Group Telerehabilitation to Improve Balance and Mobility in Patients After Stroke Performed at Home: A Feasibility and Pilot Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Protocol
2.3. Assessment
2.4. Analysis
3. Results
3.1. Participants
3.2. Feasibility
3.3. Effects on Balance and Mobility
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ICF | International Classification of Functioning, Disability and Health |
| RCT | randomized controlled trial |
| mini-BESTest | Mini-Balance Evaluation Systems Test |
| LOS | limits of stability |
| ABC Scale | Activities-Specific Balance Confidence Scale |
| 10MWT | 10-m walk test |
| 5TSTS | 5 Times Sit-to-Stand |
| mPACES | modified Physical Activity Enjoyment Scale |
| MDC | minimal detectable change |
References
- Khan, F.; Abusharha, S.; Alfuraidy, A.; Nimatallah, K.; Almalki, R.; Basaffar, R.; Mirdad, M.; Faisal Chevidikunnan, M.; Basuodan, R. Prediction of factors affecting mobility in patients with stroke and finding the mediation effect of balance on mobility: A cross-sectional study. Int. J. Environ. Res. Public Health 2022, 19, 16612. [Google Scholar] [CrossRef]
- Arienti, C.; Lazzarini, S.G.; Pollock, A.; Negrini, S. Rehabilitation interventions for improving balance following stroke: An overview of systematic reviews. PLoS ONE 2019, 14, e0219781. [Google Scholar] [CrossRef]
- van de Port, I.G.; Kwakkel, G.; van Wijk, I.; Linderman, E. Susceptibility to deterioration of mobility long-term after stroke. Stroke 2006, 37, 167–171. [Google Scholar] [CrossRef]
- Xu, X.M.; Vestesson, E.; Paley, L.; Desikan, A.; Wonderling, D.; Hoffman, A.; Wolfe, C.D.A.; Rudd, A.G.; Bray, B.D. The economic burden of stroke care in England, Wales and Northern Ireland: Using a national stroke register to estimate and report patient-level health economic outcomes in stroke. Eur. Stroke J. 2018, 3, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Yates, J.S.; Lai, S.M.; Duncan, P.W.; Studenski, S. Falls in community-dwelling stroke survivors: An accumulated impairments model. J. Rehabil. Res. Dev. 2002, 39, 385–394. [Google Scholar]
- Roelofs, J.M.B.; Zandvliet, S.B.; Schut, I.M.; Huisinga, A.C.M.; Schouten, A.C.; Hendricks, H.T.; de Kam, D.; Aerden, L.A.M.; Bussmann, J.B.J.; Geurts, A.C.H.; et al. Mild Stroke, Serious Problems: Limitations in Balance and Gait Capacity and the Impact on Fall Rate, and Physical Activity. Neurorehabilit. Neural Repair 2023, 37, 786–798. [Google Scholar] [CrossRef] [PubMed]
- Van Duijnhoven, H.J.R.; Heeren, A.; Peters, M.A.M.; Veerbeek, J.M.; Kwakkel, G.; Geurts, A.C.H. Effects of exercise therapy on balance capacity in chronic stroke. Stroke 2016, 47, 2603–2610. [Google Scholar] [CrossRef]
- World Health Organization. The International Classification of Functioning Disability Health, I.C.F.; World Health Organization (WHO): Geneva, Switzerland, 2001.
- Levin, M.F.; Kleim, J.A.; Wolf, S.L. What do motor “recovery” and “compensation” mean in patients following stroke? Neurorehabilit. Neural Repair 2008, 23, 313–319. [Google Scholar] [CrossRef]
- Kwakkel, G.; Stinear, C.; Essers, B.; Munoz-Novoa, M.; Brenscheidt, M.; Cabanas-Valdes, R.; Lakičević, S.; Lampropoulou, S.; Luft, A.R.; Marque, P.; et al. Motor rehabilitation after stroke: European Stroke Organisation (ESO) consensus-based definition and guiding framework. Eur. Stroke J. 2023, 8, 880–894. [Google Scholar] [CrossRef] [PubMed]
- Pollock, A.; Baer, G.; Campbell, P.; Choo, P.L.; Forster, A.; Morris, J.; Pomeroy, V.M.; Langhorne, P. Physical rehabilitation approaches for the recovery of function and mobility following stroke. Cochrane Database Syst. Rev. 2014, 2014, CD001920. [Google Scholar] [CrossRef]
- Langhorne, P.; Bernhardt, J.; Kwakkel, G. Stroke rehabilitation. Lancet 2011, 377, 1693–1702. [Google Scholar] [CrossRef]
- Chen, J.; Jin, W.; Shuai Dong, W.; Jin, Y.; Qiao, F.L.; Zhou, Y.F.; Ren, C.C. Effects of home-based telesupervising rehabilitation on physical function for stroke survivors with hemiplegia. Am. J. Phys. Med. Rehabil. 2017, 96, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Chumbler, N.R.; Quigley, P.; Li, X.; Morey, M.; Rose, D.; Sanford, J.; Griffiths, P.; Hoenig, H. Effects of telerehabilitation on physical function and disability for stroke patients: A randomized, controlled trial. Stroke 2012, 43, 2168–2174. [Google Scholar] [CrossRef] [PubMed]
- Langan, J.; Delave, K.; Phillips, L.; Pangilinan, P.; Brown, S.H. Home-based telerehabilitation shows improved upper limb function in adults with chronic stroke: A pilot study. J. Rehabil. Med. 2013, 45, 217–220. [Google Scholar] [CrossRef]
- Laver, K.E.; Adey-Wakeling, Z.; Crotty, M.; Lannin, N.A.; George, S.; Sherrington, C. Telerehabilitation services for stroke. Cochrane Database Syst. Rev. 2020, 1, CD010255. [Google Scholar] [CrossRef]
- Redzuan, N.S.; Engkasan, J.P.; Mazlan, M.; Abdullah, S.J.F. Effectiveness of a video-based therapy program at home after acute stroke: A randomized controlled trial. Arch. Phys. Med. Rehabil. 2012, 93, 2177–2183. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Sun, D.; Zhang, S.; Shi, Y.; Qiao, F.; Zhou, Y.; Liu, J.; Ren, C. The effects of home-based telerehabilitation in stroke patients: A randomized controlled trial. Neurology 2020, 95, e2318–e2330. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, J.; Yue, C.; Li, Y.; Liang, Y. Collaborative care model based telerehabilitation exercise training program for acute stroke patients in China: A randomized controlled trial. J. Stroke Cerebrovasc. Dis. 2020, 29, 105328. [Google Scholar] [CrossRef]
- Lin, K.H.; Chen, C.H.; Chen, Y.Y.; Huang, W.T.; Lai, J.S.; Yu, S.M.; Chang, Y.J. Bidirectional and multi-user telerehabilitation system: Clinical effect on balance, functional activity, and satisfaction in patients with chronic stroke living in long-term care facilities. Sensors 2014, 14, 12451–12466. [Google Scholar] [CrossRef]
- Lee, S.J.; Lee, E.C.; Kim, M.; Ko, S.H.; Huh, S.; Choi, W.; Shin, Y.I.; Min, J.H. Feasibility of dance therapy using telerehabilitation on trunk control and balance training in patients with stroke: A pilot study. Medicine 2022, 101, e30286. [Google Scholar] [CrossRef]
- Huijbregts, M.P.J.; McEwen, S.; Taylor, D. Exploring the feasibility and efficacy of a telehealth stroke self-management programme: A pilot study. Physiother. Can. 2009, 61, 210–220. [Google Scholar] [CrossRef]
- Lee, A.C.; Deutsch, J.E.; Holdsworth, L.; Kaplan, S.L.; Kosakowski, H.; Latz, R.; McNeary, L.L.; O’Niel, J.; Ronzio, O.; Sanders, K.; et al. Telerehabilitation in Physical Therapist Practice: A Clinical Practice Guideline from the American Physical Therapy Association. Phys. Ther. 2024, 104, pzae045. [Google Scholar] [CrossRef]
- Stephenson, A.; Howes, S.; Murphy, P.J.; Deutsch, J.E.; Stokes, M.; Pedlow, K.; McDonough, S.M. Factors influencing the delivery of telerehabilitation for stroke: A systematic review. PLoS ONE 2022, 17, e0265828. [Google Scholar] [CrossRef] [PubMed]
- Franchignoni, F.; Horak, F.; Godi, M.; Nardone, A.; Giordano, A. Using psychometric techniques to improve the Balance Evaluation Systems Test: The MiniBESTest. J. Rehabil. Med. 2010, 42, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Graves, L.E.; Ridgers, N.D.; Williams, K.; Stratton, G.; Atkinson, G.; Cable, N.T. The Physiological Cost and Enjoyment of Wii Fit in Adolescents, Young Adults, and Older Adults. J. Phys. Act. Health 2010, 7, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.L.; Potter, K.; Blankshain, K.; Kaplan, S.L.; O’Dwyner, L.C.; Sullivan, J.E. A Core Set of Outcome Measures for Adults With Neurologic Conditions Undergoing Rehabilitation: A Cinical Practice Guideline. J. Neurol. Phys. Ther. 2018, 42, 174–220. [Google Scholar] [CrossRef]
- Aryan, R.; Inness, E.; Patterson, K.K.; Mochizuki, G.; Mansfield, A. Reliability of force plate-based measures of standing balance in the sub-acute stage of post-stroke recovery. Heliyon 2023, 9, e21046. [Google Scholar] [CrossRef]
- Aryan, R.; Patterson, K.K.; Inness, E.L.; Mochizuki, G.; Mansfield, A. Concurrent validity and discriminative ability of force plate measures of balance during the sub-acute stage of stroke recovery. Gait Posture 2025, 117, 31–37. [Google Scholar] [CrossRef]
- Tsang, C.S.; Liao, L.R.; Chung, R.C.; Pang, M.Y.C. Psychometric properties of the Mini-Balance Evaluation Systems Test (Mini-BESTest) in community-dwelling individuals with chronic stroke. Phys. Ther. 2013, 93, 1102–1115. [Google Scholar] [CrossRef]
- Beauchamp, M.K.; Niebuhr, R.; Roche, P.; Kirkwood, R.; Sibley, K.M. A prospective study to establish the Minimal clinically important difference of the MiniBESTest in individuals with stroke. Clin. Rehabil. 2021, 35, 1207–1215. [Google Scholar] [CrossRef]
- Goljar, N.; Giordano, A.; Schnurrer, L.; Vrbanić, T.; Rudolf, M.; Banicek-Sosa, I.; Albensi, C.; Burger, H.; Franchignoni, F. Rasch validation and comparison of Slovenian, Croatian and Italian versions of the Mini-BESTest in patients with subacute stroke. Int. J. Rehabil. Res. 2017, 40, 232–239. [Google Scholar] [CrossRef]
- Fulk, G.D.; He, Y.; Boyne, P.; Dunning, K. Predicting Home and Community Walking Activity Poststroke. Stroke 2017, 48, 406–411. [Google Scholar] [CrossRef]
- Clark, E.; MacCrosain, A.; Ward, N.S.; Jones, F. The key features and role of peer support within group self-management interventions for stroke? A systematic review. Disabil. Rehabil. 2020, 42, 307–316. [Google Scholar] [CrossRef]
- English, C.; Hillier, S.L.; Lynch, E.A. Circuit class therapy for improving mobility after stroke (Review). Cochrane Database Syst. Rev. 2017, 6, CD007513. [Google Scholar] [CrossRef] [PubMed]
- Oyake, K.; Makoto, S.; Otaka, Y.; Momose, K.; Tanaka, S. Motivational strategies for stroke rehabilitation: A Delphi Study. Arch. Phys. Med. Rehabil. 2020, 101, 1929–1936. [Google Scholar] [CrossRef]
- Yoshida, T.; Otaka, Y.; Osu, R.; Kumagai, M.; Kitamura, S.; Yaeda, J. Motivation for Rehabilitation in Patients With Subacute Stroke: A Qualitative Study. Front. Rehabil. Sci. 2021, 2, 664758. [Google Scholar] [CrossRef]
- Takeda, R.; Miyata, K.; Igarashi, T. The minimal clinically important difference of the mini-balance evaluation systems test in patients with early subacute stroke. Top. Stroke Rehabil. 2023, 30, 672–680. [Google Scholar] [CrossRef]
- Sivertsen, M.; Arntzen, E.C.; Alstadhaug, K.B.; Normann, B. Effect of innovative vs. usual care physical therapy in subacute rehabilitation after stroke: A multicenter randomized controlled trial. Front. Rehabil. Sci. 2022, 3, 987601. [Google Scholar] [CrossRef] [PubMed]
- Cano Porras, D.; Sharon, H.; Inzelberg, R.; Ziv-Ner, Y.; Zeilig, G.; Plotnik, M. Advanced virtual reality-based rehabilitation of balance and gait in clinical practice. Ther. Adv. Chronic Dis. 2019, 10, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Hiengkaew, V.; Jitaree, K.; Chaiyawat, P. Minimal detectable changes of the Berg Balance Scale, Fugl-Meyer Assessment Scale, Timed “Up & Go” Test, gait speeds, and 2-minute walk test in individuals with chronic stroke with different degrees of ankle plantarflexor tone. Arch. Phys. Med. Rehabil. 2012, 93, 1201–1208. [Google Scholar] [CrossRef] [PubMed]
- Llorens, R.; Noé, E.; Alcañiz, M.; Deutsch, J.E. Time since injury limits but does not prevent improvement and maintenance of gains in balance in chronic stroke. Brain Inj. 2018, 32, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Akinci, M.; Burak, B.; Yasar, E.; Kilic, R.T. The effects of robot-assisted gait training and virtual reality on gait in stroke survivors: A randomized controlled trial. Gait Posture 2023, 103, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, U.; Karimi, H.; Amir, S.; Ahmed, U. Effects of intensive multiplanar trunk training coupled with dual-task exercises on balance, mobility, and fall risk in patients with stroke: A randomized controlled trial. J. Int. Med. Res. 2021, 49, 11. [Google Scholar] [CrossRef]
- Bigoni, M.; Cimolin, V.; Vismara, L.; Tarantino, A.G.; Baudo, S.; Trotti, C.; Galli, M.; Mauro, A. Retraining selective trunk muscle activity: A key to more successful rehabilitation outcomes for hemiparetic stroke patients. NeuroRehabilitation 2021, 49, 87–94. [Google Scholar] [CrossRef]
- Srivastava, A.; Taly, A.B.; Gupta, A.; Kumar, S.; Murali, T. Post-stroke balance training: Role of force platform with visual feedback technique. J. Neurol. Sci. 2009, 287, 89–93. [Google Scholar] [CrossRef]
- Agustín, R.M.; Crisostomo, M.J.; Sánchez-Martínez, M.P.; Medina-Mirapeix, F. Responsiveness and Minimal Clinically Important Difference of the Five Times Sit-to-Stand Test in Patients with Stroke. Int. J. Environ. Res. Public. Health 2021, 18, 2314. [Google Scholar] [CrossRef]
- Jandaghi, S.; Tahan, N.; Akbarzadeh Baghban, A.; Zoghi, M. Stroke Patients Showed Improvements in Balance in Response to Visual Restriction Exercise. Phys. Ther. Res. 2021, 24, 211–217. [Google Scholar] [CrossRef]
- Pérez-de la Cruz, S. Comparison between three therapeutic options for the treatment of balance and gait in stroke: A randomized controlled trial. Int. J. Environ. Res. Public. Health 2021, 18, 426. [Google Scholar] [CrossRef]
- Mentiplay, B.F.; Clark, R.A.; Bower, K.J.; Williams, G.; Pua, Y.H. Five times sit-to-stand following stroke: Relationship with strength and balance. Gait Posture 2020, 78, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Mong, Y.; Teo, T.W.; Ng, S.S. 5-repetition sit-to-stand test in subjects with chronic stroke: Reliability and validity. Arch. Phys. Med. Rehabil. 2010, 91, 407–413. [Google Scholar] [CrossRef]
- Tung, F.L.; Yang, Y.R.; Lee, C.C.; Wang, R.Y. Balance outcomes after additional sit-to-stand training in subjects with stroke: A randomized controlled trial. Clin. Rehabil. 2010, 24, 533–542. [Google Scholar] [CrossRef]
- Tsaklis, P.V.; Grooten, W.J.; Franzén, E. Effects of weight-shift training on balance control and weight distribution in chronic stroke: A pilot study. Top. Stroke Rehabil. 2012, 19, 23–31. [Google Scholar] [CrossRef]
- Yatar, G.I.; Yildirim, S.A. Wii Fit balance training or progressive balance training in patients with chronic stroke: A randomised controlled trial. J. Phys. Ther. Sci. 2015, 27, 1145–1151. [Google Scholar] [CrossRef]
- Song, G.B.; Park, E.C. Effect of virtual reality games on stroke patients’ balance, gait, depression, and interpersonal relationships. J. Phys. Ther. Sci. 2015, 27, 2057–2060. [Google Scholar] [CrossRef]
- Lee, S.W.; Shin, D.C.; Song, C.H. The effects of visual feedback training on sitting balance ability and visual perception of patients with chronic stroke. J. Phys. Ther. Sci. 2013, 25, 635–639. [Google Scholar] [CrossRef] [PubMed]
- Kannan, L.; Vora, J.; Varas-Diaz, G.; Bhatt, T.; Hughes, S. Does exercise-based conventional training improve reactive balance control among people with chronic stroke? Brain Sci. 2021, 11, 2. [Google Scholar] [CrossRef]
- Botner, E.M.; Miller, W.C.; Eng, J.J. Measurement properties of the Activities-specific Balance Confidence Scale among individuals with stroke. Disabil. Rehabil. 2005, 27, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Marzolini, S.; Wu, C.Y.; Hussein, R.; Xiong, L.Y.; Kangatharan, S.; Peni, A.; Cooper, C.R.; Mahdoum, G.N.; Pakosh, M.; Zaban, S.A.; et al. Associations Between Time After Stroke and Exercise Training Outcomes: A Meta-Regression Analysis. J. Am. Heart Assoc. 2021, 10, e022588. [Google Scholar] [CrossRef]
- Boyne, P.; Welge, J.; Kissela, B.; Dunning, K. Factors Influencing the Efficacy of Aerobic Exercise for Improving Fitness and Walking Capacity After Stroke: A Meta-Analysis with Meta-Regression. Arch. Phys. Med. Rehabil. 2017, 98, 581–595. [Google Scholar] [CrossRef] [PubMed]
- Gray, V.; Rice, C.L.; Garland, S.J. Factors that influence muscle weakness following stroke and their clinical implications: A critical review. Physiother. Can. 2012, 64, 415–426. [Google Scholar] [CrossRef]
- Kuo, C.L.; Hu, G.C. Post-stroke spasticity: A review of epidemiology, pathophysiology, and treatments. Int. J. Gerontol. 2018, 12, 280–284. [Google Scholar] [CrossRef]

| Characteristic | Value |
|---|---|
| Sex (n), male/female | 4/9 |
| Age (years), mean (SD) | 56.0 (7.3) |
| Time since stroke (months), mean (SD) | 76.1 (107.7) |
| Stroke-affected side (n), left/right/bilateral | 4/6/3 |
| Walking aid in the community (n): | |
| None/crutch/rollator | 8/1/1 |
| Ankle-foot orthosis | 4 |
| Clinical Assessments | Mean ± SD | Range [Min–Max] | Time Effect | Comparison Between Two Assessments | ||
|---|---|---|---|---|---|---|
| F 1/χ2 2 | p | T 1/Z 2 | p | |||
| Mini-BESTest | ||||||
| Baseline | 17.4 ± 3.3 | 14–22 | ||||
| 6 weeks | 20.3 ± 4.2 | 15–26 | 36 2 | <0.001 * | 0 2 | 0.002 * |
| 12 weeks | 20.8 ± 3.8 | 15–27 | 1.07 1 | 0.309 | ||
| 10MWT_Fws | ||||||
| Baseline | 1.45 ± 0.30 | 1.16–2.08 | ||||
| 6 weeks | 1.54 ± 0.29 | 1.14–2.07 | 25 2 | <0.001 * | 12 2 | 0.019 * |
| 12 weeks | 1.60 ± 0.27 | 1.3–2.11 | 1.71 1 | 0.115 | ||
| 10MWT_Cws | ||||||
| Baseline | 1.06 ± 0.17 | 0.83–1.38 | ||||
| 6 weeks | 1.08 ± 0.13 | 0.88–1.29 | 0.681 1 | 0.513 | ||
| 12 weeks | 1.13 ± 0.19 | 0.92–1.26 | ||||
| 5TSTS | ||||||
| Baseline | 17.0 ± 7.4 | 10.4–38.4 | ||||
| 6 weeks | 12.6 ± 2.4 | 8.8–16.6 | 21.8 2 | <0.001 * | 73 2 | 0.004 * |
| 12 weeks | 12.7 ± 2.9 | 8.43–17.01 | 0.21 1 | 0.841 | ||
| ABC Scale | ||||||
| Baseline | 80.4 ± 15.7 | 46.9–96.6 | ||||
| 6 weeks | 84.5 ± 15.2 | 51.3–95.9 | 0.863 1 | 0.431 | ||
| 12 weeks | 86.4 ± 11.3 | 68.8–98.1 | ||||
| Limits of Stability | Mean ± SD | Time Effect | Mean ± SD | Time Effect | |||
|---|---|---|---|---|---|---|---|
| F | p | F | p | ||||
| Average in four directions # | 50% (n = 12) | 75% (n = 10) | |||||
| RT (s) | Baseline | 1.01 ± 0.32 | 1.02 ± 0.22 | ||||
| 6 weeks | 0.93 ± 0.27 | 0.455 | 0.638 | 0.94 ± 0.13 | 1.171 | 0.325 | |
| 12 weeks | 0.92 ± 0.25 | 0.93 ± 0.14 | |||||
| MVL (°/s) | Baseline | 3.17 ± 0.75 | 3.64 ± 0.77 | ||||
| 6 weeks | 3.49 ± 0.91 | 0.541 | 0.587 | 3.79 ± 0.73 | 0.088 | 0.916 | |
| 12 weeks | 3.34 ± 0.50 | 3.70 ± 0.80 | |||||
| EPE (%) | Baseline | 35.78 ± 8.58 | 56.85 ± 8.00 | ||||
| 6 weeks | 36.59 ± 10.95 | 1.227 | 0.306 | 57.89 ± 10.87 | 1.227 | 0.306 | |
| 12 weeks | 41.46 ± 8.78 | 67.87 ± 9.33 | |||||
| MXE (%) | Baseline | 52.27 ± 3.98 | 74.97 ± 3.46 | ||||
| 6 weeks | 54.09 ± 5.97 | 0.814 | 0.452 | 74.53 ± 2.77 | 0.105 | 0.901 | |
| 12 weeks | 52.00 ± 2.35 | 75.10 ± 2.48 | |||||
| DCL (%) | Baseline | 33.41 ± 6.74 | 36.53 ± 9.24 | ||||
| 6 weeks | 33.39 ± 8.28 | 0.816 | 0.451 | 37.83 ± 10.64 | 0.045 | 0.956 | |
| 12 weeks | 36.78 ± 7.34 | 37.26 ± 9.08 | |||||
| Towards stroke-affected side | 50% (n = 9) | 75% (n = 7) | |||||
| MVL (%) | Baseline | 3.68 ± 0.75 | 3.81 ± 0.64 | ||||
| 6 weeks | 4.14 ± 1.05 | 1.198 | 0.319 | 3.90 ± 0.86 | 0.196 | 0.824 | |
| 12 weeks | 3.60 ± 0.54 | 4.06 ± 0.78 | |||||
| DCL (%) | Baseline | 34.16 ± 9.83 | 36.98 ± 26.43 | ||||
| 6 weeks | 31.58 ± 6.90 | 0.667 | 0.523 | 27.96 ± 11.43 | 0.398 | 0.677 | |
| 12 weeks | 35.96 ± 7.19 | 32.45 ± 15.59 | |||||
| Weight-Bearing Symmetry | Mean ± SD | Time Effect | |
|---|---|---|---|
| F | p | ||
| Absolute difference left-right % (n = 12) | |||
| Baseline | 6.48 ± 4.62 | ||
| 6 weeks | 6.35 ± 4.36 | 0.633 | 0.537 |
| 12 weeks | 5.03 ± 3.80 | ||
| Stroke-affected lower limb % (n = 9) | |||
| Baseline | 49.18 ± 4.80 | ||
| 6 weeks | 51.39 ± 4.30 | 0.646 | 0.533 |
| 12 weeks | 50.53 ± 3.22 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Močilar, M.; Bizovičar, N.; Puh, U. Group Telerehabilitation to Improve Balance and Mobility in Patients After Stroke Performed at Home: A Feasibility and Pilot Study. Healthcare 2026, 14, 129. https://doi.org/10.3390/healthcare14010129
Močilar M, Bizovičar N, Puh U. Group Telerehabilitation to Improve Balance and Mobility in Patients After Stroke Performed at Home: A Feasibility and Pilot Study. Healthcare. 2026; 14(1):129. https://doi.org/10.3390/healthcare14010129
Chicago/Turabian StyleMočilar, Metka, Nataša Bizovičar, and Urška Puh. 2026. "Group Telerehabilitation to Improve Balance and Mobility in Patients After Stroke Performed at Home: A Feasibility and Pilot Study" Healthcare 14, no. 1: 129. https://doi.org/10.3390/healthcare14010129
APA StyleMočilar, M., Bizovičar, N., & Puh, U. (2026). Group Telerehabilitation to Improve Balance and Mobility in Patients After Stroke Performed at Home: A Feasibility and Pilot Study. Healthcare, 14(1), 129. https://doi.org/10.3390/healthcare14010129

