Relationship between Muscle Cross-Sectional Area by MRI and Muscle Thickness by Ultrasonography of the Triceps Surae in the Sitting Position
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measurement
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bordoni, B.; Waheed, A.; Varacallo, M. Anatomy, Bony Pelvis and Lower Limb, Gastrocnemius Muscle. In StatPearls; StatPearls Publishing: St. Petersburg, FL, USA, 2020; pp. 1–9. [Google Scholar]
- Loram, I.D.; Maganaris, C.N.; Lakie, M. Paradoxical muscle movement during postural control. Med. Sci. Sports Exerc. 2009, 41, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Pandy, M.G.; Andriacchi, T.P. Muscle and joint function in human locomotion. Annu. Rev. Biomed. Eng. 2010, 15, 401–433. [Google Scholar] [CrossRef] [PubMed]
- Cattagni, T.; Scaglioni, G.; Laroche, D.; Gremeaux, V.; Martin, A. The involvement of ankle muscles in maintaining balance in the upright posture is higher in elderly fallers. Exp. Gerontol. 2016, 77, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Saito, A.; Maruyama, H.; Arai, S.; Hashimoto, M.; Konba, T.; Iwaya, T. Relationship between morphology of the quadriceps femoris muscle and isokinetic knee extensor torque. Available online: https://iuhw.repo.nii.ac.jp/?action=repository_uri&item_id=167&file_id=22&file_no=1 (accessed on 10 June 2020).
- Fukunaga, T.; Roy, R.R.; Shellock, F.G.; Hodgson, J.A.; Day, M.K.; Lee, P.L.; Kwong-Fu, H.; Edgerton, V.R. Physiological cross-sectional area of human leg muscles based on magnetic resonance imaging. J. Orthop. Res. 1992, 10, 928–934. [Google Scholar] [CrossRef] [PubMed]
- Maughan, R.J.; Watson, J.S.; Weir, J. Strength and cross-sectional area of human skeletal Muscle. J. Physiol. 1983, 338, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Shephard, R.J.; Bouhlel, E.; Vandewalle, H.; Monod, H. Muscle mass as a factor limiting physical work. J. Appl. Physiol. 1988, 64, 1472–1479. [Google Scholar] [CrossRef] [PubMed]
- Abe, T.; Loenneke, J.P.; Thiebaud, R.S. Morphological and functional relationships with ultrasound measured muscle thickness of the lower extremity: A brief review. Ultrasound 2015, 23, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, K. The influence of posture on muscle thickness measurement using B-mode ultrasound. Available online: https://niu.repo.nii.ac.jp/?action=repository_uri&item_id=806&file_id=22&file_no=1 (accessed on 10 June 2020).
- Berg, H.E.; Tedner, B.; Tesch, P.A. Changes in lower limb muscle cross-sectional area and tissue fluid volume after transition from standing to supine. Acta Physiol. Scand. 1993, 148, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Fielding, J.R. Practical MR imaging of female pelvic floor weakness. Radiographics 2002, 22, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Ohno, N.; Miyati, T.; Hiramatsu, Y.; Yamasaki, M. Quantitation of Venous Blood Flow in Gravity MRI: A Phantom Study. Med. Imaging Infor. Sci. 2017, 34, 141–143. [Google Scholar]
- Miyachi, R.; Yamazaki, T.; Ohno, N.; Miyati, T. Morphological changes of lower leg muscles according to ankle joint position during sitting evaluated by gravity MRI in young females. J. Phys. Ther. Sci. 2019, 31, 488–492. [Google Scholar] [CrossRef] [PubMed]
- Miyatani, M.; Kanehisa, H.; Ito, M.; Kawakami, Y.; Fukunaga, T. The accuracy of volume estimates using ultrasound muscle thickness measurements in different muscle groups. Eur. J. Appl. Physiol. 2004, 91, 264–272. [Google Scholar] [PubMed]
- Weiss, L.W.; Clark, F.C. Ultrasonic protocols for separately measuring subcutaneous fat and skeletal muscle thickness in the calf area. Phys. Ther. 1985, 65, 477–481. [Google Scholar] [CrossRef] [PubMed]
- Raj, I.S.; Bird, S.R.; Shield, A.J. Reliability of ultrasonographic measurement of the architecture of the vastus lateralis and gastrocnemius medialis muscles in older adults. Clin. Physiol. Funct. Imaging 2012, 32, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Mendis, M.D.; Wilson, S.J.; Stanton, W.; Hides, J.A. Validity of real-time ultrasound imaging to measure anterior hip muscle size: A comparison with magnetic resonance imaging. J. Orthop. Sports Phys. Ther. 2010, 40, 577–581. [Google Scholar] [CrossRef] [PubMed]
- Miyatani, M.; Kanehisa, H.; Kuno, S.; Nishijima, T.; Fukunaga, T. Validity of ultrasonograph muscle thickness measurements for estimating muscle volume of knee extensors in humans. Eur. J. Appl. Physiol. 2002, 86, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Martinson, H.; Stokes, M.J. Measurement of anterior tibial muscle size using real-time ultrasound imaging. Eur. J. Appl. Physiol. 1991, 63, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Kinugasa, R.; Hodgson, J.A.; Edgerton, V.R.; Sinha, S. Asymmetric deformation of contracting human gastrocnemius muscle. J. Appl. Physiol. 2012, 112, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Singer, K.P.; Breidahl, P. The use of computed tomography in assessing muscle cross-sectional area, and the relationship between cross-sectional area and strength. Aust. J. Physiother. 1987, 33, 75–82. [Google Scholar] [CrossRef]
- Freilich, R.J.; Kirsner, R.L.; Byrne, E. Isometric strength and thickness relationships in human quadriceps muscle. Neuromuscul. Disord. 1995, 5, 415–422. [Google Scholar] [CrossRef]
- Berger, M.J.; Deherty, T.J. Sarcepenia: Prevalence, mechanisms, and functional consequences. Interdiscip. Top Gerontol. 2010, 37, 94–114. [Google Scholar] [PubMed]
Portion | 25% Portion | 50% Portion | 75% Portion | |||
---|---|---|---|---|---|---|
Position | Sitting Position | Lying Position | Sitting Position | Lying Position | Sitting Position | Lying Position |
SOL | 786 ± 300 | 650 ± 288 †,# | 2260 ± 345 * | 1990 ± 359 †,‡ | 1258 ± 558 | 1329 ± 498 # |
GM | 1018 ± 205 * | 858 ± 230 † | 1333 ± 327 * | 1215 ± 272 †,# | ||
GL | 655 ± 186 | 613 ± 193 | 705 ± 225 | 656 ± 208 |
Portion | 25% Portion | 50% Portion | 75% Portion |
---|---|---|---|
SOL | 3.04 ± 0.52 | 3.02 ± 0.66 | 1.67 ± 0.90 |
GM | 1.83 ± 0.26 | 0.72 ± 0.59 | |
GL | 1.49 ± 0.19 | 0.25 ± 0.24 |
Position | Sitting Position | Lying Position |
---|---|---|
SOL | 3.64 ± 0.62 | 3.39 ± 0.76 *,† |
GM | 2.13 ± 0.43 | 2.05 ± 0.49 * |
GL | 1.24 ± 0.17 | 1.15 ± 0.15 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miyachi, R.; Yamazaki, T.; Ohno, N.; Miyati, T. Relationship between Muscle Cross-Sectional Area by MRI and Muscle Thickness by Ultrasonography of the Triceps Surae in the Sitting Position. Healthcare 2020, 8, 166. https://doi.org/10.3390/healthcare8020166
Miyachi R, Yamazaki T, Ohno N, Miyati T. Relationship between Muscle Cross-Sectional Area by MRI and Muscle Thickness by Ultrasonography of the Triceps Surae in the Sitting Position. Healthcare. 2020; 8(2):166. https://doi.org/10.3390/healthcare8020166
Chicago/Turabian StyleMiyachi, Ryo, Toshiaki Yamazaki, Naoki Ohno, and Tosiaki Miyati. 2020. "Relationship between Muscle Cross-Sectional Area by MRI and Muscle Thickness by Ultrasonography of the Triceps Surae in the Sitting Position" Healthcare 8, no. 2: 166. https://doi.org/10.3390/healthcare8020166
APA StyleMiyachi, R., Yamazaki, T., Ohno, N., & Miyati, T. (2020). Relationship between Muscle Cross-Sectional Area by MRI and Muscle Thickness by Ultrasonography of the Triceps Surae in the Sitting Position. Healthcare, 8(2), 166. https://doi.org/10.3390/healthcare8020166