all types of surgery. Cochrane Database Syst. Rev. 2018, 12, CD012624. [Google Scholar] [CrossRef]
- Cooper, H.J.; Lakra, A.; Maniker, R.B.; Hickernell, T.R.; Shah, R.P.; Geller, J.A. Preemptive Analgesia with Oxycodone Is Associated With More Pain Following Total Joint Arthroplasty. J. Arthroplast. 2019, 34, 2878–2883. [Google Scholar] [CrossRef]
- Ong, C.K.-S.; Lirk, P.; Seymour, R.A.; Jenkins, B.J. The Efficacy of Preemptive Analgesia for Acute Postoperative Pain Management: A Meta-Analysis. Anesth. Analg. 2005, 100, 757–773. [Google Scholar] [CrossRef]
- Kim, M.P.; Godoy, C.; Nguyen, D.T.; Meisenbach, L.M.; Chihara, R.; Chan, E.Y.; Graviss, E.A. Preemptive pain-management program is associated with reduction of opioid prescriptions after benign minimally invasive foregut surgery. J. Thorac. Cardiovasc. Surg. 2020, 159, 734–744.e4. [Google Scholar] [CrossRef] [PubMed]
- Chang, R.W.; Tompkins, D.M.; Cohn, S.M. Are NSAIDs Safe? Assessing the Risk-Benefit Profile of Nonsteroidal Anti-inflammatory Drug Use in Postoperative Pain Management. Am. Surg. 2020. [Google Scholar] [CrossRef] [PubMed]
- Theken, K.N.; Lee, C.R.; Gong, L.; Caudle, K.E.; Formea, C.M.; Gaedigk, A.; Klein, T.E.; Agúndez, J.A.; Grosser, T. Clinical Pharmacogenetics Implementation Consortium Guideline (CPIC) for CYP2C9 and Nonsteroidal Anti-Inflammatory Drugs. Clin. Pharmacol. Ther. 2020, 108, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Verret, M.; Lauzier, F.; Zarychanski, R.; Perron, C.; Savard, X.; Pinard, A.-M.; Leblanc, G.; Cossi, M.-J.; Neveu, X.; Turgeon, A.F.; et al. Perioperative Use of Gabapentinoids for the Management of Postoperative Acute Pain. Anesthesiology 2020, 133, 265–279. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Zhao, Z.; Lv, J.; Sun, L.; Lu, B.; Dong, B.; Ma, J.; Ma, X. The efficacy of perioperative gabapentin for the treatment of postoperative pain following total knee and hip arthroplasty: A meta-analysis. J. Orthop. Surg. Res. 2020, 15, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kharasch, E.D.; Clark, J.D.; Kheterpal, S. Perioperative Gabapentinoids. Anesthesiology 2020, 133, 251–254. [Google Scholar] [CrossRef] [PubMed]
- Wainwright, T.W.; Gill, M.; McDonald, D.A.; Middleton, R.G.; Reed, M.; Sahota, O.; Yates, P.; Ljungqvist, O. Consensus statement for perioperative care in total hip replacement and total knee replacement surgery: Enhanced Recovery After Surgery (ERAS®) Society recommendations. Acta Orthop. 2020, 91, 3–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deljou, A.; Hedrick, S.; Portner, E.; Schroeder, D.; Hooten, W.; Sprung, J.; Weingarten, T. Pattern of perioperative gabapentinoid use and risk for postoperative naloxone administration. Br. J. Anaesth. 2018, 120, 798–806. [Google Scholar] [CrossRef] [Green Version]
- Cavalcante, A.N.; Sprung, J.; Schroeder, D.R.; Weingarten, T.N. Multimodal Analgesic Therapy With Gabapentin and Its Association With Postoperative Respiratory Depression. Anesth. Analg. 2017, 125, 141–146. [Google Scholar] [CrossRef]
- Center for Drug Evaluation, Research. Serious Breathing Difficulties with Gabapentin and Pregabalin. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-warns-about-serious-breathing-problems-seizure-and-nerve-pain-medicines-gabapentin-neurontin (accessed on 5 January 2021).
- Ohnuma, T.; Raghunathan, K.; Moore, S.; Setoguchi, S.; Ellis, A.R.; Fuller, M.; Whittle, J.; Pyati, S.; Bryan, W.E.; Pepin, M.J.; et al. Dose-Dependent Association of Gabapentinoids with Pulmonary Complications After Total Hip and Knee Arthroplasties. J. Bone Jt. Surg. Am. Vol. 2019, 102, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Bykov, K.; Bateman, B.T.; Franklin, J.M.; Vine, S.M.; Patorno, E. Association of Gabapentinoids With the Risk of Opioid-Related Adverse Events in Surgical Patients in the United States. JAMA Netw. Open 2020, 3, e2031647. [Google Scholar] [CrossRef]
- Liu, B.; Liu, R.; Wang, L. A meta-analysis of the preoperative use of gabapentinoids for the treatment of acute postoperative pain following spinal surgery. Medicine 2017, 96, e8031. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Kuang, M.-J.; Ma, J.-X.; Ma, X.-L. The Efficacy of Preoperative Gabapentin in Spinal Surgery: A Meta-Analysis of Randomized Controlled Trials. Pain Physician 2017, 20, 649–661. [Google Scholar] [PubMed]
- Mao, Y.; Wu, L.; Ding, W. The efficacy of preoperative administration of gabapentin/pregabalin in improving pain after total hip arthroplasty: A meta-analysis. BMC Musculoskelet. Disord. 2016, 17, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hannon, C.P.; Fillingham, Y.A.; Browne, J.A.; Schemitsch, E.H.; Buvanendran, A.; Hamilton, W.G.; Della Valle, C.J.; Deen, J.T.; Erens, G.A.; Lonner, J.H.; et al. Gabapentinoids in Total Joint Arthroplasty: The Clinical Practice Guidelines of the American Association of Hip and Knee Surgeons, American Society of Regional Anesthesia and Pain Medicine, American Academy of Orthopaedic Surgeons, Hip Society, and Knee Society. J. Arthroplast. 2020, 35, 2700–2703. [Google Scholar] [CrossRef]
- Eipe, N.; Penning, J.; Yazdi, F.; Mallick, R.; Turner, L.; Ahmadzai, N.; Ansari, M.T. Perioperative use of pregabalin for acute pain—A systematic review and meta-analysis. Pain 2015, 156, 1284–1300. [Google Scholar] [CrossRef]
- Doleman, B.; Heinink, T.P.; Read, D.J.; Faleiro, R.J.; Lund, J.N.; Williams, J.P. A systematic review and meta-regression analysis of prophylactic gabapentin for postoperative pain. Anaesthesia 2015, 70, 1186–1204. [Google Scholar] [CrossRef] [Green Version]
- Chaparro, L.E.; Smith, S.A.; Moore, R.A.; Wiffen, P.J.; Gilron, I. Pharmacotherapy for the prevention of chronic pain after surgery in adults. Cochrane Database Syst. Rev. 2013, 2013, CD008307. [Google Scholar] [CrossRef]
- Engelman, D.T.; Ben Ali, W.; Williams, J.B.; Perrault, L.P.; Reddy, V.S.; Arora, R.C.; Roselli, E.E.; Khoynezhad, A.; Gerdisch, M.; Levy, J.H.; et al. Guidelines for Perioperative Care in Cardiac Surgery. JAMA Surg. 2019, 154, 755. [Google Scholar] [CrossRef]
- Baos, S.; Rogers, C.A.; Abbadi, R.; Alzetani, A.; Casali, G.; Chauhan, N.; Collett, L.; Culliford, L.; De Jesus, S.E.; Edwards, M.; et al. Effectiveness, cost-effectiveness and safety of gabapentin versus placebo as an adjunct to multimodal pain regimens in surgical patients: Protocol of a placebo controlled randomised controlled trial with blinding (GAP study). BMJ Open 2020, 10, e041176. [Google Scholar] [CrossRef]
- Chincholkar, M. Gabapentinoids: Pharmacokinetics, pharmacodynamics and considerations for clinical practice. Br. J. Pain 2020, 14, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Toth, C. Substitution of Gabapentin Therapy with Pregabalin Therapy in Neuropathic Pain due to Peripheral Neuropathy. Pain Med. 2010, 11, 456–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Branton, M.W.; Hopkins, T.J.; Nemec, E.C. Duloxetine for the reduction of opioid use in elective orthopedic surgery: A systematic review and meta-analysis. Int. J. Clin. Pharm. 2021, 1–10. [Google Scholar] [CrossRef]
- Zorrilla-Vaca, A.; Stone, A.; Caballero-Lozada, A.F.; Paredes, S.; Grant, M.C. Perioperative duloxetine for acute postoperative analgesia: A meta-analysis of randomized trials. Reg. Anesth. Pain Med. 2019, 44, 959–965. [Google Scholar] [CrossRef]
- Koh, I.J.; Kim, M.S.; Sohn, S.; Song, K.Y.; Choi, N.Y.; In, Y. Duloxetine Reduces Pain and Improves Quality of Recovery Following Total Knee Arthroplasty in Centrally Sensitized Patients. J. Bone Jt. Surg.-Am. Vol. 2019, 101, 64–73. [Google Scholar] [CrossRef] [PubMed]
- YaDeau, J.T.; Brummett, C.M.; Mayman, D.J.; Lin, Y.; Goytizolo, E.A.; Padgett, D.E.; Alexiades, M.M.; Kahn, R.L.; Jules-Elysee, K.M.; Fields, K.G.; et al. Duloxetine and Subacute Pain after Knee Arthroplasty when Added to a Multimodal Analgesic Regimen. Anesthesiology 2016, 125, 561–572. [Google Scholar] [CrossRef]
- Castro-Alves, L.J.; De Medeiros, A.C.P.O.; Neves, S.P.; De Albuquerque, C.L.C.; Modolo, N.S.; De Azevedo, V.L.; De Oliveira, G.S. Perioperative Duloxetine to Improve Postoperative Recovery After Abdominal Hysterectomy. Anesth. Analg. 2016, 122, 98–104. [Google Scholar] [CrossRef]
- Nasr, D. Efficacy of perioperative duloxetine on acute and chronic postmastectomy pain. Ain-Shams J. Anaesthesiol. 2014, 7, 129. [Google Scholar] [CrossRef]
- Sheth, K.R.; Bernthal, N.M.; Ho, H.S.; Bergese, S.D.; Apfel, C.C.; Stoicea, N.; Jahr, J.S. Perioperative bleeding and non-steroidal anti-inflammatory drugs. Medicine 2020, 99, e20042. [Google Scholar] [CrossRef]
- Fillingham, Y.A.; Hannon, C.P.; Roberts, K.C.; Hamilton, W.G.; Della Valle, C.J.; Deen, J.T.; Erens, G.A.; Lonner, J.H.; Pour, A.E.; Sterling, R.S. Nonsteroidal Anti-Inflammatory Drugs in Total Joint Arthroplasty: The Clinical Practice Guidelines of the American Association of Hip and Knee Surgeons, American Society of Regional Anesthesia and Pain Medicine, American Academy of Orthopaedic Surgeons, Hip Society, and Knee Society. J. Arthroplast. 2020, 35, 2704–2708. [Google Scholar] [CrossRef]
- Martinez, L.; Ekman, E.; Nakhla, N. Perioperative Opioid-sparing Strategies: Utility of Conventional NSAIDs in Adults. Clin. Ther. 2019, 41, 2612–2628. [Google Scholar] [CrossRef] [PubMed]
- Maslin, B.; Lipana, L.; Roth, B.; Kodumudi, G.; Vadivelu, N. Safety Considerations in the Use of Ketorolac for Postoperative Pain. Curr. Drug Saf. 2017, 12, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Gobble, R.M.; Hoang, H.L.T.; Kachniarz, B.; Orgill, D.P. Ketorolac Does Not Increase Perioperative Bleeding. Plast. Reconstr. Surg. 2014, 133, 741–755. [Google Scholar] [CrossRef]
- Cassinelli, E.H.; Dean, C.L.; Garcia, R.M.; Furey, C.G.; Bohlman, H.H. Ketorolac Use for Postoperative Pain Management Following Lumbar Decompression Surgery. Spine 2008, 33, 1313–1317. [Google Scholar] [CrossRef]
- Devin, C.J.; McGirt, M.J. Best evidence in multimodal pain management in spine surgery and means of assessing postoperative pain and functional outcomes. J. Clin. Neurosci. 2015, 22, 930–938. [Google Scholar] [CrossRef]
- Jamjittrong, S.; Matsuda, A.; Matsumoto, S.; Kamonvarapitak, T.; Sakurazawa, N.; Kawano, Y.; Yamada, T.; Suzuki, H.; Miyashita, M.; Yoshida, H. Postoperative non-steroidal anti-inflammatory drugs and anastomotic leakage after gastrointestinal anastomoses: Systematic review and meta-analysis. Ann. Gastroenterol. Surg. 2020, 4, 64–75. [Google Scholar] [CrossRef] [Green Version]
- Modasi, A.; Pace, D.; Godwin, M.; Smith, C.; Curtis, B. NSAID administration post colorectal surgery increases anastomotic leak rate: Systematic review/meta-analysis. Surg. Endosc. 2019, 33, 879–885. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Tang, S.R.; Young, C.J. Nonsteroidal anti-inflammatory drugs and anastomotic dehiscence after colorectal surgery: A meta-analysis. ANZ J. Surg. 2017, 88, 959–965. [Google Scholar] [CrossRef] [PubMed]
- Nussmeier, N.A.; Whelton, A.A.; Brown, M.T.; Langford, R.M.; Hoeft, A.; Parlow, J.L.; Boyce, S.W.; Verburg, K.M. Complications of the COX-2 Inhibitors Parecoxib and Valdecoxib after Cardiac Surgery. N. Engl. J. Med. 2005, 352, 1081–1091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schug, S.A.; Joshi, G.P.; Camu, F.; Pan, S.; Cheung, R. Cardiovascular Safety of the Cyclooxygenase-2 Selective Inhibitors Parecoxib and Valdecoxib in the Postoperative Setting: An Analysis of Integrated Data. Anesth. Analg. 2009, 108, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Schug, A.S.; Parsons, B.; Li, C.; Xia, F. The safety profile of parecoxib for the treatment of postoperative pain: A pooled analysis of 28 randomized, double-blind, placebo-controlled clinical trials and a review of over 10 years of postauthorization data. J. Pain Res. 2017, 10, 2451–2459. [Google Scholar] [CrossRef] [Green Version]
- Fanelli, A.; Ghisi, D.; Aprile, P.L.; Lapi, F. Cardiovascular and cerebrovascular risk with nonsteroidal anti-inflammatory drugs and cyclooxygenase 2 inhibitors: Latest evidence and clinical implications. Ther. Adv. Drug Saf. 2017, 8, 173–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheiman, J.M.; Hindley, C.E. Strategies to optimize treatment with NSAIDs in patients at risk for gastrointestinal and cardiovascular adverse events. Clin. Ther. 2010, 32, 667–677. [Google Scholar] [CrossRef]
- Massoth, C.; Zarbock, A.; Meersch, M. Risk Stratification for Targeted AKI Prevention After Surgery: Biomarkers and Bundled Interventions. Semin. Nephrol. 2019, 39, 454–461. [Google Scholar] [CrossRef]
- Goren, O.; Matot, I. Perioperative acute kidney injury. Br. J. Anaesth. 2015, 115, ii3–ii14. [Google Scholar] [CrossRef] [Green Version]
- Meersch, M.; Schmidt, C.; Zarbock, A. Perioperative Acute Kidney Injury. Anesth. Analg. 2017, 125, 1223–1232. [Google Scholar] [CrossRef]
- Zarbock, A.; Koyner, J.L.; Hoste, E.A.J.; Kellum, J.A. Update on Perioperative Acute Kidney Injury. Anesth. Analg. 2018, 127, 1236–1245. [Google Scholar] [CrossRef]
- Bihorac, A. Acute Kidney Injury in the Surgical Patient: Recognition and Attribution. Nephron 2015, 131, 118–122. [Google Scholar] [CrossRef] [Green Version]
- Khan, D.A.; Knowles, S.R.; Shear, N.H. Sulfonamide Hypersensitivity: Fact and Fiction. J. Allergy Clin. Immunol. Prract. 2019, 7, 2116–2123. [Google Scholar] [CrossRef]
- Wulf, N.R.; Matuszewski, K.A. Sulfonamide cross-reactivity: Is there evidence to support broad cross-allergenicity? Am. J. Health Pharm. 2013, 70, 1483–1494. [Google Scholar] [CrossRef] [PubMed]
- Brackett, C.C. Sulfonamide allergy and cross-reactivity. Curr. Allergy Asthma Rep. 2007, 7, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Yska, J.P.; Gertsen, S.; Flapper, G.; Emous, M.; Wilffert, B.; Van Roon, E.N. NSAID Use after Bariatric Surgery: A Randomized Controlled Intervention Study. Obes. Surg. 2016, 26, 2880–2885. [Google Scholar] [CrossRef] [PubMed]
- Zeid, H.A.; Kallab, R.; Najm, M.A.; Jabbour, H.; Noun, R.; Sleilati, F.; Chucri, S.; Dagher, C.; Sleilaty, G.; Naccache, N. Safety and Efficacy of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) Used for Analgesia After Bariatric Surgery: A Retrospective Case-Control Study. Obes. Surg. 2018, 29, 911–916. [Google Scholar] [CrossRef] [PubMed]
- Thorell, A.; MacCormick, A.D.; Awad, S.; Reynolds, N.; Roulin, D.; Demartines, N.; Vignaud, M.; Alvarez, A.; Singh, P.M.; Lobo, D.N. Guidelines for Perioperative Care in Bariatric Surgery: Enhanced Recovery After Surgery (ERAS) Society Recommendations. World J. Surg. 2016, 40, 2065–2083. [Google Scholar] [CrossRef] [Green Version]
- American Society of Anesthesiologists. Anesthesia 101: Types of Anesthesia. Available online: https://www.asahq.org/whensecondscount/anesthesia-101/types-of-anesthesia/ (accessed on 21 September 2020).
- Lee, J.H. Anesthesia for ambulatory surgery. Korean J. Anesthesiol. 2017, 70, 398–406. [Google Scholar] [CrossRef] [Green Version]
- New York Society of Regional Anesthesia (NYSORA). Neuraxial Techniques. Available online: https://www.nysora.com/techniques/neuraxial-and-perineuraxial-techniques/ (accessed on 21 September 2020).
- American Society of Regional Anesthesia, Pain Medicine. Regional Anesthesia for Surgery. Available online: https://www.asra.com/page/41/regional-anesthesia-for-surgery (accessed on 21 September 2020).
- Urban, B.W.; Bleckwenn, M. Concepts and correlations relevant to general anaesthesia. Br. J. Anaesth. 2002, 89, 3–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, E.N.; Pavone, K.J.; Naranjo, M. Multimodal general anesthesia: Theory and practice. Anesth. Analg. 2018, 127, 1246–1258. [Google Scholar] [CrossRef] [PubMed]
- Sun, E.C.; Memtsoudis, S.G.; Mariano, E.R. Regional Anesthesia. Anesthesiology 2019, 131, 1205–1206. [Google Scholar] [CrossRef]
- Smith, L.M.; Cozowicz, C.; Uda, Y.; Memtsoudis, S.G.; Barrington, M.J. Neuraxial and Combined Neuraxial/General Anesthesia Compared to General Anesthesia for Major Truncal and Lower Limb Surgery. Anesth. Analg. 2017, 125, 1931–1945. [Google Scholar] [CrossRef]
- Guay, J.; Choi, P.; Suresh, S.; Albert, N.; Kopp, S.; Pace, N.L. Neuraxial blockade for the prevention of postoperative mortality and major morbidity: An overview of Cochrane systematic reviews. Cochrane Database Syst. Rev. 2014, 2014, CD010108. [Google Scholar] [CrossRef] [PubMed]
- Pérez-González, O.; Cuéllar-Guzmán, L.F.; Soliz, J.; Cata, J.P. Impact of Regional Anesthesia on Recurrence, Metastasis, and Immune Response in Breast Cancer Surgery. Reg. Anesth. Pain Med. 2017, 42, 751–756. [Google Scholar] [CrossRef]
- Le-Wendling, L.; Nin, O.; Capdevila, X. Cancer Recurrence and Regional Anesthesia: The Theories, the Data, and the Future in Outcomes. Pain Med. 2016, 17, pme12893-75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joshi, G.; Kehlet, H.; Beloeil, H.; Bonnet, F.; Fischer, B.; Hill, A.; Lavandhomme, P.; Lirk, P.; Pogatzki-Zhan, E.; Raeder, J.; et al. Guidelines for perioperative pain management: Need for re-evaluation. Br. J. Anaesth. 2017, 119, 720–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albrecht, E.; Chin, K.J. Advances in regional anaesthesia and acute pain management: A narrative review. Anaesthesia 2020, 75, e101–e110. [Google Scholar] [CrossRef]
- Emelife, P.I.; Eng, M.R.; Menard, B.L.; Meyers, A.S.; Cornett, E.M.; Urman, R.D.; Kaye, A.D. Adjunct medications for peripheral and neuraxial anesthesia. Best Pract. Res. Clin. Anaesthesiol. 2018, 32, 83–99. [Google Scholar] [CrossRef]
- Desai, N.; Kirkham, K.R.; Albrecht, E. Local anaesthetic adjuncts for peripheral regional anaesthesia: A narrative review. Anaesthesia 2021, 76, 100–109. [Google Scholar] [CrossRef]
- Ranganath, Y.S.; Seering, M.S.; Marian, A.A. American Society of Regional Anesthesia News. Curb Your Enthusiasm: Local Anesthetic Adjuvants for Peripheral Nerve Blocks. 2020. Available online: https://www.asra.com/asra-news/article/301/curb-your-enthusiasm-local-anesthetic-ad (accessed on 23 November 2020).
- Gola, W.; Zając, M.; Cugowski, A. Adjuvants in peripheral nerve blocks—The current state of knowledge. Anestezjol. Intensywna Ter. 2020, 52, 323–329. [Google Scholar] [CrossRef]
- Bailard, N.S.; Ortiz, J.; Flores, R.A. Additives to local anesthetics for peripheral nerve blocks: Evidence, limitations, and recommendations. Am. J. Health Pharm. 2014, 71, 373–385. [Google Scholar] [CrossRef]
- Joshi, G.; Gandhi, K.; Shah, N.; Gadsden, J.; Corman, S.L. Peripheral nerve blocks in the management of postoperative pain: Challenges and opportunities. J. Clin. Anesth. 2016, 35, 524–529. [Google Scholar] [CrossRef] [Green Version]
- Suksompong, S.; Von Bormann, S.; Von Bormann, B. Regional Catheters for Postoperative Pain Control: Review and Observational Data. Anesthesiol. Pain Med. 2020, 10, e99745. [Google Scholar] [CrossRef] [Green Version]
- Prabhakar, A.; Ward, C.T.; Watson, M.; Sanford, J.; Fiza, B.; Moll, V.; Kaye, R.J.; Hall, O.M.; Cornett, E.M.; Urman, R.D.; et al. Liposomal bupivacaine and novel local anesthetic formulations. Best Pract Res. Clin. Anaesthesiol. 2019, 33, 425–432. [Google Scholar] [CrossRef]
- New York Society of Regional Anesthesia (NYSORA). Controlled-Release Local Anesthetics. 8 June 2018. Available online: https://www.nysora.com/foundations-of-regional-anesthesia/pharmacology/controlled-release-local-anesthetics/ (accessed on 21 September 2020).
- Orebaugh, S.L.; Dewasurendra, A. Has the future arrived? Liposomal bupivacaine versus perineural catheters and additives for interscalene brachial plexus block. Curr. Opin. Anaesthesiol. 2020, 33, 704–709. [Google Scholar] [CrossRef]
- Onwochei, D.N.; West, S.; Pawa, A. If Wishes Were Horses, Beggars Would Ride. Reg. Anesth. Pain Med. 2017, 42, 546. [Google Scholar] [CrossRef]
- Gabriel, R.A.; Swisher, M.W.; Sztain, J.F.; Furnish, T.J.; Ilfeld, B.M.; Said, E.T. State of the art opioid-sparing strategies for post-operative pain in adult surgical patients. Expert Opin. Pharmacother. 2019, 20, 949–961. [Google Scholar] [CrossRef] [Green Version]
- McCann, M.E. Liposomal Bupivacaine. Anesthesiology 2021, 134, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, T.W.; Athanassoglou, V.; Mellon, S.; Strickland, L.H.H.; Trivella, M.; Murray, D.; Pandit, H.G. Liposomal bupivacaine infiltration at the surgical site for the management of postoperative pain. Cochrane Database Syst. Rev. 2017, 2, CD011419. [Google Scholar] [CrossRef] [PubMed]
- Ilfeld, B.M.; Gabriel, R.A.; Eisenach, J.C. Liposomal Bupivacaine Infiltration for Knee Arthroplasty. Anesthesiology 2018, 129, 623–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, S.-C.; Liu, B.-G.; Wang, Z.-H. Efficacy of liposomal bupivacaine vs. traditional anaesthetic infiltration for pain management in total hip arthroplasty: A systematic review and meta-analysis. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 11305–11314. [Google Scholar]
- Schwarzkopf, R.; Drexler, M.; Ma, M.W.; Schultz, V.M.; Le, K.T.; Rutenberg, T.F.; Rinehart, J.B. Is There a Benefit for Liposomal Bupivacaine Compared to a Traditional Periarticular Injection in Total Knee Arthroplasty Patients with a History of Chronic Opioid Use? J. Arthroplast. 2016, 31, 1702–1705. [Google Scholar] [CrossRef]
- Kuang, M.-J.; Du, Y.; Ma, J.-X.; He, W.; Fu, L.; Ma, X.-L. The Efficacy of Liposomal Bupivacaine Using Periarticular Injection in Total Knee Arthroplasty: A Systematic Review and Meta-Analysis. J. Arthroplast. 2017, 32, 1395–1402. [Google Scholar] [CrossRef]
- Hyland, S.J.; Deliberato, D.G.; Fada, R.A.; Romanelli, M.J.; Collins, C.L.; Wasielewski, R.C. Liposomal Bupivacaine Versus Standard Periarticular Injection in Total Knee Arthroplasty with Regional Anesthesia: A Prospective Randomized Controlled Trial. J. Arthroplast. 2019, 34, 488–494. [Google Scholar] [CrossRef]
- Abildgaard, J.T.; Chung, A.S.; Tokish, J.M.; Hattrup, S.J. Clinical Efficacy of Liposomal Bupivacaine. JBJS Rev. 2019, 7, e8. [Google Scholar] [CrossRef] [PubMed]
- Bravin, L.N.; Ernest, E.P.; Dietz, M.J.; Frye, B.M. Liposomal Bupivacaine Offers No Benefit Over Ropivacaine for Multimodal Periarticular Injection in Total Knee Arthroplasty. Orthopedics 2019, 43, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Hussain, N.; Brull, R.; Sheehy, B.T.; Kushelev, M.; Essandoh, M.K.; Abdallah, F.W. The mornings after—Periarticular liposomal bupivacaine infiltration does not improve analgesic outcomes beyond 24 hours following total knee arthroplasty: A systematic review and meta-analysis. Reg. Anesth. Pain Med. 2021, 46, 61–72. [Google Scholar] [CrossRef]
- Ilfeld, B.M.; Eisenach, J.C.; Gabriel, R.A. Clinical Effectiveness of Liposomal Bupivacaine Administered by Infiltration or Peripheral Nerve Block to Treat Postoperative Pain. Anesthesiology 2021, 134, 283–344. [Google Scholar] [CrossRef] [PubMed]
- Vandepitte, C.; Kuroda, M.; Witvrouw, R.; Anne, L.; Bellemans, J.; Corten, K.; Vanelderen, P.; Mesotten, D.; Leunen, I.; Heylen, M.; et al. Addition of Liposome Bupivacaine to Bupivacaine HCl Versus Bupivacaine HCl Alone for Interscalene Brachial Plexus Block in Patients Having Major Shoulder Surgery. Reg. Anesth. Pain Med. 2017, 42, 334–341. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, C.; Ma, C.; Sun, G.; Yuan, L.; Hei, Z.; Guo, C.; Yao, W. Which is the best analgesia treatment for total knee arthroplasty: Adductor canal block, periarticular infiltration, or liposomal bupivacaine? A network meta-analysis. J. Clin. Anesth. 2021, 68, 110098. [Google Scholar] [CrossRef] [PubMed]
- Hussain, N.; Brull, R.; Sheehy, B.; Essandoh, M.K.; Stahl, D.L.; Weaver, T.E.; Abdallah, F.W. Perineural Liposomal Bupivacaine Is Not Superior to Nonliposomal Bupivacaine for Peripheral Nerve Block Analgesia. Anesthesiology 2021, 134, 147–164. [Google Scholar] [CrossRef] [PubMed]
- Neal, J.M.; Barrington, M.J.; Fettiplace, M.R.; Gitman, M.; Memtsoudis, S.G.; Mörwald, E.E.; Rubin, D.S.; Weinberg, G. The Third American Society of Regional Anesthesia and Pain Medicine Practice Advisory on Local Anesthetic Systemic Toxicity. Reg. Anesth. Pain Med. 2018, 43, 113–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- New York Society of Regional Anesthesia (NYSORA). Local Anesthetic Systemic Toxicity. 24 June 2018. Available online: https://www.nysora.com/foundations-of-regional-anesthesia/complications/local-anesthetic-systemic-toxicity/ (accessed on 21 September 2020).
- BrugadaDrugs.org. Drugs Preferably Avoided by Brugada Syndrome Patients. Available online: https://www.brugadadrugs.org/pref_avoid/ (accessed on 28 February 2020).
- New York Society of Regional Anesthesia (NYSORA). Home—NYSORA. Available online: http://www.nysora.com (accessed on 21 September 2020).
- American Society of Regional Anesthesia, Pain Medicine. Resources. Available online: https://www.asra.com/education (accessed on 29 December 2020).
- Gustafsson, U.O.; Scott, M.J.; Hubner, M.; Nygren, J.; Demartines, N.; Francis, N.; Rockall, T.A.; Young-Fadok, T.M.; Hill, A.G.; Soop, M.; et al. Guidelines for Perioperative Care in Elective Colorectal Surgery: Enhanced Recovery After Surgery (ERAS®) Society Recommendations: 2018. World J. Surg. 2019, 43, 659–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tran, D.Q.; Salinas, F.V.; Benzon, H.T.; Neal, J.M. Lower extremity regional anesthesia: Essentials of our current understanding. Reg. Anesth. Pain Med. 2019, 44, 143–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neilio, J.; Kunze, L.; Drew, J.M. Contemporary Perioperative Analgesia in Total Knee Arthroplasty: Multimodal Protocols, Regional Anesthesia, and Peripheral Nerve Blockade. J. Knee Surg. 2018, 31, 600–604. [Google Scholar] [CrossRef] [PubMed]
- Ariza, F.; Rodriguez-Mayoral, H.; Villarreal, K. Epidural analgesia in abdominal major surgery. Colomb. J. Anesthesiol. 2018, 46, 175–176. [Google Scholar] [CrossRef]
- Elsharkawy, H.; Pawa, A.; Mariano, E.R. Interfascial Plane Blocks. Reg. Anesth. Pain Med. 2018, 43, 341–346. [Google Scholar] [CrossRef]
- Ilfeld, B.M. Continuous Peripheral Nerve Blocks. Anesth. Analg. 2017, 124, 308–335. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-S. Recent advances in topical anesthesia. J. Dent. Anesth. Pain Med. 2016, 16, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Dunn, L.K.; Durieux, M.E. Perioperative Use of Intravenous Lidocaine. Anesthesiology 2017, 126, 729–737. [Google Scholar] [CrossRef]
- Earls, B.; Bellil, L. Systemic Lidocaine: An Effective and Safe Modality for Postoperative Pain Management and Early Recovery—Anesthesia Patient Safety Foundation. Anesthesia Patient Safety Foundation Newsletter. 2018. Available online: https://www.apsf.org/article/systemic-lidocaine-an-effective-and-safe-modality-for-postoperative-pain-management-and-early-recovery/ (accessed on 14 September 2020).
- American Society of Regional Anesthesia, Pain Medicine. Clinical Implications of IV Lidocaine Infusion in Preoperative/Acute Pain Settings. Available online: https://www.asra.com/asra-news/article/114/clinical-implications-of-iv-lidocaine-in (accessed on 21 September 2020).
- Weibel, S.; Jelting, Y.; Pace, N.L.; Helf, A.; Eberhart, L.H.; Hahnenkamp, K.; Hollmann, M.W.; Poepping, D.M.; Schnabel, A.; Kranke, P. Continuous intravenous perioperative lidocaine infusion for postoperative pain and recovery in adults. Cochrane Database Syst. Rev. 2018, 6, CD009642. [Google Scholar] [CrossRef]
- Khan, J.S.; Yousuf, M.; Victor, J.C.; Sharma, A.; Siddiqui, N. An estimation for an appropriate end time for an intraoperative intravenous lidocaine infusion in bowel surgery: A comparative meta-analysis. J. Clin. Anesth. 2016, 28, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wang, F.; Yang, L.; Zhu, T. Effects of perioperative intravenous lidocaine infusion for postoperative pain and recovery in elderly patients undergoing surgery: A systematic review and meta-analysis of randomized controlled trials. BMC. in process. [CrossRef]
- Dewinter, G.; Moens, P.; Fieuws, S.; Vanaudenaerde, B.; Van De Velde, M.; Rex, S. Systemic lidocaine fails to improve postoperative morphine consumption, postoperative recovery and quality of life in patients undergoing posterior spinal arthrodesis. A double-blind, randomized, placebo-controlled trial. Br. J. Anaesth. 2017, 118, 576–585. [Google Scholar] [CrossRef] [Green Version]
- Lii, T.R.; Aggarwal, A.K. Comparison of intravenous lidocaine versus epidural anesthesia for traumatic rib fracture pain: A retrospective cohort study. Reg. Anesth. Pain Med. 2020, 45, 628–633. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, E.; Nimmo, S.; Paterson, H.; Homer, N.; Foo, I. Intravenous lidocaine infusion as a component of multimodal analgesia for colorectal surgery—Measurement of plasma levels. Perioper. Med. 2019, 8, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Oh, T.K.; Chung, S.H.; Park, J.; Shin, H.; Chang, C.B.; Kim, T.K.; Do, S.-H. Effects of Perioperative Magnesium Sulfate Administration on Postoperative Chronic Knee Pain in Patients Undergoing Total Knee Arthroplasty: A Retrospective Evaluation. J. Clin. Med. 2019, 8, 2231. [Google Scholar] [CrossRef] [Green Version]
- Shin, H.-J.; Kim, E.-Y.; Na, H.-S.; Kim, T.; Kim, M.-H.; Do, S.-H. Magnesium sulphate attenuates acute postoperative pain and increased pain intensity after surgical injury in staged bilateral total knee arthroplasty: A randomized, double-blinded, placebo-controlled trial. Br. J. Anaesth. 2016, 117, 497–503. [Google Scholar] [CrossRef] [Green Version]
- Pockett, S. Spinal Cord Synaptic Plasticity and Chronic Pain. Anesth. Analg. 1995, 80, 173–179. [Google Scholar] [CrossRef]
- Zhu, A.; Benzon, H.A.; Anderson, T.A. Evidence for the Efficacy of Systemic Opioid-Sparing Analgesics in Pediatric Surgical Populations. Anesth. Analg. 2017, 125, 1569–1587. [Google Scholar] [CrossRef] [PubMed]
- Beaussier, M.; Delbos, A.; Maurice-Szamburski, A.; Ecoffey, C.; Mercadal, L. Perioperative Use of Intravenous Lidocaine. Drugs 2018, 78, 1229–1246. [Google Scholar] [CrossRef]
- Daykin, H. The efficacy and safety of intravenous lidocaine for analgesia in the older adult: A literature review. Br. J. Pain 2016, 11, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Eipe, M.N.; Gupta, F.S.; Penning, F.J. Intravenous lidocaine for acute pain: An evidence-based clinical update. BJA Educ. 2016, 16, 292–298. [Google Scholar] [CrossRef] [Green Version]
- Cooke, C.; Kennedy, E.D.; Foo, I.; Nimmo, S.; Speake, D.; Paterson, H.M.; Ventham, N.T. Meta-analysis of the effect of perioperative intravenous lidocaine on return of gastrointestinal function after colorectal surgery. Tech. Coloproctol. 2019, 23, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Missair, A.; Cata, J.P.; Votta-Velis, G.; Johnson, M.; Borgeat, A.; Tiouririne, M.; Gottumukkala, V.; Buggy, D.; Vallejo, R.; De Marrero, E.B.; et al. Impact of perioperative pain management on cancer recurrence: An ASRA/ESRA special article. Reg. Anesth. Pain Med. 2019, 44, 13–28. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Jiang, R.; Su, W.; Wang, M.; Liu, Y.; Zuo, Y. Impact of perioperative intravenous lidocaine infusion on postoperative pain and rapid recovery of patients undergoing gastrointestinal tumor surgery: A randomized, double-blind trial. J. Gastrointest. Oncol. 2020, 11, 1274–1282. [Google Scholar] [CrossRef] [PubMed]
- Yazici, K.K.; Kaya, M.; Aksu, B.; Ünver, S. The Effect of Perioperative Lidocaine Infusion on Postoperative Pain and Postsurgical Recovery Parameters in Gynecologic Cancer Surgery. Clin. J. Pain 2021, 37, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Mehta, S.D.; Smyth, D.; Vasilopoulos, T.; Friedman, J.; Sappenfield, J.W.; Alex, G. Ketamine infusion reduces narcotic requirements following gastric bypass surgery: A randomized controlled trial. Surg. Obes. Relat. Dis. 2020. [Google Scholar] [CrossRef]
- Helander, E.M.; Menard, B.L.; Harmon, C.M.; Homra, B.K.; Allain, A.V.; Bordelon, G.J.; Wyche, M.Q.; Padnos, I.W.; Lavrova, A.; Kaye, A.D. Multimodal Analgesia, Current Concepts, and Acute Pain Considerations. Curr. Pain Headache Rep. 2017, 21, 3. [Google Scholar] [CrossRef] [PubMed]
- Radvansky, B.M.; Shah, K.; Parikh, A.; Sifonios, A.N.; Le, V.; Eloy, J.D. Role of Ketamine in Acute Postoperative Pain Management: A Narrative Review. BioMed Res. Int. 2015, 2015, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Rubio, L.; Nava, E.; Del Pozo, J.S.G.; Jordán, J. Influence of the perioperative administration of magnesium sulfate on the total dose of anesthetics during general anesthesia. A systematic review and meta-analysis. J. Clin. Anesth. 2017, 39, 129–138. [Google Scholar] [CrossRef]
- Park, J.-Y.; Hong, J.H.; Kim, D.-H.; Yu, J.; Hwang, J.-H.; Kim, Y.-K. Magnesium and Bladder Discomfort after Transurethral Resection of Bladder Tumor. Anesthesiology 2020, 133, 64–77. [Google Scholar] [CrossRef]
- Kim, R.K.; Hwang, J.H.; Tsui, B.C. Utilization of Magnesium in Opioid-Free Anesthesia for Peroral Endoscopic Myotomy: A Case Report. A&A Pract. 2021, 15, e01372. [Google Scholar] [CrossRef]
- De Oliveira, G.S.; Castro-Alves, L.J.; Khan, J.H.; McCarthy, R.J. Perioperative Systemic Magnesium to Minimize Postoperative Pain. Anesthesiology 2013, 119, 178–190. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Ren, A.; Zhou, K.; Chen, Q.; Zhang, M.; Liu, J. Impact of Dexmedetomidine Infusion on Postoperative Acute Kidney Injury in Elderly Patients Undergoing Major Joint Replacement: A Retrospective Cohort Study. Drug Des. Dev. Ther. 2020, 14, 4695–4701. [Google Scholar] [CrossRef]
- Grant, M.C.; Isada, T.; Ruzankin, P.; Gottschalk, A.; Whitman, G.; Lawton, J.S.; Dodd, O.J.; Barodka, V. Opioid-Sparing Cardiac Anesthesia. Anesth. Analg. 2020, 131, 1852–1861. [Google Scholar] [CrossRef]
- Wieruszewski, P.M.; Wittwer, E.D. It’s All in the Details: Dexmedetomidine and Acute Kidney Injury After Cardiac Surgery. J. Cardiothorac. Vasc. Anesth. 2020, 34, 2549. [Google Scholar] [CrossRef] [PubMed]
- Lee, S. Dexmedetomidine: Present and future directions. Korean J. Anesthesiol. 2019, 72, 323–330. [Google Scholar] [CrossRef]
- Naik, B.I.; Nemergut, E.C.; Kazemi, A.; Fernández, L.; Cederholm, S.K.; McMurry, T.L.; Durieux, M.E. The Effect of Dexmedetomidine on Postoperative Opioid Consumption and Pain After Major Spine Surgery. Anesth. Analg. 2016, 122, 1646–1653. [Google Scholar] [CrossRef]
- Lundorf, L.J.; Nedergaard, H.K.; Møller, A.M. Perioperative dexmedetomidine for acute pain after abdominal surgery in adults. Cochrane Database Syst. Rev. 2016, 2, CD010358. [Google Scholar] [CrossRef] [Green Version]
- Ge, D.-J.; Qi, B.; Tang, G.; Li, J.-Y. Intraoperative Dexmedetomidine Promotes Postoperative Analgesia and Recovery in Patients after Abdominal Hysterectomy: A Double-Blind, Randomized Clinical Trial. Sci. Rep. 2016, 6, 21514. [Google Scholar] [CrossRef] [Green Version]
- Cheung, C.W.; Qiu, Q.; Ying, A.C.L.; Choi, S.W.; Law, W.L.; Irwin, M. The effects of intra-operative dexmedetomidine on postoperative pain, side-effects and recovery in colorectal surgery. Anaesthesia 2014, 69, 1214–1221. [Google Scholar] [CrossRef] [Green Version]
- Bajracharya, J.L.; Subedi, A.; Pokharel, K.; Bhattarai, B. The effect of intraoperative lidocaine versus esmolol infusion on postoperative analgesia in laparoscopic cholecystectomy: A randomized clinical trial. BMC Anesthesiol. 2019, 19, 198–199. [Google Scholar] [CrossRef] [Green Version]
- Bahr, M.P.; Williams, B.A. Esmolol, Antinociception, and Its Potential Opioid-Sparing Role in Routine Anesthesia Care. Reg. Anesth. Pain Med. 2018, 43, 815–818. [Google Scholar] [CrossRef] [PubMed]
- Gelineau, A.M.; King, M.R.; Ladha, K.S.; Burns, S.M.; Houle, T.; Anderson, T.A. Intraoperative Esmolol as an Adjunct for Perioperative Opioid and Postoperative Pain Reduction. Anesth. Analg. 2018, 126, 1035–1049. [Google Scholar] [CrossRef]
- Klag, E.A.; Kuhlmann, N.A.; Tramer, J.S.; Franovic, S.; Muh, S.J. Dexamethasone decreases postoperative opioid and antiemetic use in shoulder arthroplasty patients: A prospective, randomized controlled trial. J. Shoulder Elb. Surg. 2021. [Google Scholar] [CrossRef]
- McHardy, P.G.; Singer, O.; Awad, I.T.; Safa, B.; Henry, P.D.; Kiss, A.; Au, S.K.; Kaustov, L.; Choi, S. Comparison of the effects of perineural or intravenous dexamethasone on low volume interscalene brachial plexus block: A randomised equivalence trial. Br. J. Anaesth. 2020, 124, 84–91. [Google Scholar] [CrossRef]
- Cortés-Flores, A.; Jiménez-Tornero, J.; Morgan-Villela, G.; Delgado-Gómez, M.; Del Valle, C.J.Z.-F.; García-Rentería, J.; Rendón-Félix, J.; Fuentes-Orozco, C.; Macías-Amezcua, M.; Ambriz-González, G.; et al. Effects of preoperative dexamethasone on postoperative pain, nausea, vomiting and respiratory function in women undergoing conservative breast surgery for cancer: Results of a controlled clinical trial. Eur. J. Cancer Care 2017, 27, e12686. [Google Scholar] [CrossRef] [Green Version]
- Kahn, R.L.; Cheng, J.; Gadulov, Y.; Fields, K.G.; YaDeau, J.T.; Gulotta, L.V. Perineural Low-Dose Dexamethasone Prolongs Interscalene Block Analgesia with Bupivacaine Compared With Systemic Dexamethasone. Reg. Anesth. Pain Med. 2018, 43, 572–579. [Google Scholar] [CrossRef]
- Holland, D.; Amadeo, R.J.J.; Wolfe, S.; Girling, L.; Funk, F.; Collister, M.; Czaplinski, E.; Ferguson, C.; Leiter, J.; Old, J.; et al. Effect of dexamethasone dose and route on the duration of interscalene brachial plexus block for outpatient arthroscopic shoulder surgery: A randomized controlled trial. Can. J. Anaesth. 2017, 65, 34–45. [Google Scholar] [CrossRef] [Green Version]
- Kirkham, K.R.; Jacot-Guillarmod, A.; Albrecht, E. Optimal Dose of Perineural Dexamethasone to Prolong Analgesia After Brachial Plexus Blockade. Anesth. Analg. 2018, 126, 270–279. [Google Scholar] [CrossRef]
- Pehora, C.; Pearson, A.M.; Kaushal, A.; Crawford, M.W.; Johnston, B. Dexamethasone as an adjuvant to peripheral nerve block. Cochrane Database Syst. Rev. 2017, 11, CD011770. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, F.W.; Johnson, J.; Chan, V.; Murgatroyd, H.; Ghafari, M.; Ami, N.; Jin, R.; Brull, R. Intravenous Dexamethasone and Perineural Dexamethasone Similarly Prolong the Duration of Analgesia After Supraclavicular Brachial Plexus Block. Reg. Anesth. Pain Med. 2015, 40, 125–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machado, F.C.; Palmeira, C.C.D.A.; Torres, J.N.L.; Vieira, J.E.; Ashmawi, H.A. Intraoperative use of methadone improves control of postoperative pain in morbidly obese patients: A randomized controlled study. J. Pain Res. 2018, 11, 2123–2129. [Google Scholar] [CrossRef] [Green Version]
- Murphy, G.S.; Wu, C.L.; Mascha, E.J. Methadone. Anesth. Analg. 2019, 129, 1456–1458. [Google Scholar] [CrossRef]
- Komen, H.; Brunt, L.M.; Deych, E.; Blood, J.; Kharasch, E.D. Intraoperative Methadone in Same-Day Ambulatory Surgery. Anesth. Analg. 2019, 128, 802–810. [Google Scholar] [CrossRef]
- Machado, F.C.; Vieira, J.E.; De Orange, F.A.; Ashmawi, H.A. Intraoperative Methadone Reduces Pain and Opioid Consumption in Acute Postoperative Pain. Anesth. Analg. 2019, 129, 1723–1732. [Google Scholar] [CrossRef] [PubMed]
- Murphy, G.S.; Szokol, J.W.; Avram, M.J.; Greenberg, S.B.; Marymont, J.H.; Shear, T.; Parikh, K.N.; Patel, S.S.; Gupta, D.K. Intraoperative Methadone for the Prevention of Postoperative PainA Randomized, Double-blinded Clinical Trial in Cardiac Surgical Patients. Anesthesiology 2015, 122, 1112–1122. [Google Scholar] [CrossRef] [PubMed]
- Murphy, G.S.; Szokol, J.W.; Avram, M.J.; Greenberg, S.B.; Shear, T.D.; Deshur, M.A.; Vender, J.S.; Benson, J.; Newmark, R.L. Clinical Effectiveness and Safety of Intraoperative Methadone in Patients Undergoing Posterior Spinal Fusion Surgery. Anesthesiology 2017, 126, 822–833. [Google Scholar] [CrossRef]
- Gottschalk, A.; Durieux, M.E.; Nemergut, E.C. Intraoperative Methadone Improves Postoperative Pain Control in Patients Undergoing Complex Spine Surgery. Anesth. Analg. 2011, 112, 218–223. [Google Scholar] [CrossRef]
- Hussain, N.; Grzywacz, V.P.; Ferreri, C.A.; Atrey, A.; Banfield, L.; Shaparin, N.; Vydyanathan, A. Investigating the Efficacy of Dexmedetomidine as an Adjuvant to Local Anesthesia in Brachial Plexus Block. Reg. Anesth. Pain Med. 2017, 42, 184–196. [Google Scholar] [CrossRef]
- Hanna, V.; Senderovich, H. Methadone in Pain Management: A Systematic Review. J. Pain 2020. [Google Scholar] [CrossRef]
- McNicol, E.D.; Ferguson, M.C.; Schumann, R. Methadone for neuropathic pain in adults. Cochrane Database Syst. Rev. 2017, 5, 012499. [Google Scholar] [CrossRef]
- Tripathi, S.; Hunter, J. Neuromuscular blocking drugs in the critically ill. Contin. Educ. Anaesth. Crit. Care Pain 2006, 6, 119–123. [Google Scholar] [CrossRef]
- Treanor, N.; Vezina, V.; Lui, A. ESRA19-0218 ‘Fast-track’ patients to phase II recovery and decrease pacu duration in ambulatory arthroscopic shoulder surgery with combined peripheral nerve block and monitored anesthesia care. E-Poster Discuss. 2019, 44, A136. [Google Scholar] [CrossRef]
- Wood, C. Effect of sublingual versus intravenous opioid administration on total opioid administration in patients following total knee arthroplasty. In Proceedings of the Great Lakes Pharmacy Residency Conference, Pursue University, West Lafayette, IN, USA, 25 April 2019. [Google Scholar]
- Fan, M.; Chen, Z. A systematic review of non-pharmacological interventions used for pain relief after orthopedic surgical procedures. Exp. Ther. Med. 2020, 20, 1. [Google Scholar] [CrossRef] [PubMed]
- Olsen, S.W.; Rosenkilde, C.; Lauridsen, J.; Hasfeldt, D. Effects of Nonpharmacologic Distraction Methods on Children’s Postoperative Pain—A Nonmatched Case-Control Study. J. PeriAnesth. Nurs. 2020, 35, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Li, N.; Zhang, X.; Shang, Y.; Yan, L.; Chu, J.; Sun, R.; Xu, Y. Music for reducing the anxiety and pain of patients undergoing a biopsy: A meta-analysis. J. Adv. Nurs. 2017, 74, 1016–1029. [Google Scholar] [CrossRef] [PubMed]
- Rafer, L.; Austin, F.; Frey, J.; Mulvey, C.; Vaida, S.; Prozesky, J. Effects of jazz on postoperative pain and stress in patients undergoing elective hysterectomy. Adv. Mind Body Med. 2015, 29, 6–11. [Google Scholar]
- Liu, Y.; Petrini, M.A. Effects of music therapy on pain, anxiety, and vital signs in patients after thoracic surgery. Complement. Ther. Med. 2015, 23, 714–718. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, H.; Guo, Q.; Liu, J.; Liu, X.; Luo, J.; Yang, W. Effects of Intravenous Patient-Controlled Sufentanil Analgesia and Music Therapy on Pain and Hemodynamics After Surgery for Lung Cancer: A Randomized Parallel Study. J. Altern. Complement. Med. 2015, 21, 667–672. [Google Scholar] [CrossRef]
- Ardon, A.E.; Prasad, A.; McClain, R.L.; Melton, M.S.; Nielsen, K.C.; Greengrass, R. Regional Anesthesia for Ambulatory Anesthesiologists. Anesthesiol. Clin. 2019, 37, 265–287. [Google Scholar] [CrossRef]
- Amundson, A.W.; Panchamia, J.K.; Jacob, A.K. Anesthesia for Same-Day Total Joint Replacement. Anesthesiol. Clin. 2019, 37, 251–264. [Google Scholar] [CrossRef]
- Beaussier, M.; Sciard, D.; Sautet, A. New modalities of pain treatment after outpatient orthopaedic surgery. Orthop. Traumatol. Surg. Res. 2016, 102, S121–S124. [Google Scholar] [CrossRef] [PubMed]
- Pasero, C.; Quinlan-Colwell, A.; Rae, D.; Broglio, K.; Drew, D. American Society for Pain Management Nursing Position Statement: Prescribing and Administering Opioid Doses Based Solely on Pain Intensity. Pain Manag. Nurs. 2016, 17, 170–180. [Google Scholar] [CrossRef] [PubMed]
- Pasero, C. One Size Does Not Fit All: Opioid Dose Range Orders. J. PeriAnesth. Nurs. 2014, 29, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Drew, D.J.; Gordon, D.B.; Morgan, B.; Manworren, R.C. ’’As-Needed’’ Range Orders for Opioid Analgesics in the Management of Pain: A Consensus Statement of the American Society for Pain Management Nursing and the American Pain Society. Pain Manag. Nurs. 2018, 19, 207–210. [Google Scholar] [CrossRef]
- Smetzer, J.L.; Cohen, M.R. Pain Scales Don’t Weigh Every Risk. J. Pain Palliat. Care Pharmacother. 2003, 17, 67–70. [Google Scholar] [CrossRef]
- Van Boekel, R.L.M.; Vissers, K.C.P.; Van Der Sande, R.; Bronkhorst, E.; Lerou, J.G.C.; Steegers, M.A.H. Moving beyond pain scores: Multidimensional pain assessment is essential for adequate pain management after surgery. PLoS ONE 2017, 12, e0177345. [Google Scholar] [CrossRef]
- Scher, C.; Petti, E.; Meador, L.; Van Cleave, J.H.; Liang, E.; Reid, M.C. Multidimensional Pain Assessment Tools for Ambulatory and Inpatient Nursing Practice. Pain Manag. Nurs. 2020, 21, 416–422. [Google Scholar] [CrossRef]
- Hirsh, A.T.; Anastas, T.M.; Miller, M.M.; Quinn, P.D.; Kroenke, K. Patient race and opioid misuse history influence provider risk perceptions for future opioid-related problems. Am. Psychol. 2020, 75, 784–795. [Google Scholar] [CrossRef]
- Anderson, K.O.; Green, C.R.; Payne, R. Racial and Ethnic Disparities in Pain: Causes and Consequences of Unequal Care. J. Pain 2009, 10, 1187–1204. [Google Scholar] [CrossRef]
- Green, C.R.; Anderson, K.O.; Baker, T.A.; Campbell, L.C.; Decker, S.; Fillingim, R.B.; Kaloukalani, D.A.; Lasch, K.E.; Myers, C.; Tait, R.C.; et al. The Unequal Burden of Pain: Confronting Racial and Ethnic Disparities in Pain. Pain Med. 2003, 4, 277–294. [Google Scholar] [CrossRef] [PubMed]
- George, S.; Johns, M. Review of nonopioid multimodal analgesia for surgical and trauma patients. Am. J. Health Pharm. 2020, 77, 2052–2063. [Google Scholar] [CrossRef] [PubMed]
- Ho, A.M.-H.; Ho, A.K.; Mizubuti, G.B.; Klar, G.; Karmakar, M.K. Regional analgesia for patients with traumatic rib fractures: A narrative review. J. Trauma Acute Care Surg. 2020, 88, e22–e30. [Google Scholar] [CrossRef]
- Saranteas, T.; Koliantzaki, I.; Savvidou, O.; Tsoumpa, M.; Eustathiou, G.; Kontogeorgakos, V.; Souvatzoglou, R. Acute pain management in trauma: Anatomy, ultrasound-guided peripheral nerve blocks and special considerations. Minerva Anestesiol. 2019, 85, 763–773. [Google Scholar] [CrossRef]
- Hamrick, K.L.; Beyer, C.A.; Lee, J.A.; Cocanour, C.S.; Duby, J.J. Multimodal Analgesia and Opioid Use in Critically Ill Trauma Patients. J. Am. Coll. Surg. 2019, 228, 769–775.e1. [Google Scholar] [CrossRef]
- Czernicki, M.; Kunnumpurath, S.; Park, W.; Kunnumpurath, A.; Kodumudi, G.; Tao, J.; Kodumudi, V.; Vadivelu, N.; Urman, R.D. Perioperative Pain Management in the Critically Ill Patient. Curr. Pain Headache Rep. 2019, 23, 34. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Haro, R.; Morales-Sarabia, J.; Ferrer-Gomez, C.; De Andrés, J. Regional analgesia techniques for pain management in patients admitted to the intensive care unit. Minerva Anestesiol. 2019, 85, 1118–1128. [Google Scholar] [CrossRef] [PubMed]
- Corcoran, E.; Kinirons, B. Regional anaesthesia in the elderly patient a current perspective. Curr. Opin. Anaesthesiol. 2021, 34, 48–53. [Google Scholar] [CrossRef]
- Villatte, G.; Mathonnet, M.; Villeminot, J.; Savary, M.; Theissen, A.; Ostermann, S.; Erivan, R.; Raynaud-Simon, A.; Slim, K. Interest of enhanced recovery programs in the elderly during total hip arthroplasty A systematic review. Geriatr. Psychol. Neuropsychiatr. Vieil. 2019, 17, 234–242. [Google Scholar]
- Belcaid, I.; Eipe, N. Perioperative Pain Management in Morbid Obesity. Drugs 2019, 79, 1163–1175. [Google Scholar] [CrossRef] [PubMed]
- Brown, H.L. Opioid Management in Pregnancy and Postpartum. Obstet. Gynecol. Clin. North Am. 2020, 47, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Peahl, A.F.; Smith, R.; Johnson, T.R.; Morgan, D.M.; Pearlman, M.D. Better late than never: Why obstetricians must implement enhanced recovery after cesarean. Am. J. Obstet. Gynecol. 2019, 221, 117-e1–117-e7. [Google Scholar] [CrossRef] [PubMed]
- ACOG Committee. Opinion No. 742 Summary: Postpartum Pain Management. Obstet. Gynecol. 2018, 132, 252–253. [Google Scholar] [CrossRef] [PubMed]
- Sutton, C.D.; Carvalho, B. Optimal Pain Management After Cesarean Delivery. Anesthesiol. Clin. 2017, 35, 107–124. [Google Scholar] [CrossRef]
- Wu, M.-S.; Chen, K.-H.; Chen, I.-F.; Huang, S.K.; Tzeng, P.-C.; Yeh, M.-L.; Lee, F.-P.; Lin, J.-G.; Chen, C. The Efficacy of Acupuncture in Post-Operative Pain Management: A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0150367. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.-N.; Chen, W.; Zhang, Y.; Zhang, Y.; Feng, S.; Chen, X.-Y. Does cognitive behavioral education reduce pain and improve joint function in patients after total knee arthroplasty? A randomized controlled trial. Int. Orthop. 2020, 44, 2027–2035. [Google Scholar] [CrossRef]
- Nicholls, J.L.; Azam, M.A.; Burns, L.C.; Englesakis, M.; Sutherland, A.M.; Weinrib, A.Z.; Katz, J.; Clarke, H. Psychological treatments for the management of postsurgical pain: A systematic review of randomized controlled trials. Patient Relat. Outcome Meas. 2018, 9, 49–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, R.; Zhuo, Y.; Feng, E.; Wang, W.; Lin, W.; Lin, F.; Li, Z.; Lin, L.; Xiao, L.; Wang, H.; et al. The effect of musical interventions in improving short-term pain outcomes following total knee replacement: A meta-analysis and systematic review. J. Orthop. Surg. Res. 2020, 15, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Thybo, K.H.; Hägi-Pedersen, D.; Dahl, J.B.; Wetterslev, J.; Nersesjan, M.; Jakobsen, J.C.; Pedersen, N.A.; Overgaard, S.; Schrøder, H.M.; Schmidt, H.; et al. Effect of Combination of Paracetamol (Acetaminophen) and Ibuprofen vs Either Alone on Patient-Controlled Morphine Consumption in the First 24 Hours After Total Hip Arthroplasty. JAMA 2019, 321, 562–571. [Google Scholar] [CrossRef] [Green Version]
- Derry, C.J.; Derry, S.; Moore, R.A. Single dose oral ibuprofen plus paracetamol (acetaminophen) for acute postoperative pain. Cochrane Database Syst. Rev. 2013, 2013, CD010210. [Google Scholar] [CrossRef]
- Ong, C.K.S.; Seymour, R.A.; Lirk, P.; Merry, A.F. Combining Paracetamol (Acetaminophen) with Nonsteroidal Antiinflammatory Drugs: A Qualitative Systematic Review of Analgesic Efficacy for Acute Postoperative Pain. Anesth. Analg. 2010, 110, 1170–1179. [Google Scholar] [CrossRef]
- Prescott, L.F. Paracetamol: Past, present, and future. Am. J. Ther. 2000, 7, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Langford, R.A.; Hogg, M.; Bjorksten, A.R.; Williams, D.L.; Leslie, K.; Jamsen, K.; Kirkpatrick, C. Comparative Plasma and Cerebrospinal Fluid Pharmacokinetics of Paracetamol After Intravenous and Oral Administration. Anesth. Analg. 2016, 123, 610–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stundner, O.; Poeran, J.; Ladenhauf, H.N.; Berger, M.M.; Levy, S.B.; Zubizarreta, N.; Mazumdar, M.; Bekeris, J.; Liu, J.; Galatz, L.M.; et al. Effectiveness of intravenous acetaminophen for postoperative pain management in hip and knee arthroplasties: A population-based study. Reg. Anesth. Pain Med. 2019, 44, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Nichols, D.C.; Nadpara, P.A.; Taylor, P.D.; Brophy, G.M. Intravenous Versus Oral Acetaminophen for Pain Control in Neurocritical Care Patients. Neurocrit. Care 2016, 25, 400–406. [Google Scholar] [CrossRef]
- White, P.F. Cost-effective multimodal analgesia in the perioperative period: Use of intravenous vs. oral acetaminophen. J. Clin. Anesth. 2020, 61, 109625. [Google Scholar] [CrossRef] [PubMed]
- Vincent, W.R.; Huiras, P.; Empfield, J.; Horbowicz, K.J.; Lewis, K.; McAneny, D.; Twitchell, D. Controlling postoperative use of i.v. acetaminophen at an academic medical center. Am. J. Health Pharm. 2018, 75, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.Y. The Growing Case Against IV Tylenol, Once Seen as a Solution to the OPIOID crisis. The Washington Post, 19 June 2018. Available online: https://www.washingtonpost.com/news/wonk/wp/2018/06/19/the-growing-case-against-iv-tylenol-once-seen-as-a-solution-to-the-opioid-crisis/ (accessed on 2 January 2021).
- Foley, M.K.H.; Anderson, J.; Mallea, L.; Morrison, K.; Downey, M. Effects of Healing Touch on Postsurgical Adult Outpatients. J. Holist. Nurs. 2016, 34, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Arias, J.-I.; Aller, M.-A.; Arias, J. Surgical inflammation: A pathophysiological rainbow. J. Transl. Med. 2009, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, M.; Huh, Y.; Ji, R.-R. Roles of inflammation, neurogenic inflammation, and neuroinflammation in pain. J. Anesth. 2019, 33, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Mammoto, T.; Fujie, K.; Taguchi, N.; Ma, E.; Shimizu, T.; Hashimoto, K. Short-Term Effects of Early Postoperative Celecoxib Administration for Pain, Sleep Quality, and Range of Motion After Total Knee Arthroplasty: A Randomized Controlled Trial. J. Arthroplast. 2021, 36, 526–531. [Google Scholar] [CrossRef]
- Oxford League Table of Analgesic Efficacy. Available online: http://www.bandolier.org.uk/booth/painpag/Acutrev/Analgesics/lftab.html (accessed on 28 February 2021).
- Yurashevich, M.; Pedro, C.; Fuller, M.; Habib, A. Intra-operative ketorolac 15 mg versus 30 mg for analgesia following cesarean delivery: A retrospective study. Int. J. Obstet. Anesth. 2020, 44, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Motov, S.; Masoudi, A.; Drapkin, J.; Sotomayor, C.; Kim, S.; Butt, M.; Likourezos, A.; Fassassi, C.; Hossain, R.; Brady, J.; et al. Randomized Trial Comparing 3 Doses of Oral Ibuprofen for Management of Pain in Adult EM Patients. J. Emerg. Med. 2020, 59, 759–760. [Google Scholar] [CrossRef]
- Motov, S.; Yasavolian, M.; Likourezos, A.; Pushkar, I.; Hossain, R.; Drapkin, J.; Cohen, V.; Filk, N.; Smith, A.; Huang, F.; et al. Comparison of Intravenous Ketorolac at Three Single-Dose Regimens for Treating Acute Pain in the Emergency Department: A Randomized Controlled Trial. Ann. Emerg. Med. 2017, 70, 177–184. [Google Scholar] [CrossRef]
- Zhou, T.J.; Tang, J.; White, P.F. Propacetamol Versus Ketorolac for Treatment of Acute Postoperative Pain After Total Hip or Knee Replacement. Anesth. Analg. 2001, 92, 1569–1575. [Google Scholar] [CrossRef]
- CPIC. Clinical Pharmacogenetics Implementation Consortium Guidelines. 11 August 2020. Available online: https://cpicpgx.org/guidelines/ (accessed on 28 February 2021).
- Abdallah, F.W.; Hussain, N.; Weaver, T.; Brull, R. Analgesic efficacy of cannabinoids for acute pain management after surgery: A systematic review and meta-analysis. Reg. Anesth. Pain Med. 2020, 45, 509–519. [Google Scholar] [CrossRef]
- McDonagh, M.S.; Selph, S.S.; Buckley, D.I.; Holmes, R.S.; Mauer, K.; Ramirez, S.; Hsu, F.C.; Dana, T.; Fu, R.; Chou, R. Nonopioid Pharmacologic Treatments for Chronic Pain. In Nonopioid Pharmacologic Treatments for Chronic Pain; Agency for Healthcare Research and Quality: Rockville, MD, USA, 2020. [Google Scholar]
- Mun, C.J.; Letzen, J.E.; Peters, E.N.; Campbell, C.M.; Vandrey, R.; Gajewski-Nemes, J.; DiRenzo, D.; Caufield-Noll, C.; Finan, P.H. Cannabinoid effects on responses to quantitative sensory testing among individuals with and without clinical pain: A systematic review. Pain 2020, 161, 244–260. [Google Scholar] [CrossRef]
- Moore, A.B.; Navarrett, S.; Herzig, S.J. Potentially Inappropriate Use of Intravenous Opioids in Hospitalized Patients. J. Hosp. Med. 2019, 14, 678–680. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.Y.; Park, J.S.; Park, S.Y.; Kim, H.J.; Yeo, J.; Kim, J.-C.; Park, S.; Choi, G.-S. Can intravenous patient-controlled analgesia be omitted in patients undergoing laparoscopic surgery for colorectal cancer? Ann. Surg. Treat. Res. 2015, 88, 86–91. [Google Scholar] [CrossRef] [Green Version]
- McEvoy, M.D.; Wanderer, J.P.; King, A.B.; Geiger, T.M.; Tiwari, V.; Terekhov, M.; Ehrenfeld, J.M.; Furman, W.R.; Lee, L.A.; Sandberg, W.S. A perioperative consult service results in reduction in cost and length of stay for colorectal surgical patients: Evidence from a healthcare redesign project. Perioper. Med. 2016, 5, 3. [Google Scholar] [CrossRef] [Green Version]
- Institute for Safe Medication Practices (ISMP). Safety Issues with PCA Part I—How Errors Occur. 10 July 2003. Available online: https://www.ismp.org/resources/safety-issues-pca-part-i-how-errors-occur (accessed on 17 January 2021).
- Institute for Safe Medication Practices (ISMP). Safety Issues with PCA Part II—How to Prevent Errors. 24 July 2003. Available online: https://www.ismp.org/resources/safety-issues-pca-part-ii-how-prevent-errors (accessed on 17 January 2021).
- Smith, H.S. Opioid Metabolism. Mayo Clin. Proc. 2009, 84, 613–624. [Google Scholar] [CrossRef] [Green Version]
- Coller, J.K.; Christrup, L.L.; Somogyi, A.A. Role of active metabolites in the use of opioids. Eur. J. Clin. Pharmacol. 2008, 65, 121–139. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.S. The Metabolism of Opioid Agents and the Clinical Impact of Their Active Metabolites. Clin. J. Pain 2011, 27, 824–838. [Google Scholar] [CrossRef]
- Overholser, B.R.; Foster, D.R. Opioid pharmacokinetic drug-drug interactions. Am. J. Manag. Care 2011, 17, 276–287. [Google Scholar]
- Crews, K.R.; Monte, A.A.; Huddart, R.; Caudle, K.E.; Kharasch, E.D.; Gaedigk, A.; Dunnenberger, H.M.; Leeder, J.S.; Callaghan, J.T.; Samer, C.F.; et al. Clinical Pharmacogenetics Implementation Consortium Guideline for CYP2D6, OPRM1, and COMT Genotypes and Select Opioid Therapy. Clin. Pharmacol. Ther. 2021. [Google Scholar] [CrossRef]
- Davison, S.N. Clinical Pharmacology Considerations in Pain Management in Patients with Advanced Kidney Failure. Clin. J. Am. Soc. Nephrol. 2019, 14, 917–931. [Google Scholar] [CrossRef] [Green Version]
- Crews, K.R.; Gaedigk, A.; Dunnenberger, H.M.; Leeder, J.S.; Klein, T.E.; Caudle, K.E.; Haidar, C.E.; Shen, D.D.; Callaghan, J.T.; Sadhasivam, S.; et al. Clinical Pharmacogenetics Implementation Consortium Guidelines for Cytochrome P450 2D6 Genotype and Codeine Therapy: 2014 Update. Clin. Pharmacol. Ther. 2014, 95, 376–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miotto, K.; Cho, A.K.; Khalil, M.A.; Blanco, K.; Sasaki, J.D.; Rawson, R. Trends in Tramadol. Anesth. Analg. 2017, 124, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Ingelman-Sundberg, M.; Lauschke, V.M. Worldwide Distribution of Cytochrome P450 Alleles: A Meta-analysis of Population-scale Sequencing Projects. Clin. Pharmacol. Ther. 2017, 102, 688–700. [Google Scholar] [CrossRef] [Green Version]
- Ren, Z.-Y.; Xu, X.-Q.; Bao, Y.-P.; He, J.; Shi, L.; Deng, J.-H.; Gao, X.-J.; Tang, H.-L.; Wang, Y.-M.; Lu, L. The impact of genetic variation on sensitivity to opioid analgesics in patients with postoperative pain: A systematic review and meta-analysis. Pain Physician 2015, 18, 131–152. [Google Scholar] [PubMed]
- Comelon, M.; Raeder, J.; Drægni, T.; Lieng, M.; Lenz, H. Tapentadol versus oxycodone analgesia and side effects after laparoscopic hysterectomy. Eur. J. Anaesthesiol. 2021. [Google Scholar] [CrossRef]
- Wang, X.; Narayan, S.W.; Penm, J.; Patanwala, A.E. Efficacy and Safety of Tapentadol Immediate Release for Acute Pain. Clin. J. Pain 2020, 36, 399–409. [Google Scholar] [CrossRef]
- Wei, J.; Lane, N.E.; Bolster, M.B.; Dubreuil, M.; Zeng, C.; Misra, D.; Lu, N.; Choi, H.K.; Lei, G.; Zhang, Y. Association of Tramadol Use With Risk of Hip Fracture. J. Bone Miner. Res. 2020, 35, 631–640. [Google Scholar] [CrossRef] [PubMed]
- Romualdi, P.; Grilli, M.; Canonico, P.L.; Collino, M.; Dickenson, A.H. Pharmacological rationale for tapentadol therapy: A review of new evidence. J. Pain Res. 2019, 12, 1513–1520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, C.; Dubreuil, M.; LaRochelle, M.R.; Lu, N.; Wei, J.; Choi, H.K.; Lei, G.; Zhang, Y. Association of Tramadol With All-Cause Mortality Among Patients With Osteoarthritis. JAMA 2019, 321, 969–982. [Google Scholar] [CrossRef] [Green Version]
- Faria, J.; Barbosa, J.; Moreira, R.; Queirós, O.; Carvalho, F.; Dinis-Oliveira, R. Comparative pharmacology and toxicology of tramadol and tapentadol. Eur. J. Pain 2018, 22, 827–844. [Google Scholar] [CrossRef] [PubMed]
- Vadivelu, N.; Chang, D.; Helander, E.M.; Bordelon, G.J.; Kai, A.; Kaye, A.D.; Hsu, D.; Bang, D.; Julka, I. Ketorolac, Oxymorphone, Tapentadol, and Tramadol. Anesthesiol. Clin. 2017, 35, e1–e20. [Google Scholar] [CrossRef]
- Barbosa, J.; Faria, J.; Queirós, O.; Moreira, R.; Carvalho, F.; Dinis-Oliveira, R.J. Comparative metabolism of tramadol and tapentadol: A toxicological perspective. Drug Metab. Rev. 2016, 48, 577–592. [Google Scholar] [CrossRef]
- “Weak” Opioid Analgesics. Codeine, Dihydrocodeine and Tramadol: No Less Risky Than Morphine. Prescrire Int. 2016, 25, 45–50. Available online: https://www.ncbi.nlm.nih.gov/pubmed/27042732 (accessed on 14 September 2020).
- Brennan, M.J. The Clinical Implications of Cytochrome P450 Interactions with Opioids and Strategies for Pain Management. J. Pain Symptom Manag. 2012, 44, S15–S22. [Google Scholar] [CrossRef]
- Pergolizzi, J.V. Quantifying the impact of drug-drug interactions associated with opioids. Am. J. Manag. Care 2011, 17, 288–292. [Google Scholar]
- Li, P.H.; Ue, K.L.; Wagner, A.; Rutkowski, R.; Rutkowski, K. Opioid Hypersensitivity: Predictors of Allergy and Role of Drug Provocation Testing. J. Allergy Clin. Immunol. Pract. 2017, 5, 1601–1606. [Google Scholar] [CrossRef] [PubMed]
- Kalangara, J.; Vanijcharoenkarn, K.; Lynde, G.C.; McIntosh, N.; Kuruvilla, M. Approach to Perioperative Anaphylaxis in 2020: Updates in Diagnosis and Management. Curr. Allergy Asthma Rep. 2021, 21, 1–10. [Google Scholar] [CrossRef]
- Baldo, B.A.; Pham, N.H. Histamine-Releasing and Allergenic Properties of Opioid Analgesic Drugs: Resolving the Two. Anaesth. Intensiv. Care 2012, 40, 216–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powell, M.Z.; Mueller, S.W.; Reynolds, P.M. Assessment of Opioid Cross-reactivity and Provider Perceptions in Hospitalized Patients with Reported Opioid Allergies. Ann. Pharmacother. 2019, 53, 1117–1123. [Google Scholar] [CrossRef]
- Swarm, R.A.; Paice, J.A.; Anghelescu, D.L.; Are, M.; Bruce, J.Y.; Buga, S.; Chwistek, M.; Cleeland, C.; Craig, D.; Gafford, E.; et al. Adult Cancer Pain, Version 3.2019, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2019, 17, 977–1007. [Google Scholar] [CrossRef] [Green Version]
- Said, E.T.; Drueding, R.E.; Martin, E.I.; Furnish, T.J.; Meineke, M.N.; Sztain, J.F.; Abramson, W.B.; Swisher, M.W.; Jacobsen, G.R.; Gosman, A.A.; et al. The Implementation of an Acute Pain Service for Patients Undergoing Open Ventral Hernia Repair with Mesh and Abdominal Wall Reconstruction. World J. Surg. 2021, 45, 1102–1108. [Google Scholar] [CrossRef]
- Bui, B.T.; Grygiel, M.R.; Konstantatos, M.B.A.; Christelis, N.; Liew, M.B.S.; Hopkins, B.R.; Dooley, B.M. The impact of an innovative pharmacist-led inpatient opioid de-escalation intervention in post-operative orthopedic patients. J. Opioid Manag. 2020, 16, 167–176. [Google Scholar] [CrossRef]
- Lovasi, O.; Lám, J.; Kósik, N. Az akutfájdalom-kezelő szolgálat szerepe a műtét utáni fájdalomcsillapításban. Orvosi Hetil. 2020, 161, 575–581. [Google Scholar] [CrossRef] [Green Version]
- Mitra, S.; Jain, K.; Singh, J.; Jindal, S.; Saxena, P.; Singh, M.; Saroa, R.; Ahuja, V.; Kang, J.; Garg, S. Does an acute pain service improve the perception of postoperative pain management in patients undergoing lower limb surgery? A prospective controlled non-randomized study. J. Anaesthesiol. Clin. Pharmacol. 2020, 36, 187–194. [Google Scholar] [CrossRef]
- Said, E.T.; Sztain, J.F.; Abramson, W.B.; Meineke, M.N.; Furnish, T.J.; Schmidt, U.H.; Manecke, G.R.; Gabriel, R.A. A Dedicated Acute Pain Service Is Associated with Reduced Postoperative Opioid Requirements in Patients Undergoing Cytoreductive Surgery With Hyperthermic Intraperitoneal Chemotherapy. Anesth. Analg. 2018, 127, 1044–1050. [Google Scholar] [CrossRef]
- Zaccagnino, M.P.; Bader, A.M.; Sang, C.N.; Correll, D.J. The Perioperative Surgical Home. Anesth. Analg. 2017, 125, 1394–1402. [Google Scholar] [CrossRef] [PubMed]
- Hall, K.R.; Stanley, A.Y. Literature Review: Assessment of Opioid-related Sedation and the Pasero Opioid Sedation Scale. J. PeriAnesth. Nurs. 2019, 34, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Jungquist, C.R.; Quinlan-Colwell, A.; Vallerand, A.; Carlisle, H.L.; Cooney, M.; Dempsey, S.J.; Dunwoody, D.; Maly, A.; Meloche, K.; Meyers, A.; et al. American Society for Pain Management Nursing Guidelines on Monitoring for Opioid-Induced Advancing Sedation and Respiratory Depression: Revisions. Pain Manag. Nurs. 2020, 21, 7–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jungquist, C.R.; Smith, K.; Nicely, K.L.W.; Polomano, R.C. Monitoring Hospitalized Adult Patients for Opioid-Induced Sedation and Respiratory Depression. AJN Am. J. Nurs. 2017, 117, S27–S35. [Google Scholar] [CrossRef]
- Lam, T.; Nagappa, M.; Wong, J.; Singh, M.; Wong, D.; Chung, F. Continuous Pulse Oximetry and Capnography Monitoring for Postoperative Respiratory Depression and Adverse Events. Anesth. Analg. 2017, 125, 2019–2029. [Google Scholar] [CrossRef]
- Steele, T.; Eidem, L.; Bond, J. Impact of Adoption of Smart Pump System with Continuous Capnography Monitoring on Opioid-Related Adverse Event Rates: Experience From a Tertiary Care Hospital. J. Patient Saf. 2019, 16, e194–e198. [Google Scholar] [CrossRef]
- Kim, B.; Nolan, S.; Beaulieu, T.; Shalansky, S.; Ti, L. Inappropriate opioid prescribing practices: A narrative review. Am. J. Health Pharm. 2019, 76, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Parhami, I.; Massey, J.; Trimzi, I.; Huckshorn, K.; Gallucci, G. Risks Associated with Co-Prescribing Opioids and Benzodiazepines and Delaware’s Prescription Drug Monitoring Program. Del. Med. J. 2015, 87, 270–274. [Google Scholar]
- Weinstein, S.; Poultsides, L.; Baaklini, L.; Mörwald, E.; Cozowicz, C.; Saleh, J.; Arrington, M.; Poeran, J.; Zubizarreta, N.; Memtsoudis, S. Postoperative delirium in total knee and hip arthroplasty patients: A study of perioperative modifiable risk factors. Br. J. Anaesth. 2018, 120, 999–1008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rade, M.C.; YaDeau, J.T.; Ford, C.; Reid, M.C. Postoperative Delirium in Elderly Patients After Elective Hip or Knee Arthroplasty Performed Under Regional Anesthesia. HSS J. 2011, 7, 151–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizk, P.; Morris, W.; Oladeji, P.; Huo, M. Review of Postoperative Delirium in Geriatric Patients Undergoing Hip Surgery. Geriatr. Orthop. Surg. Rehabil. 2016, 7, 100–105. [Google Scholar] [CrossRef] [Green Version]
- Rogers, E.; Mehta, S.; Shengelia, R.; Reid, M.C. Four Strategies for Managing Opioid-Induced Side Effects in Older Adults. Clin. Geriatr. 2013, 21. [Google Scholar]
- American Society of Anesthesiologists Task Force on Neuraxial Opioids. Practice Guidelines for the Prevention, Detection, and Management of Respiratory Depression Associated with Neuraxial Opioid Administration. Anesthesiology 2016, 124, 535–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller-Lissner, S.; Bassotti, G.; Coffin, B.; Drewes, A.M.; Breivik, H.; Eisenberg, E.; Emmanuel, A.; Laroche, F.; Meissner, W.; Morlion, B. Opioid-Induced Constipation and Bowel Dysfunction: A Clinical Guideline. Pain Med. 2016, 18, 1837–1863. [Google Scholar] [CrossRef] [Green Version]
- Drewes, A.M.; Munkholm, P.; Simrén, M.; Breivik, H.; Kongsgaard, U.E.; Hatlebakk, J.G.; Agreus, L.; Friedrichsen, M.; Christrup, L.L. Definition, diagnosis and treatment strategies for opioid-induced bowel dysfunction–Recommendations of the Nordic Working Group. Scand. J. Pain 2016, 11, 111–122. [Google Scholar] [CrossRef] [Green Version]
- Alvaro, D.; Caraceni, A.T.; Coluzzi, F.; Gianni, W.; Lugoboni, F.; Marinangeli, F.; Massazza, G.; Pinto, C.; Varrassi, G. What to Do and What Not to Do in the Management of Opioid-Induced Constipation: A Choosing Wisely Report. Pain Ther. 2020, 9, 657–667. [Google Scholar] [CrossRef]
- Yue, C.; Liu, Y.; Zhang, X.; Xu, B.; Sheng, H. Randomised controlled trial of a comprehensive protocol for preventing constipation following total hip arthroplasty. J. Clin. Nurs. 2020, 29, 2863–2871. [Google Scholar] [CrossRef]
- Woelk, C.J. The hand that writes the opioid. Can. Fam. Physician Med. Fam. Can. 2007, 53, 1015–1017. [Google Scholar]
- Schwenk, E.S.; Grant, A.E.; Torjman, M.C.; McNulty, S.E.; Baratta, J.L.; Viscusi, E.R. The Efficacy of Peripheral Opioid Antagonists in Opioid-Induced Constipation and Postoperative Ileus. Reg. Anesth. Pain Med. 2017, 42, 767–777. [Google Scholar] [CrossRef] [PubMed]
- Nishie, K.; Yamamoto, S.; Yamaga, T.; Horigome, N.; Hanaoka, M. Peripherally acting μ-opioid antagonist for the treatment of opioid-induced constipation: Systematic review and meta-analysis. J. Gastroenterol. Hepatol. 2018, 34, 818–829. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, Z.H.; Bogdanovski, D.A.; Paglinco, S.R.; Barratt-Stopper, P.; Rolandelli, R.H. Cost and efficacy examination of alvimopan for the prevention of postoperative ileus. J. Investig. Med. 2017, 65, 949–952. [Google Scholar] [CrossRef]
- Kelley, S.R.; Wolff, B.G.; Lovely, J.K.; Larson, D.W. Fast-track pathway for minimally invasive colorectal surgery with and without alvimopan (Entereg)TM: Which is more cost-effective? Am. Surg. 2013, 79, 630–633. Available online: https://www.ncbi.nlm.nih.gov/pubmed/23711275 (accessed on 14 September 2020). [CrossRef] [PubMed]
- Goodstein, T.; Launer, B.; White, S.; Lyon, M.; George, N.; Deronde, K.; Burke, M.; O’Donnell, C.; Lyda, C.; Kiser, T.H.; et al. A Retrospective Study of Patients Undergoing Radical Cystectomy and Receiving Peri-Operative Naloxegol or Alvimopan: Comparison of Length of Stay. J. Surg. 2018, 6, 129–134. [Google Scholar] [CrossRef] [Green Version]
- Marciniak, C.M.; Toledo, S.; Lee, J.; Jesselson, M.; Bateman, J.; Grover, B.; Tierny, J. Lubiprostonevs Sennain postoperative orthopedic surgery patients with opioid-induced constipation: A double-blind, active-comparator trial. World J. Gastroenterol. 2014, 20, 16323–16333. [Google Scholar] [CrossRef] [PubMed]
- De Boer, H.D.; Detriche, O.; Forget, P. Opioid-related side effects: Postoperative ileus, urinary retention, nausea and vomiting, and shivering. A review of the literature. Best Pract. Res. Clin. Anaesthesiol. 2017, 31, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Tubog, T.D.; Harenberg, J.L.; Buszta, K.; Hestand, J.D. Prophylactic Nalbuphine to Prevent Neuraxial Opioid-Induced Pruritus: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. PeriAnesth. Nurs. 2019, 34, 491–501.e8. [Google Scholar] [CrossRef] [PubMed]
- Jannuzzi, R.G. Nalbuphine for Treatment of Opioid-induced Pruritus. Clin. J. Pain 2016, 32, 87–93. [Google Scholar] [CrossRef] [PubMed]
- McNicol, E.D.; Ferguson, M.C.; Hudcova, J. Patient controlled opioid analgesia versus non-patient controlled opioid analgesia for postoperative pain. Cochrane Database Syst. Rev. 2015, 2015, CD003348. [Google Scholar] [CrossRef]
- Mancini, R.; Filicetti, M. Pain management of opioid-tolerant patients undergoing surgery. Am. J. Health Pharm. 2010, 67, 872–875. [Google Scholar] [CrossRef]
- Oliver, J.; Coggins, C.; Compton, P.; Hagan, S.; Matteliano, D.; Stanton, M.; Marie, B.S.; Strobbe, S.; Turner, H.N. American Society for Pain Management Nursing Position Statement: Pain Management in Patients with Substance Use Disorders. Pain Manag. Nurs. 2012, 13, 169–183. [Google Scholar] [CrossRef] [Green Version]
- Li, W.T.; Bell, K.L.; Yayac, M.; Barmann, J.A.; Star, A.M.; Austin, M.S. A Postdischarge Multimodal Pain Management Cocktail Following Total Knee Arthroplasty Reduces Opioid Consumption in the 30-Day Postoperative Period: A Group-Randomized Trial. J. Arthroplast. 2021, 36, 164–172.e2. [Google Scholar] [CrossRef]
- MacPherson, R.; Pattullo, G. Management of postsurgical pain in the community. Aust. Prescr. 2020, 43, 191–194. [Google Scholar] [CrossRef]
- Hill, M.V.; McMahon, M.L.; Stucke, R.S.; Barth, R.J. Wide Variation and Excessive Dosage of Opioid Prescriptions for Common General Surgical Procedures. Ann. Surg. 2017, 265, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Vu, J.V.; Howard, R.A.; Gunaseelan, V.; Brummett, C.M.; Waljee, J.F.; Englesbe, M.J. Statewide Implementation of Postoperative Opioid Prescribing Guidelines. N. Engl. J. Med. 2019, 381, 680–682. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.V.; Stucke, R.S.; Billmeier, S.E.; Kelly, J.L.; Barth, R.J. Guideline for Discharge Opioid Prescriptions after Inpatient General Surgical Procedures. J. Am. Coll. Surg. 2018, 226, 996–1003. [Google Scholar] [CrossRef] [PubMed]
- Thiels, C.A.; Ubl, D.S.; Yost, K.J.; Dowdy, S.C.; Mabry, T.M.; Gazelka, H.M.; Cima, R.R.; Habermann, E.B. Results of a Prospective, Multicenter Initiative Aimed at Developing Opioid-prescribing Guidelines After Surgery. Ann. Surg. 2018, 268, 457–468. [Google Scholar] [CrossRef]
- Kelley-Quon, L.I.; Kirkpatrick, M.G.; Ricca, R.L.; Baird, R.; Harbaugh, C.M.; Brady, A.; Garrett, P.; Wills, H.; Argo, J.; Diefenbach, K.A.; et al. Guidelines for Opioid Prescribing in Children and Adolescents After Surgery. JAMA Surg. 2021, 156, 76. [Google Scholar] [CrossRef]
- Genord, C.; Frost, T.; Eid, D. Opioid exit plan: A pharmacist’s role in managing acute postoperative pain. J. Am. Pharm. Assoc. 2017, 57, S92–S98. [Google Scholar] [CrossRef] [Green Version]
- Brandal, D.; Keller, M.S.; Lee, C.; Grogan, T.; Fujimoto, Y.; Gricourt, Y.; Yamada, T.; Rahman, S.; Hofer, I.; Kazanjian, K.; et al. Impact of Enhanced Recovery After Surgery and Opioid-Free Anesthesia on Opioid Prescriptions at Discharge From the Hospital. Anesth. Analg. 2017, 125, 1784–1792. [Google Scholar] [CrossRef] [PubMed]
- Loomis, E.; McNaughton, D.B.; Genord, C.K. A Quality Improvement Initiative Addressing Safe Opioid Prescribing and Disposal Post-Cesarean Delivery. Pain Manag. Nurs. in press.
- Kumar, K.; Gulotta, L.V.; Dines, J.S.; Allen, A.A.; Cheng, J.; Fields, K.G.; YaDeau, J.T.; Wu, C.L. Unused Opioid Pills After Outpatient Shoulder Surgeries Given Current Perioperative Prescribing Habits. Am. J. Sports Med. 2017, 45, 636–641. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, B.P.; Mayman, D.J.; Jerabek, S.A.; Sculco, P.K.; Haas, S.B.; Ast, M.P. Reduction of Opioids Prescribed Upon Discharge After Total Knee Arthroplasty Significantly Reduces Consumption: A Prospective Study Comparing Two States. J. Arthroplast. 2021, 36, 160–163. [Google Scholar] [CrossRef] [PubMed]
- Wyles, C.C.; Hevesi, M.; Ubl, D.S.; Habermann, E.B.; Gazelka, H.M.; Trousdale, R.T.; Turner, N.S.; Pagnano, M.W.; Mabry, T.M. Implementation of Procedure-Specific Opioid Guidelines. JBJS Open Access 2020, 5, e0050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pena, J.J.; Chen, C.J.; Clifford, H.; Xue, Z.; Wang, S.; Argenziano, M.; Landau, R.; Meng, M.-L. Introduction of an Analgesia Prescription Guideline Can Reduce Unused Opioids After Cardiac Surgery: A Before and After Cohort Study. J. Cardiothorac. Vasc. Anesth. 2020. [Google Scholar] [CrossRef] [PubMed]
- Solouki, S.; Vega, M.; Agalliu, I.; Abraham, N.E. Patient Satisfaction and Refill Rates After Decreasing Opioids Prescribed for Urogynecologic Surgery. Female Pelvic Med. Reconstr. Surg. 2020, 26, e78–e82. [Google Scholar] [CrossRef]
- Fleischman, A.N.; Tarabichi, M.; Foltz, C.; Makar, G.; Hozack, W.J.; Austin, M.S.; Chen, A.F.; Star, A.M.; Greenky, M.; Henstenburg, B.; et al. Cluster-Randomized Trial of Opiate-Sparing Analgesia after Discharge from Elective Hip Surgery. J. Am. Coll. Surg. 2019, 229, 335–345.e5. [Google Scholar] [CrossRef] [Green Version]
- Hartford, L.B.; Van Koughnett, J.A.M.; Murphy, P.B.; Knowles, S.A.; Wigen, R.B.; Allen, L.J.; Clarke, C.F.M.; Brackstone, M.; Gray, D.K.; Maciver, A.H. The Standardization of Outpatient Procedure (STOP) Narcotics: A Prospective Health Systems Intervention to Reduce Opioid Use in Ambulatory Breast Surgery. Ann. Surg. Oncol. 2019, 26, 3295–3304. [Google Scholar] [CrossRef]
- Holte, A.J.; Carender, C.N.; Noiseux, N.O.; Otero, J.E.; Brown, T.S. Restrictive Opioid Prescribing Protocols Following Total Hip Arthroplasty and Total Knee Arthroplasty Are Safe and Effective. J. Arthroplast. 2019, 34, S135–S139. [Google Scholar] [CrossRef] [PubMed]
- Choo, K.J.; Grace, T.R.; Khanna, K.; Barry, J.; Hansen, E.N. A Goal-directed Quality Improvement Initiative to Reduce Opioid Prescriptions After Orthopaedic Procedures. JAAOS Glob. Res. Rev. 2019, 3, e109. [Google Scholar] [CrossRef] [PubMed]
- Wyles, C.C.; Hevesi, M.; Trousdale, E.R.; Ubl, D.S.; Gazelka, H.M.; Habermann, E.B.; Trousdale, R.T.; Pagnano, M.W.; Mabry, T.M. The 2018 Chitranjan S. Ranawat, MD Award: Developing and Implementing a Novel Institutional Guideline Strategy Reduced Postoperative Opioid Prescribing After TKA and THA. Clin. Orthop. Relat. Res. 2019, 477, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, N.J.; Ashraf, S. Intestinal Anastomosis (Chapter 29). 2008. Available online: http://www.acssurgery.com/acs/Chapters/CH0529.htm (accessed on 13 December 2020).
- Lawrence, A.E.; Carsel, A.J.; Leonhart, K.L.; Richards, H.W.; Harbaugh, C.M.; Waljee, J.F.; McLeod, D.J.; Walz, P.C.; Minneci, P.C.; Deans, K.J.; et al. Effect of Drug Disposal Bag Provision on Proper Disposal of Unused Opioids by Families of Pediatric Surgical Patients. JAMA Pediatr. 2019, 173, e191695. [Google Scholar] [CrossRef]
- Hite, M.; Dippre, A.; Heldreth, A.; Cole, D.; Lockett, M.; Klauber-Demore, N.; Abbott, A.M. A Multifaceted Approach to Opioid Education, Prescribing, and Disposal for Patients with Breast Cancer Undergoing Surgery. J. Surg. Res. 2021, 257, 597–604. [Google Scholar] [CrossRef] [PubMed]
- Ramel, C.L.; Habermann, E.B.; Thiels, C.A.; Dierkhising, R.A.; Cunningham, J.L. Provision of a Drug Deactivation System for Unused Opioid Disposal at Surgical Dismissal. Mayo Clin. Proc. Innov. Qual. Outcomes 2020, 4, 357–361. [Google Scholar] [CrossRef]
- US Food and Drug Administration. Where and How to Dispose of Unused Medicines. 10 September 2020. Available online: https://www.fda.gov/consumers/consumer-updates/where-and-how-dispose-unused-medicines (accessed on 8 January 2021).
- US Environmental Protection Agency. How to Dispose of Medicines Properly. In April 2011. Available online: https://archive.epa.gov/region02/capp/web/pdf/ppcpflyer.pdf (accessed on 8 January 2021).
- Wilson, N.; Kariisa, M.; Seth, P.; Smith, H.; Davis, N.L. Drug and Opioid-Involved Overdose Deaths—United States, 2017–2018. MMWR. Morb. Mortal. Wkly. Rep. 2020, 69, 290–297. [Google Scholar] [CrossRef] [Green Version]
- Mudumbai, S.C.; Lewis, E.T.; Oliva, E.M.; Chung, P.D.; Harris, B.; Trafton, J.; Mariano, E.R.; Wagner, T.; Clark, J.D.; Stafford, R.S. Overdose Risk Associated with Opioid Use upon Hospital Discharge in Veterans Health Administration Surgical Patients. Pain Med. 2018, 20, 1020–1031. [Google Scholar] [CrossRef] [Green Version]
- Han, J.K.; Hill, L.G.; Koenig, M.E.; Das, N. Naloxone Counseling for Harm Reduction and Patient Engagement. Fam. Med. 2017, 49, 730–733. [Google Scholar]
- Punzal, M.; Santos, P.; Li, X.; Oyler, D.R.; Hall, A.M. Current practices in naloxone prescribing upon hospital discharge. J. Opioid Manag. 2019, 15, 357–361. [Google Scholar] [CrossRef]
- Shah, A.; Hayes, C.J.; Martin, B.C. Characteristics of Initial Prescription Episodes and Likelihood of Long-Term Opioid Use—United States, 2006–2015. MMWR. Morb. Mortal. Wkly. Rep. 2017, 66, 265–269. [Google Scholar] [CrossRef] [Green Version]
- Stapler, S.J.; Brockhaus, K.K.; Battaglia, M.A.; Mahoney, S.T.; McClure, A.M.; Cleary, R.K. A single institution analysis of targeted colorectal surgery enhanced recovery pathway strategies that decrease readmissions. Dis. Colon Rectum. in press.
- L’Hermite, J.; Pagé, M.G.; Chevallier, T.; Occean, B.; Viel, E.; Bredeau, O.; Lefrant, J.-Y.; Cuvillon, P. Characterisation of pragmatic postoperative PAin trajectories over seven days and their association with CHronicity after 3 months: A prospective, pilot cohort study (PATCH study). Anaesth. Crit. Care Pain Med. 2020, 40, 100793. [Google Scholar] [CrossRef]
- Ellis, J.L.; Ghiraldi, E.M.; Cohn, J.A.; Nitti, M.; Friedlander, J.I.; Ginzburg, S.; Sterious, S.N.; Abbosh, P.; Ohmann, E.; Uzzo, R.G.; et al. Prescribing Trends in Post-operative Pain Management After Urologic Surgery: A Quality Care Investigation for Healthcare Providers. Urology 2021. [Google Scholar] [CrossRef] [PubMed]
- Phillips, D.M. JCAHO Pain Management Standards Are Unveiled. JAMA 2000, 284, 428–429. [Google Scholar] [CrossRef]
- Porter, J.; Jick, H. Addiction Rare in Patients Treated with Narcotics. N. Engl. J. Med. 1980, 302, 123. [Google Scholar] [CrossRef] [PubMed]
- Society, A.P. Principles of analgesic use in the treatment of acute pain and cancer pain. Am. Pain Soc. 1999, 9, 601–612. [Google Scholar]
- Scher, C.; Meador, L.; Van Cleave, J.H.; Reid, M.C. Moving Beyond Pain as the Fifth Vital Sign and Patient Satisfaction Scores to Improve Pain Care in the 21st Century. Pain Manag. Nurs. 2018, 19, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Lucas, C.E.; Vlahos, A.L.; Ledgerwood, A.M. Kindness Kills: The Negative Impact of Pain as the Fifth Vital Sign. J. Am. Coll. Surg. 2007, 205, 101–107. [Google Scholar] [CrossRef]
- Chee, T.T.; Ryan, A.M.; Wasfy, J.H.; Borden, W.B. Current State of Value-Based Purchasing Programs. Circulation 2016, 133, 2197–2205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, J.; Bledsoe, G.H.; Armstrong, J.H. Are Pain Management Questions in Patient Satisfaction Surveys Driving the Opioid Epidemic? Am. J. Public Health 2016, 106, 985–986. [Google Scholar] [CrossRef]
- Anson, P. AMA Drops Pain as Vital Sign—Pain News Network. Pain News Network; 16 Jun 2016. Available online: https://www.painnewsnetwork.org/stories/2016/6/16/ama-drops-pain-as-vital-sign (accessed on 1 January 2021).
- Thompson, C.A. HCAHPS survey to measure pain communication, not management. Am. J. Health Pharm. 2017, 74, 1924–1926. [Google Scholar] [CrossRef]
- Wen, H.; Hockenberry, J.M.; Jeng, P.J.; Bao, Y. Prescription Drug Monitoring Program Mandates: Impact on Opioid Prescribing and Related Hospital Use. Health Aff. 2019, 38, 1550–1556. [Google Scholar] [CrossRef]
- Hospital Compare. In the Center for Medicare and Medicaid Services. Available online: https://www.cms.gov/Medicare/Quality-Initiatives-Patient-Assessment-Instruments/HospitalQualityInits/HospitalCompare (accessed on 2 January 2021).
- Leapfrog Hospital Safety Grade. In Leapfrod Group. 25 March 2016. Available online: https://www.leapfroggroup.org/data-users/leapfrog-hospital-safety-grade (accessed on 2 January 2021).
- Huesch, M.D.; Currid-Halkett, E.; Doctor, J.N. Public hospital quality report awareness: Evidence from National and Californian Internet searches and social media mentions, 2012. BMJ Open 2014, 4, e004417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Hara, L.M.; Caturegli, I.; O’Hara, N.N.; O’Toole, R.V.; Dalury, D.F.; Harris, A.D.; Manson, T.T. What publicly available quality metrics do hip and knee arthroplasty patients care about most when selecting a hospital in Maryland: A discrete choice experiment. BMJ Open 2019, 9, e028202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Quality Partners PlaybookTM: Opioid Stewardship. Available online: https://store.qualityforum.org/products/national-quality-partners-playbook%E2%84%A2-opioid-stewardship (accessed on 1 January 2021).
- Ghafoor, V.L.; Phelps, P.K.; Pastor, I.J.; Meisel, S. Transformation of Hospital Pharmacist Opioid Stewardship. Hosp. Pharm. 2019, 54, 266–273. [Google Scholar] [CrossRef]
- Quinlan, J.; Rann, S.; Bastable, R.; Levy, N. Perioperative opioid use and misuse. Clin. Med. 2019, 19, 441–445. [Google Scholar] [CrossRef]
- Phelps, P.; Achey, T.S.; Mieure, K.D.; Cuellar, L.; MacMaster, H.; Pecho, R.; Ghafoor, V. A Survey of Opioid Medication Stewardship Practices at Academic Medical Centers. Hosp. Pharm. 2018, 54, 57–62. [Google Scholar] [CrossRef]
- Rizk, E.; Swan, J.T.; Fink, E. Prioritization of quality indicators for opioid stewardship. Am. J. Health Pharm. 2019, 76, 1458–1459. [Google Scholar] [CrossRef]
- Tichy, E.M.; Schumock, G.T.; Hoffman, J.M.; Suda, K.J.; Rim, M.H.; Tadrous, M.; Stubbings, J.; Cuellar, S.; Clark, J.S.; Wiest, M.D.; et al. National trends in prescription drug expenditures and projections for 2020. Am. J. Health Pharm. 2020, 77, 1213–1230. [Google Scholar] [CrossRef]
- Hyland, S.J.; Kramer, B.J. Curbing the enthusiasm: Stewardship of high risk, high-cost drugs in perioperative settings. In Proceedings of the American College of Clinical Pharmacy Annual Meeting, Seattle, WA, USA, 22 October 2018. [Google Scholar]
- Patel, G.P.; Hyland, S.J.; Birrer, K.L.; Wolfe, R.C.; Lovely, J.K.; Smith, A.N.; Dixon, R.L.; Johnson, E.G.; Gaviola, M.L.; Giancarelli, A.; et al. Perioperative clinical pharmacy practice: Responsibilities and scope within the surgical care continuum. J. Am. Coll. Clin. Pharm. 2019, 3, 501–519. [Google Scholar] [CrossRef]
- Oddis, J.A. Report of the ASHP Opioid Task Force. Am. J. Health Pharm. 2020, 77, 1158–1165. [Google Scholar] [CrossRef]
- Coulson, E.E.; Kral, L.A. The Clinical Pharmacist’s Role in Perioperative Surgical Pain Management. J. Pain Palliat. Care Pharmacother. 2020, 34, 120–126. [Google Scholar] [CrossRef]
- Hyland, S.J.; Kramer, B.J.; Fada, R.A.; Lucki, M.M. Clinical Pharmacist Service Associated With Improved Outcomes and Cost Savings in Total Joint Arthroplasty. J. Arthroplast. 2020, 35, 2307.e1–2317.e1. [Google Scholar] [CrossRef]
- Poirier, R.H.; Brown, C.S.; Baggenstos, Y.T.; Walden, S.G.; Gann, N.Y.; Patty, C.M.; Sandoval, R.A.; McNulty, J.R. Impact of a pharmacist-directed pain management service on inpatient opioid use, pain control, and patient safety. Am. J. Health Pharm. 2018, 76, 17–25. [Google Scholar] [CrossRef]
- Brown, R.F.; Brockhaus, K.; Rajkumar, D.; Battaglia, M.; Cleary, R.K. Postoperative Pain After Enhanced Recovery Pathway Robotic Colon and Rectal Surgery, Diseases of the Colon & Rectum: 26 January 2021–Volume Publish Ahead of Print–Issue. Available online: https://journals.lww.com/dcrjournal/Abstract/9000/Postoperative_Pain_After_Enhanced_Recovery_Pathway.99586.aspx (accessed on 13 January 2021). [CrossRef]
- Hefti, E.; Remington, M.; Lavallee, C. Hospital consumer assessment of healthcare providers and systems scores relating to pain following the incorporation of clinical pharmacists into patient education prior to joint replacement surgery. Pharm. Pract. 2017, 15, 1071. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Hu, Q.; Yang, J. Oliceridine for the Management of Acute Postoperative Pain. Ann. Pharmacother. 2021. [Google Scholar] [CrossRef]
- Bergese, S.D.; Brzezinski, M.; Hammer, G.B.; Beard, T.L.; Pan, P.H.; Mace, S.E.; Berkowitz, R.D.; Cochrane, K.; Wase, L.; Minkowitz, H.S.; et al. ATHENA: A Phase 3, Open-Label Study Of The Safety And Effectiveness Of Oliceridine (TRV130), A G-Protein Selective Agonist At The μ-Opioid Receptor, In Patients With Moderate To Severe Acute Pain Requiring Parenteral Opioid Therapy. J. Pain Res. 2019, 12, 3113–3126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hakim, L.; Nahar, N.; Saha, M.; Islam, M.S.; Reza, H.M.; Sharker, S.M. Local drug delivery from surgical thread for area-specific anesthesia. Biomed. Phys. Eng. Express 2020, 6, 015028. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, R.A.; Ilfeld, B.M. Acute postoperative pain management with percutaneous peripheral nerve stimulation: The SPRINT neuromodulation system. Expert Rev. Med. Devices 2021, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Inoue, R.; Nishizawa, D.; Hasegawa, J.; Nakayama, K.; Fukuda, K.; Ichinohe, T.; Mieda, T.; Tsujita, M.; Nakagawa, H.; Kitamura, A.; et al. Effects of rs958804 and rs7858836 single-nucleotide polymorphisms of the ASTN2 gene on pain-related phenotypes in patients who underwent laparoscopic colectomy and mandibular sagittal split ramus osteotomy. Neuropsychopharmacol. Rep. 2021. [Google Scholar] [CrossRef]
- Kost, J.A.; Ruaño, G. Pharmacogenetics and the Personalization of Pain Management: A Potential Role in Precision Opioid Treatment. Conn Med. 2020, 84, 13–18. Available online: http://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=00106178&AN=141394148&h=WC%2F%2Fj3BfxC2wXRUHETAEgOc8WWLzGjPsSIu5o%2B5CYrADbW1dD9RcXpItvR%2FougtY3a4MTecX%2FdaoMpY7Chi4Zg%3D%3D&crl=c (accessed on 1 January 2021).
- Chen, Y.K.; Boden, K.A.; Schreiber, K.L. The role of regional anaesthesia and multimodal analgesia in the prevention of chronic postoperative pain: A narrative review. Anaesthesia 2021, 76, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Ardeljan, L.D.; Waldfogel, J.M.; Bicket, M.C.; Hunsberger, J.B.; Vecchione, T.M.; Arwood, N.; Eid, A.; Hatfield, L.A.; McNamara, L.; Duncan, R.; et al. Current state of opioid stewardship. Am. J. Health Pharm. 2020, 77, 636–643. [Google Scholar] [CrossRef] [PubMed]
Drug | Equianalgesic Doses (mg) | |
---|---|---|
IV/IM/SC 1 Dose | PO/SL Dose | |
Oxycodone 2 | 10 | 20 |
Hydrocodone 3 | N/A | 25 |
Hydromorphone 4 | 2 | 5 |
Morphine 3 | 10 | 25 |
Fentanyl | 0.15 | N/A |
Oxymorphone | 1 | 10 |
Tapentadol | N/A | 100 |
Tramadol 2 | 100 | 120 |
Step 1: Classify Preoperative Opioid Exposure and Presence of Risk Modifiers | ||
---|---|---|
Opioid-Naïve | No opioid exposure | In the 90 days prior to DOS |
Opioid-Exposed | Any opioid exposure <60 MED | In the 90 days prior to DOS |
Opioid-Tolerant | Any opioid exposure ≥60 MED | In the 7 days prior to DOS |
+ Modifiers | + Uncontrolled psychiatric conditions (e.g., depression, anxiety) + Behavioral tendencies likely to impact pain control (e.g., pain catastrophizing, low self-efficacy) + History of SUD (e.g., substance dependency, alcohol or opioid use disorders) + Surgical procedure associated with persistent postop pain (e.g., thoracotomy, spinal fusion) | |
Step 2: Stratify Risk for Perioperative ORAEs | ||
Opioid-Naïve | + No modifiers | → Low Risk |
+ 1 modifier | → Moderate Risk | |
+ ≥2 modifiers | → High Risk | |
Opioid-Exposed | + No modifiers | → Moderate Risk |
+ ≥1 modifier(s) | → High Risk | |
Opioid-Tolerant | + No or any modifiers | → High Risk |
Step 3: Recommend Risk-Stratified Pre-Admission Optimization | ||
Low Risk | Preoperative education and perioperative multimodal analgesia | |
Moderate Risk | Preoperative education and perioperative multimodal analgesia + | |
Preoperative psychological optimization | ||
High Risk | Preoperative education and perioperative multimodal analgesia + | |
Preoperative psychological optimization + | ||
Preoperative referral to perioperative pain specialist |
Medication | Perioperative Plan 1 | Postoperative Plan 1 |
---|---|---|
Long-acting pure mu-opioid agonists for chronic pain (e.g., OxyContin®), including continuous transdermal use (e.g., Duragesic®) or intrathecal infusions | Continue typical dose throughout periop period including on DOS, in addition to sufficient intraop analgesia | Continue typical dose and provide opioid-tolerant dosing for PRN opioid orders, consider PCA if expect significant pain |
Methadone | Continue typical dose throughout periop period including on DOS, in addition to sufficient intraop analgesia | Continue typical dose, may divide into q6-8hr dosing to maximize analgesic benefit Provide opioid-tolerant dosing for PRN opioid orders |
Buprenorphine oral, sublingual, and buccal formulations (e.g., Suboxone®, Subutex®, Belbuca®), including combination products with naloxone | Option 1: Continue typical dose 2 throughout periop period including on DOS, in addition to sufficient intraop analgesia | Continue typical dose and provide opioid-tolerant dosing for PRN opioid orders |
Option 2 (consider if high risk for relapse and/or very painful procedure): Continue typical dose through day prior to surgery; temporarily increase and/or divide dosing into shorter intervals starting DOS, in addition to sufficient intraop analgesia | Continue increased and/or divided buprenorphine regimen and use opioid-tolerant dosing for PRN opioid orders Discharge on original/typical buprenorphine regimen with sufficient opioid-tolerant PRN opioid supply | |
Buprenorphine transdermal patch, subdermal implant, or subcutaneous implant (e.g., Butrans®, Probuphine®) | Continue typical dose throughout periop period including on DOS, in addition to sufficient intraop analgesia | Continue typical dose and provide opioid-tolerant dosing for PRN opioid orders |
Naltrexone oral formulations (e.g., ReVia®, Contrave®) | Discontinue 3 days prior to surgery and hold on DOS, provide usual intraop analgesia | Continue to hold therapy postop, provide opioid-naïve dosing for PRN opioid orders with close monitoring 3 Discontinue naltrexone at discharge and reinitiate with outpatient prescriber after pain recovery complete |
Naltrexone extended-release IM injection (e.g., Vivitrol®) | Ideally schedule surgery for ≥4 weeks after last injection and hold throughout periop period, provide usual intraop analgesia |
Drug 1 | Dose | Exclusions 2 and Comments |
---|---|---|
Acetaminophen | 975 mg | Exclude in patients with acute decompensated liver failureDo not exclude in patients with chronic liver disease |
Celecoxib 3 | 400 mg if <65 years old, 200 mg if ≥65 years old | Exclude in patients with any current or preexisting renal impairment and in those undergoing cardiac surgery Do not exclude due to sulfa allergies |
Gabapentin | 300 mg if <65 years old, 100–300 mg if ≥65 years old or if any renal impairment | May consider avoiding in patients at high risk of respiratory depression, delirium, or dizziness, if risks outweigh opioid-sparing benefits |
Drug [refs] | Dosing 1 | Potential Benefits | Monitoring and Cautions 2 |
---|---|---|---|
Lidocaine [15,18,26,33,57,261,288,289,290,291,292,301,302,303,304,305,306,307] | 0.5–1.5 mg/kg loading dose over 10 min then 1–1.5 mg/kg/h infusion through end of procedure Infusions continued or instated postop at 0.5–1 mg/min in some protocols with appropriate monitoring, though some recommend limiting to ≤24 h Always dose based on IBW and do not exceed max exposure of 120 mg/hr | Provides improved pain control, decreased opioid use May decrease risk of persistent postop pain, increase functional recovery, decrease ORAEs, and hasten bowel recovery May decrease cancer recurrence, though further study is needed | Avoid in patients with significant end organ dysfunction, certain cardiac abnormalities 3, uncontrolled seizure disorders, electrolyte imbalances, during pregnancy, and in those weighing <40 kg Unsafe to combine with most local anesthetic-based regional anesthesia techniques or topical patches (see discussion) Monitoring protocols for cardiac function and LAST prevention |
Ketamine [15,18,25,33,217,261,308,309,310] | 0.1–0.35 mg/kg bolus followed by intraop infusion at 0.1–1 mg/kg/h, and/or postop infusion at 0.1–0.5 mg/kg/h Alternatively, consider 5–10 mg boluses q1hr prn | May decrease risk of persistent postop pain and hasten recovery times Improved pain control and decreased opioid useEvidence of benefits in opioid-tolerant patients Can be given intranasally | Avoid in patients with severe or uncontrolled psychiatric, cardiovascular, or hepatic disease, and in pregnancy Avoid in acute hypertension or tachyarrhythmia and in decompensated patients with high shock index |
Magnesium [33,297,298,309,311,312,313,314] | 1–3 g loading dose over 15 min then 0.5–1 g/h during procedure | May improve antinociception and reduce sedative and opioid requirements similarly to ketamine | Important to monitor BP, HR, RR, and muscle relaxation Caution or avoid in renal insufficiency, neuromuscular disorders, electrolyte imbalances, bradyarrhythmias, hypotension or at high risk for hemodynamic compromise |
Dexmed-etomidine [33,250,261,315,316,317,318,319,320,321,322] | 0.3–1 MCG/kg/h, with or without 0.5–0.6 MCG/kg loading dose over 10 min | May improve pain control, decrease opioid requirements, decrease delirium risk, and inhibit catecholamine surges to mitigate surgical stress and end organ damage, but data is limited | Dose- and rate-dependent bradycardia and hypotension: monitor and titrate carefully or avoid if susceptible May be comparable to IV when added to perineural or neuraxial injections instead, but safety unclear |
Esmolol [323,324,325] | 500 MCG/kg bolus followed by 5–50 MCG/kg/min infusion | May reduce postop pain scores, opioid use, and ORAEs, but evidence is currently limited | Patient selection and monitoring related to systemic beta blocker therapy should apply, including consideration of concomitant beta blocker/AV-nodal blocking therapies |
Dexamethasone [33,250,254,259,309,326,327,328,329,330,331,332,333] | 1–10 mg once at beginning of procedure | May prolong duration of regional anesthesia, reduce pain and opioid use | Systemic corticosteroid administration can contribute to postop hyperglycemia and demargination; comparable efficacy between IV and perineural administration |
Methadone [334,335,336,337,338,339,340] | 0.1–0.3 mg/kg (max 30 mg) once at beginning of procedure | May have additional analgesic benefits similar to ketamine or neuropathic agents May be preferable to high-dose fentanyl or preemptive opioids | Duration of plasma half-life can exceed 24 h—monitor for ORAEs Caution in patients at risk for ventricular dysrhythmias given QTc-prolonging risk |
Medication (Route 1) | Application | Dose Range 2 | Comments |
---|---|---|---|
Acetaminophen (PO) | All patients without contraindication | 650 mg PO q4h while awake or 975 mg PO q6h2 | Selective use of the IV & PR routes may be appropriate, see discussion |
Anti-inflammatory—Choose one in all patients without contraindication (see Section 3.2) | |||
Celecoxib (PO) | 100–200 mg PO q12–24h2 | May be preferred to ibuprofen | |
Ketorolac (IV) | 15 mg IV q6h × 24h, max duration 5 days2 | Limit use to first 24–48 h, change to alternative when can take PO | |
Ibuprofen (PO) | 400 mg PO TID with meals or q6h2 | ||
Neuropathic Agent—Choose one in patients with significant pain or high opioid use, weighing patient-specific risks and benefits (see Section 3.2) | |||
Gabapentin (PO) | 100 mg PO TID, or 100 mg with breakfast and lunch plus 300 mg qHS dose2 | Opioid-sparing benefits must be weighed against patient-specific risks for sedation, respiratory depression, and dizziness | |
Pregabalin (PO) | 25–50 mg PO BID2 | ||
Oral As-needed Opioid—Choose one in patients undergoing painful procedures for duration of expected moderate-to-severe surgical pain, gradually decreasing dose during recovery period | |||
Oxycodone (PO) | Opioid-naïve: 5 mg PO q4 h PRN moderate-to-severe pain, may repeat 5 mg dose within 1 hr if ineffective (total available range 5–10 mg q4h PRN) | Initial dosing for opioid-tolerant patients should be based upon baseline opioid use, usually allowing for 25–100% increase from baseline exposure in immediate postop period 4 | |
Hydrocodone (PO) | Dosing as above, recognizing this is slightly lower analgesic potency (see Table 1) | Decrease or discontinue scheduled acetaminophen to avoid overexposure if using combination products | |
As-needed Opioid for Breakthrough pain—Choose one for first 24 h postop; if used frequently and/or needed beyond immediate recovery phase then assess for other causes of pain and/or increase primary as-needed opioid | |||
Oxycodone (SL) | 5 mg PO/SL q4 h PRN moderate-to-severe breakthrough pain | Consider “may repeat” dose and/or initial 10 mg dose for breakthrough pain in opioid-tolerant patients 4 | |
Hydromorphone (IV) | 0.2–0.5 mg IV/SC q3 h PRN moderate-to-severe breakthrough pain 3 | Only order IV opioids for severe breakthrough pain or absolute contraindications to oral analgesia Consider “may repeat” dose and/or initial 0.8–1 mg dose for breakthrough pain in opioid-tolerant patients | |
NMDA Antagonist—Consider in severely painful procedures, in opioid-tolerant patients, or in cases of pain-sedation mismatch in appropriate patients | |||
Ketamine (IV) | 0.1–0.35 mg/kg or 5–10 mg IVP once or q2 h PRN for refractory pain, or in cases of pain-sedation mismatch precluding opioid use | Continuous infusion of 0.05–0.35 mg/kg/hr may be considered postoperatively where supported by institutional protocol |
ORAE | Monitoring and Mitigation Strategies |
---|---|
Sedation, Respiratory, Depression, Delirium | Vigilant monitoring of respiratory and mental status by validated scales (e.g., POSS) and respiratory function data, especially EtCO2, per standardized institutional protocols based on available guidelines Evaluate for opioid dose reduction and/or rotation Avoid concomitant sedatives, especially benzodiazepines Standard opioid antagonist protocols for urgent/emergent reversal Optimize physical and environmental contributing factors (e.g., allow sunlight in room during daytime hours, limit interruptions to sleep) |
Constipation, Ileus | Early ambulation, diet advancement as tolerated, and goal-directed hydration as per surgery-specific enhanced recovery protocol Standard postoperative scheduled bowel regimen started on DOS continued for duration of opioid therapy, including stimulant laxative and stool softener (e.g., senna-docusate 8.6–100 mg PO BID), reduced as opioid requirements decrease and bowel function returns to normal Standard additional PRN laxative for constipation (e.g., polyethylene glycol 17 g daily PRN), escalation to PR suppository in refractory cases |
Nausea, Vomiting | Standard postoperative PRN antiemetic orders (e.g., ondansetron 4 mg PO q6hr PRN or droperidol 1.25 mg IV q6h PRN nausea/vomiting) Assess for opioid reduction and/or rotation (see text) Optimize physical and environmental contributing factors (e.g., nutrition, noxious stimuli) |
Urinary Retention | Monitor per standard institutional protocol Decrease anticholinergic burden (e.g., remove scopolamine patches, avoid antihistamines) Hold chronic anticholinergic therapies in the immediate postoperative period where possible (e.g., oxybutynin) Avoid neuraxial opioids, consider avoiding neuraxial anesthesia entirely in patients at high risk (e.g., older males with prostate disease) |
Pruritus | Low-dose nalbuphine PRN is likely most efficacious and safe strategy and may be warranted for duration of neuraxial opioids in some cases May consider age-appropriate, low-dose antihistamines where needed (e.g., diphenhydramine 12.5–25 mg PO q6hr PRN), but this is less efficacious than nalbuphine and may increase risk for other ORAEs Avoid neuraxial opioids in susceptible patients |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hyland, S.J.; Brockhaus, K.K.; Vincent, W.R.; Spence, N.Z.; Lucki, M.M.; Howkins, M.J.; Cleary, R.K. Perioperative Pain Management and Opioid Stewardship: A Practical Guide. Healthcare 2021, 9, 333. https://doi.org/10.3390/healthcare9030333
Hyland SJ, Brockhaus KK, Vincent WR, Spence NZ, Lucki MM, Howkins MJ, Cleary RK. Perioperative Pain Management and Opioid Stewardship: A Practical Guide. Healthcare. 2021; 9(3):333. https://doi.org/10.3390/healthcare9030333
Chicago/Turabian StyleHyland, Sara J., Kara K. Brockhaus, William R. Vincent, Nicole Z. Spence, Michelle M. Lucki, Michael J. Howkins, and Robert K. Cleary. 2021. "Perioperative Pain Management and Opioid Stewardship: A Practical Guide" Healthcare 9, no. 3: 333. https://doi.org/10.3390/healthcare9030333
APA StyleHyland, S. J., Brockhaus, K. K., Vincent, W. R., Spence, N. Z., Lucki, M. M., Howkins, M. J., & Cleary, R. K. (2021). Perioperative Pain Management and Opioid Stewardship: A Practical Guide. Healthcare, 9(3), 333. https://doi.org/10.3390/healthcare9030333