Physical Activity of ≥7.5 MET-h/Week Is Significantly Associated with a Decreased Risk of Cervical Neoplasia
Abstract
1. Introduction
2. Methods
2.1. Participants and Specimen Collection
2.2. Sample Size and Statistical Power
2.3. Collection of Cervical Specimens for the HPV DNA Load
2.4. Measurement
2.5. Assessment of Leisure-Time Physical Activity in MET-h/Week
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
6. Limitations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Arbyn, M.; Weiderpass, E.; Bruni, L.; de Sanjose, S.; Saraiya, M.; Ferlay, J.; Bray, F. Estimates of incidence and mortality of cervical cancer in 2018: A worldwide analysis. Lancet Glob. Health 2020, 8, e191–e203. [Google Scholar] [CrossRef]
- Muñoz, N.; Bosch, F.X.; de Sanjosé, S.; Herrero, R.; Castellsagué, X.; Shah, K.V.; Snijders, P.J.; Meijer, C.J. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N. Engl. J. Med. 2003, 348, 518–527. [Google Scholar] [CrossRef] [PubMed]
- Plummer, M.; Herrero, R.; Franceschi, S.; Meijer, C.J.L.M.; Snijders, P.; Bosch, F.X.; de Sanjosé, S.; Muñoz, N. Smoking and cervical cancer: Pooled analysis of the IARC multi-centric case–control study. Cancer Causes Control. 2003, 14, 805–814. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.T.; Wu, C.H.; Lai, H.L.; Li, R.N.; Tung, Y.C.; Chuang, H.Y.; Wu, T.N.; Lin, L.J.; Ho, C.K.; Liu, H.W.; et al. Association between quantitative high-risk human papillomavirus DNA load and cervical intraepithelial neoplasm risk. Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cospons. Am. Soc. Prev. Oncol. 2005, 14, 2544–2549. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.T.; Tsai, Y.M.; Yang, S.F.; Wu, K.Y.; Chuang, H.Y.; Wu, T.N.; Ho, C.K.; Lin, C.C.; Kuo, Y.S.; Wu, M.T. Lifetime cigarette smoke and second-hand smoke and cervical intraepithelial neoplasm—A community-based case-control study. Gynecol. Oncol. 2007, 105, 181–188. [Google Scholar] [CrossRef]
- Su, B.; Qin, W.; Xue, F.; Wei, X.; Guan, Q.; Jiang, W.; Wang, S.; Xu, M.; Yu, S. The relation of passive smoking with cervical cancer: A systematic review and meta-analysis. Medicine 2018, 97, e13061. [Google Scholar] [CrossRef]
- Krishnan, V.; Schaar, B.; Tallapragada, S.; Dorigo, O. Tumor associated macrophages in gynecologic cancers. Gynecol. Oncol. 2018, 149, 205–213. [Google Scholar] [CrossRef]
- Li, Y.; Huang, G.; Zhang, S. Associations between intratumoral and peritumoral M2 macrophage counts and cervical squamous cell carcinoma invasion patterns. Int. J. Gynaecol. Obstet. Off. Organ Int. Fed. Gynaecol. Obstet. 2017, 139, 346–351. [Google Scholar] [CrossRef]
- Aleksandrova, K.; Jenab, M.; Leitzmann, M.; Bueno-de-Mesquita, B.; Kaaks, R.; Trichopoulou, A.; Bamia, C.; Lagiou, P.; Rinaldi, S.; Freisling, H.; et al. Physical activity, mediating factors and risk of colon cancer: Insights into adiposity and circulating biomarkers from the EPIC cohort. Int. J. Epidemiol. 2017, 46, 1823–1835. [Google Scholar] [CrossRef]
- Matthews, C.E.; Moore, S.C.; Arem, H.; Cook, M.B.; Trabert, B.; Hakansson, N.; Larsson, S.C.; Wolk, A.; Gapstur, S.M.; Lynch, B.M.; et al. Amount and Intensity of Leisure-Time Physical Activity and Lower Cancer Risk. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020, 38, 686–697. [Google Scholar] [CrossRef]
- Thomson, C.A.; McCullough, M.L.; Wertheim, B.C.; Chlebowski, R.T.; Martinez, M.E.; Stefanick, M.L.; Rohan, T.E.; Manson, J.E.; Tindle, H.A.; Ockene, J.; et al. Nutrition and physical activity cancer prevention guidelines, cancer risk, and mortality in the women’s health initiative. Cancer Prev. Res. (Philadelphia, PA) 2014, 7, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.A.; Jones, L.W.; Antonelli, J.A.; Gerber, L.; Calloway, E.E.; Shuler, K.H.; Freedland, S.J.; Grant, D.J.; Hoyo, C.; Banez, L.L. Association between exercise and primary incidence of prostate cancer: Does race matter? Cancer 2013, 119, 1338–1343. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zheng, Q.; Cui, G.; Chen, J.; Gao, H.; Wei, Y.; Uede, T.; Chen, Z.; Diao, H. Regular Exercise Enhances the Immune Response Against Microbial Antigens Through Up-Regulation of Toll-like Receptor Signaling Pathways. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2015, 37, 735–746. [Google Scholar] [CrossRef] [PubMed]
- Koelwyn, G.J.; Quail, D.F.; Zhang, X.; White, R.M.; Jones, L.W. Exercise-dependent regulation of the tumour microenvironment. Nat. Rev. Cancer 2017, 17, 620–632. [Google Scholar] [CrossRef] [PubMed]
- Friedenreich, C.M.; Cook, L.S.; Magliocco, A.M.; Duggan, M.A.; Courneya, K.S. Case-control study of lifetime total physical activity and endometrial cancer risk. Cancer Causes Control CCC 2010, 21, 1105–1116. [Google Scholar] [CrossRef] [PubMed]
- Conroy, M.B.; Sattelmair, J.R.; Cook, N.R.; Manson, J.E.; Buring, J.E.; Lee, I.M. Physical activity, adiposity, and risk of endometrial cancer. Cancer Causes Control CCC 2009, 20, 1107–1115. [Google Scholar] [CrossRef] [PubMed]
- Kats, D.; Evenson, K.R.; Zeng, D.; Avery, C.L.; Palta, P.; Kritchevsky, S.B.; Heiss, G. Leisure-time physical activity volume, intensity, and duration from mid- to late-life in U.S. subpopulations by race and sex. The Atherosclerosis Risk In Communities (ARIC) Study. Aging 2020, 12, 4592–4602. [Google Scholar] [CrossRef]
- Wen, C.P.; Wai, J.P.; Tsai, M.K.; Yang, Y.C.; Cheng, T.Y.; Lee, M.C.; Chan, H.T.; Tsao, C.K.; Tsai, S.P.; Wu, X. Minimum amount of physical activity for reduced mortality and extended life expectancy: A prospective cohort study. Lancet (London, England) 2011, 378, 1244–1253. [Google Scholar] [CrossRef]
- Szender, J.B.; Cannioto, R.; Gulati, N.R.; Schmitt, K.L.; Friel, G.; Minlikeeva, A.; Platek, A.; Gower, E.H.; Nagy, R.; Khachatryan, E.; et al. Impact of Physical Inactivity on Risk of Developing Cancer of the Uterine Cervix: A Case-Control Study. J. Low. Genit. Tract Dis. 2016, 20, 230–233. [Google Scholar] [CrossRef]
- Chih, H.; Lee, A.H.; Colville, L.; Xu, D.; Binns, C.W. Sitting time, physical activity and cervical intraepithelial neoplasia in Australian women: A preliminary investigation. Health. J. Aust. Off. J. Aust. Assoc. Health Promot. Prof. 2013, 24, 219–223. [Google Scholar] [CrossRef]
- Lee, J.K.; So, K.A.; Piyathilake, C.J.; Kim, M.K. Mild obesity, physical activity, calorie intake, and the risks of cervical intraepithelial neoplasia and cervical cancer. PLoS ONE 2013, 8, e66555. [Google Scholar] [CrossRef] [PubMed]
- Rias, Y.A.; Kurniasari, M.D.; Traynor, V.; Niu, S.F.; Wiratama, B.S.; Ching Wen Chang, C.W.; Tsai, H.T. Synergistic Effect of Low Neutrophil–Lymphocyte Ratio With Physical Activity on Quality of Life in Type 2 Diabetes Mellitus: A Community-Based Study. Biol. Res. Nurs. 2020, 22, 378–387. [Google Scholar] [CrossRef]
- Zhu, X.; Yang, J.; Gao, Y.; Wu, C.; Yi, L.; Li, G.; Qi, Y. The dual effects of a novel peptibody on angiogenesis inhibition and M2 macrophage polarization on sarcoma. Cancer Lett. 2018, 416, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Petrillo, M.; Zannoni, G.F.; Martinelli, E.; Pedone Anchora, L.; Ferrandina, G.; Tropeano, G.; Fagotti, A.; Scambia, G. Polarisation of Tumor-Associated Macrophages toward M2 Phenotype Correlates with Poor Response to Chemoradiation and Reduced Survival in Patients with Locally Advanced Cervical Cancer. PLoS ONE 2015, 10, e0136654. [Google Scholar] [CrossRef] [PubMed]
- Negahdaripour, M.; Nezafat, N.; Heidari, R.; Erfani, N.; Hajighahramani, N.; Ghoshoon, M.B.; Shoolian, E.; Rahbar, M.R.; Najafipour, S.; Dehshahri, A.; et al. Production and Preliminary in vivo Evaluations of a Novel in silico-Designed L2-based Potential HPV Vaccine. Curr. Pharmaceut. Biotechnol. 2020, 21, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Goh, J.; Kirk, E.A.; Lee, S.X.; Ladiges, W.C. Exercise, physical activity and breast cancer: The role of tumor-associated macrophages. Exerc. Immunol. Rev. 2012, 18, 158–176. [Google Scholar] [PubMed]
- Verma, V.K.; Singh, V.; Singh, M.P.; Singh, S.M. Effect of physical exercise on tumor growth regulating factors of tumor microenvironment: Implications in exercise-dependent tumor growth retardation. Immunopharmacol. Immunotoxicol. 2009, 31, 274–282. [Google Scholar] [CrossRef]
- Terra, R.; Alves, P.J.F.; Lima, A.K.C.; Gomes, S.M.R.; Rodrigues, L.S.; Salerno, V.P.; Da-Silva, S.A.G.; Dutra, P.M.L. Immunomodulation From Moderate Exercise Promotes Control of Experimental Cutaneous Leishmaniasis. Front. Cell. Inf. Microbiol. 2019, 9, 115. [Google Scholar] [CrossRef]
- Deshpande, R.; Raina, P.; Shinde, K.; Mansara, P.; Karandikar, M.; Kaul-Ghanekar, R. Flax seed oil reduced tumor growth, modulated immune responses and decreased HPV E6 and E7 oncoprotein expression in a murine model of ectopic cervical cancer. Prostaglandins Other Lipid Mediat. 2019, 143, 106332. [Google Scholar] [CrossRef]
- Lu, H.; Gu, X. MicroRNA-221 inhibits human papillomavirus 16 E1-E2 mediated DNA replication through activating SOCS1/Type I IFN signaling pathway. Int. J. Clin. Exp. Pathol. 2019, 12, 1518–1528. [Google Scholar]
- Munoz, J.P.; Carrillo-Beltran, D.; Aedo-Aguilera, V.; Calaf, G.M.; Leon, O.; Maldonado, E.; Tapia, J.C.; Boccardo, E.; Ozbun, M.A.; Aguayo, F. Tobacco Exposure Enhances Human Papillomavirus 16 Oncogene Expression via EGFR/PI3K/Akt/c-Jun Signaling Pathway in Cervical Cancer Cells. Front. Microbiol. 2018, 9, 3022. [Google Scholar] [CrossRef] [PubMed]
- Guleria, C.; Suri, V.; Kapoor, R.; Minz, R.W.; Aggarwal, R. Human papillomavirus 16 infection alters the Toll-like receptors and downstream signaling cascade: A plausible early event in cervical squamous cell carcinoma development. Gynecol. Oncol. 2019, 155, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Qiu, F.; Liang, C.L.; Liu, H.; Zeng, Y.Q.; Hou, S.; Huang, S.; Lai, X.; Dai, Z. Impacts of cigarette smoking on immune responsiveness: Up and down or upside down? Oncotarget 2017, 8, 268–284. [Google Scholar] [CrossRef] [PubMed]
- Melinceanu, L.; Sarafoleanu, C.; Lerescu, L.; Tucureanu, C.; Caras, I.; Salageanu, A. Impact of smoking on the immunological profile of patients with laryngeal carcinoma. J. Med. Life 2009, 2, 211–218. [Google Scholar]
- Bermudez-Morales, V.H.; Peralta-Zaragoza, O.; Alcocer-Gonzalez, J.M.; Moreno, J.; Madrid-Marina, V. IL-10 expression is regulated by HPV E2 protein in cervical cancer cells. Mol. Med. Rep. 2011, 4, 369–375. [Google Scholar]
- Feng, Q.; Wei, H.; Morihara, J.; Stern, J.; Yu, M.; Kiviat, N.; Hellstrom, I.; Hellstrom, K.E. Th2 type inflammation promotes the gradual progression of HPV-infected cervical cells to cervical carcinoma. Gynecol. Oncol. 2012, 127, 412–419. [Google Scholar] [CrossRef]
- Hajizadeh Maleki, B.; Tartibian, B.; Mooren, F.C.; FitzGerald, L.Z.; Kruger, K.; Chehrazi, M.; Malandish, A. Low-to-moderate intensity aerobic exercise training modulates irritable bowel syndrome through antioxidative and inflammatory mechanisms in women: Results of a randomized controlled trial. Cytokine 2018, 102, 18–25. [Google Scholar] [CrossRef]
- Freitas, D.A.; Rocha-Vieira, E.; Soares, B.A.; Nonato, L.F.; Fonseca, S.R.; Martins, J.B.; Mendonca, V.A.; Lacerda, A.C.; Massensini, A.R.; Poortamns, J.R.; et al. High intensity interval training modulates hippocampal oxidative stress, BDNF and inflammatory mediators in rats. Physiol. Behav. 2018, 184, 6–11. [Google Scholar] [CrossRef]
- Stanley, M.A.; Sterling, J.C. Host responses to infection with human papillomavirus. Curr. Probl. Dermatol. 2014, 45, 58–74. [Google Scholar]
- Bolpetti, A.; Silva, J.S.; Villa, L.L.; Lepique, A.P. Interleukin-10 production by tumor infiltrating macrophages plays a role in Human Papillomavirus 16 tumor growth. BMC Immunol. 2010, 11, 27. [Google Scholar] [CrossRef]
Variable | Healthy Controls | ≥CIN 1 | p-Value |
---|---|---|---|
(N = 307) n (%) | (N = 126) n (%) | ||
Age (years) | |||
<41 | 182 (59.3) | 64 (50.8) | p = 0.01 |
≥41 | 125 (40.7) | 62 (49.2) | |
Educational level | |||
<College | 66 (21.5) | 48 (38.1) | p = 0.0004 |
≥College | 241 (78.5) | 78 (61.9) | |
Smoking status | |||
Non-smoker | 225 (73.3) | 78 (61.9) | p = 0.03 |
Exposed to secondhand smoke | 46 (15.0) | 22 (17.5) | |
Smoker | 36 (11.7) | 26 (20.6) | |
HPV infection | |||
No | 228 (74.3) | 46 (36.5) | p < 0.0001 |
Yes | 79 (25.7) | 80 (63.5) | |
Family history of cervical cancer | |||
No | 305 (99.3) | 122 (96.8) | p = 0.06 |
Yes | 2 (0.7) | 4 (3.2) | |
Average MET-h/week within the past one year | Mean ± SE | Mean ± SE | p = 0.0001 # |
7.7 ± 0.81 | 3.67 ± 0.78 | ||
Lifetime leisure-time physical activity (MET-h/week–year) | Mean ± SE | Mean ± SE | p = 0.001 # |
41.62 ± 6.17 | 25.28 ± 9.19 |
Variable | Healthy Controls (N = 307) n (%) | ≥CIN 1 | OR (95% CI), p-Value | AOR (95% CI), p-Value |
---|---|---|---|---|
(N = 126) n (%) | ||||
MET-h/week within the past 6 months | ||||
<3.75 | 140 (45.6) | 90 (71.4) | 1.00 | 1.00 |
3.75–7.5 | 56 (18.2) | 14 (11.1) | 0.38 (0.20–0.74), p = 0.004 | 0.42 (0.21–0.85), p = 0.01 |
≥7.5 | 111 (36.2) | 22 (17.5) | 0.30 (0.18–0.52), p < 0.0001 | 0.27 (0.15–0.49), p < 0.0001 |
MET-h/week within the past 1 year | ||||
<3.75 | 161 (52.4) | 95 (75.4) | 1.00 | 1.00 |
3.75–7.5 | 52 (17.0) | 12 (9.5) | 0.39 (0.19–0.77), p = 0.0066 | 0.41 (0.19–0.86), p = 0.01 |
≥7.5 | 94 (30.6) | 19 (15.1) | 0.34 (0.19–0.59), p = 0.0002 | 0.27 (0.14–0.50), p < 0.0001 |
Lifetime leisure-time physical activity (MET-h/week–year) | ||||
0~<0.12 | 90 (29.3) | 80 (63.5) | 1.00 | 1.00 |
≥0.12~<13.2 | 98 (31.9) | 21 (16.7) | 0.24 (0.13–0.42), p < 0.0001 | 0.23 (0.12–0.44), p < 0.0001 |
≥13.2 | 119 (38.8) | 25 (19.8) | 0.23 (0.14–0.40), p < 0.0001 | 0.18 (0.10–0.32), p < 0.0001 |
Without HPV Infection (N = 274) | ||||
Variable | Healthy Controls (N = 228) n (%) | ≥CIN 1 | OR (95% CI), p-Value | AOR (95% CI), p-Value |
(N = 46) n (%) | ||||
MET-h/week within the past 6 months | ||||
<3.75 | 102 (44.7) | 37 (80.4) | 1.00 | 1.00 |
3.75–7.5 | 46 (20.2) | 2 (4.4) | 0.12 (0.02–0.51), p = 0.004 | 0.12 (0.02–0.55), p = 0.006 |
≥7.5 | 80 (35.1) | 7 (15.2) | 0.24 (0.10–0.57), p = 0.001 | 0.25 (0.10–0.60), p = 0.002 |
MET-h/week within the past 1 year | ||||
<3.75 | 119 (52.2) | 39 (84.8) | 1.00 | 1.00 |
3.75–7.5 | 43 (18.9) | 2 (4.3) | 0.14 (0.03–0.61), p = 0.008 | 0.14 (0.03–0.64), p = 0.01 |
≥7.5 | 66 (28.9) | 5 (10.9) | 0.23 (0.08–0.61), p = 0.003 | 0.23 (0.08–0.63), p = 0.004 |
Lifetime leisure-time physical activity (MET-h/week–year) | ||||
0~<0.12 | 68 (29.8) | 36 (78.3) | 1.00 | 1.00 |
≥0.12~<13.2 | 75 (32.9) | 4 (8.7) | 0.10 (0.03–0.29), p < 0.0001 | 0.12 (0.03–0.45), p = 0.001 |
≥13.2 | 85 (37.3) | 6 (13.0) | 0.13 (0.05–0.33), p < 0.0001 | 0.13 (0.04–0.40), p = 0.0004 |
With HPV Infection (N = 159) | ||||
Variable | Healthy Controls (N = 79) n (%) | ≥CIN 1 | OR (95% CI), p-Value | AOR (95% CI), p-Value |
(N = 80) n (%) | ||||
MET-h/week within the past 6 months | ||||
<3.75 | 38 (48.1) | 53 (66.3) | 1.00 | 1.00 |
3.75–7.5 | 10 (12. 7) | 12 (15.0) | 0.86 (0.33–2.19), p = 0.75 | 0.94 (0.35–2.48), p = 0.90 |
≥7.5 | 31 (39.2) | 15 (18.7) | 0.34 (0.16–0.73), p = 0.005 | 0.30 (0.13–0.68), p = 0.003 |
MET-h/week within the past 1 year | ||||
<3.75 | 42 (53.2) | 56 (70.0) | 1.00 | 1.00 |
3.75–7.5 | 9 (11.4) | 10 (12.5) | 0.83 (0.31–2.23), p = 0.71 | 0.85 (0.31–2.37), p = 0.76 |
≥7.5 | 28 (35.4) | 14 (17.5) | 0.37 (0.17–0.79), p = 0.01 | 0.31 (0.13–0.71), p = 0.005 |
Lifetime leisure-time physical activity (MET-h/week–year) | ||||
0~<0.12 | 22 (27.9) | 44 (55.0) | 1.00 | 1.00 |
≥0.12~<13.2 | 23 (29.1) | 17 (21.3) | 0.37 (0.16–0.83), p = 0.01 | 0.68 (0.24–1.92), p = 0.46 |
≥13.2 | 34 (43.0) | 19 (23.7) | 0.27 (0.13–0.59), p = 0.001 | 0.23 (0.08–0.65), p = 0.005 |
Non-Smokers (N = 303) | ||||
Variable | Healthy Controls (N = 225) n (%) | ≥CIN 1 | OR (95% CI), p-Value | AOR (95% CI), p-Value |
(N = 78) n (%) | ||||
MET-h/week within the past 6 months | ||||
<3.75 | 97 (43.1) | 55 (70.5) | 1.00 | 1.00 |
3.75–7.5 | 45 (20.0) | 9 (11.5) | 0.35 (0.16–0.77), p = 0.009 | 0.42 (0.18–0.99), p = 0.04 |
≥7.5 | 83 (36.9) | 14 (18.0) | 0.29 (0.15–0.57), p = 0.0003 | 0.23 (0.11–0.48), p < 0.0001 |
MET-h/week within the past 1 year | ||||
<3.75 | 115 (51.1) | 58 (74.4) | 1.00 | 1.00 |
3.75–7.5 | 40 (17.8) | 7 (8.9) | 0.34 (0.14–0.82), p = 0.01 | 0.36 (0.15–0.86), p = 0.02 |
≥7.5 | 70 (31.1) | 13 (16.7) | 0.36 (0.18–0.72), p = 0.003 | 0.32 (0.16–0.65), p = 0.001 |
Lifetime leisure-time physical activity (MET-h/week–year) | ||||
0~<0.12 | 65 (28.9) | 49 (62.8) | 1.00 | 1.00 |
≥0.12~<13.2 | 69 (30.7) | 15 (19.2) | 0.28 (0.14–0.56), p = 0.0003 | 0.31 (0.15–0.65), p = 0.001 |
≥13.2 | 91 (40.4) | 14 (18.0) | 0.20 (0.10–0.40), p < 0.0001 | 0.16 (0.07–0.34), p < 0.0001 |
Active smokers or people exposed to secondhand smoke (N = 130) | ||||
Variable | Healthy Controls (N = 82) n (%) | ≥CIN1 | OR (95% CI), p-Value | AOR (95% CI), p-Value |
(N = 48) n (%) | ||||
MET-h/week within the past 6 months | ||||
<3.75 | 43 (52.4) | 35 (72.9) | 1.00 | 1.00 |
3.75–7.5 | 11 (13.4) | 5 (10.4) | 0.55 (0.17–1.75), p = 0.31 | 0.42 (0.12–1.45), p = 0.17 |
≥7.5 | 28 (34.2) | 8 (16.7) | 0.35 (0.14–0.86), p = 0.02 | 0.35 (0.13–0.92), p = 0.03 |
MET-h/week within the past 1 year | ||||
<3.75 | 46 (56.1) | 37 (77.1) | 1.00 | 1.00 |
3.75–7.5 | 12 (14.6) | 5 (10.4) | 0.51 (0.16–1.60), p = 0.32 | 0.55 (0.17–1.80), p = 0.33 |
≥7.5 | 24 (29.3) | 6 (12.5) | 0.31 (0.11–0.84), p = 0.02 | 0.32 (0.11–0.90), p = 0.03 |
Lifetime leisure-time physical activity (MET-h/week–year) | ||||
0~<0.12 | 25 (30.5) | 31 (64.6) | 1.00 | 1.00 |
≥0.12~<13.2 | 29 (35.4) | 6 (12.5) | 0.16 (0.06–0.46), p = 0.0006 | 0.13 (0.04–0.42), p = 0.0007 |
≥13.2 | 28 (34.1) | 11 (22.9) | 0.31 (0.13–0.75), p = 0.01 | 0.20 (0.07–0.58), p = 0.002 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, C.W.; Yang, S.-F.; Gordon, C.J.; Liao, W.C.; Niu, S.F.; Wang, C.W.; Tsai, H.T. Physical Activity of ≥7.5 MET-h/Week Is Significantly Associated with a Decreased Risk of Cervical Neoplasia. Healthcare 2020, 8, 260. https://doi.org/10.3390/healthcare8030260
Chang CW, Yang S-F, Gordon CJ, Liao WC, Niu SF, Wang CW, Tsai HT. Physical Activity of ≥7.5 MET-h/Week Is Significantly Associated with a Decreased Risk of Cervical Neoplasia. Healthcare. 2020; 8(3):260. https://doi.org/10.3390/healthcare8030260
Chicago/Turabian StyleChang, Ching Wen, Shun-Fa Yang, Christopher J. Gordon, Wen Chun Liao, Shu Fen Niu, Cheng Wei Wang, and Hsiu Ting Tsai. 2020. "Physical Activity of ≥7.5 MET-h/Week Is Significantly Associated with a Decreased Risk of Cervical Neoplasia" Healthcare 8, no. 3: 260. https://doi.org/10.3390/healthcare8030260
APA StyleChang, C. W., Yang, S.-F., Gordon, C. J., Liao, W. C., Niu, S. F., Wang, C. W., & Tsai, H. T. (2020). Physical Activity of ≥7.5 MET-h/Week Is Significantly Associated with a Decreased Risk of Cervical Neoplasia. Healthcare, 8(3), 260. https://doi.org/10.3390/healthcare8030260