Associations Between Workday/Leisure Day Lifestyle Behavior and Cardiovascular Disease Risk Factors Among Night Shift Workers Using the Isotemporal Substitution Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Participants’ Work System
2.3. Measurements of SB, PA, and Sleep Duration
2.4. CVD Risk Factors
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NSW | Night shift worker |
CVD | Cardiovascular disease |
SB | Sedentary behavior |
PA | Physical activity |
MVPA | Moderate-to-vigorous PA |
References
- IARC Working Group on the Identification of Carcinogenic Hazards to Humans. Night Shift Work; International Agency for Research on Cancer: Lyon, France, 2020. [Google Scholar]
- Presser, H.B. Working in a 24/7 Economy: Challenges for American Families; Russell Sage Foundation: New York, NY, USA, 2003; Volume 288, pp. 1–10. [Google Scholar]
- Anttila, T.; Oinas, T. 24/7 Society—The new timing of work. In Family, Work and Well-Being: Emergence of New Issues; Tammelin, M., Ed.; Springer: Cham, Switzerland, 2018; pp. 63–76. [Google Scholar]
- Wang, D.; Ruan, W.; Chen, Z.; Peng, Y.; Li, W. Shift work and risk of cardiovascular disease morbidity and mortality: A dose-response meta-analysis of cohort studies. Eur. J. Prev. Cardiol. 2018, 25, 1293–1302. [Google Scholar] [CrossRef]
- Torquati, L.; Mielke, G.I.; Brown, W.J.; Kolbe-Alexander, T. Shift work and the risk of cardiovascular disease. A systematic review and meta-analysis including dose-response relationship. Scand. J. Work Environ. Health 2018, 44, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; He, H.; Wang, D.; Xu, L.; Wang, B.; Ho, K.M.; Chen, W. Shift work and ischaemic heart disease: Meta-analysis and dose-response relationship. Occup. Med. 2019, 69, 182–188. [Google Scholar] [CrossRef]
- World Health Organization. WHO Methods and Data Sources for Country-Level Causes of Death 2000–2019. 2020. Available online: https://cdn.who.int/media/docs/default-source/gho-documents/global-health-estimates/ghe2019_cod_methods.pdf?sfvrsn=37bcfacc_5 (accessed on 11 April 2024).
- World Health Organization. World Health Organization, Cardiovascular Diseases (CVDs). 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 11 April 2024).
- Pepłońska, B.; Burdelak, W.; Krysicka, J.; Bukowska, A.; Marcinkiewicz, A.; Sobala, W.; Klimecka-Muszyńska, D.; Rybacki, M. Night shift work and modifiable lifestyle factors. Int. J. Occup. Med. Environ. Health 2014, 27, 693–706. [Google Scholar] [CrossRef] [PubMed]
- Hulsegge, G.; Proper, K.I.; Loef, B.; Paagman, H.; Anema, J.R.; van Mechelen, W. The mediating role of lifestyle in the relationship between shift work, obesity and diabetes. Int. Arch. Occup. Environ. Health 2021, 94, 1287–1295. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Shimai, S.; Kikuchi, S.; Tominaga, K.; Takahashi, H.; Tanaka, M.; Nakano, S.; Motohashi, Y.; Nakadaira, H.; Yamamoto, M. Shift work and risk factors for coronary heart disease in Japanese blue-collar workers: Serum lipids and anthropometric characteristics. Occup. Med. 1997, 47, 142–146. [Google Scholar] [CrossRef]
- Monnaatsie, M.; Biddle, S.J.H.; Khan, S.; Kolbe-Alexander, T. Physical activity and sedentary behaviour in shift and non-shift workers: A systematic review and meta-analysis. Prev. Med. Rep. 2021, 24, 101597. [Google Scholar] [CrossRef]
- Yong, L.C.; Li, J.; Calvert, G.M. Sleep-related problems in the US working population: Prevalence and association with shiftwork status. Occup. Environ. Med. 2017, 74, 93–104. [Google Scholar] [CrossRef]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Lloyd-Jones, D.M.; Allen, N.B.; Anderson, C.A.M.; Black, T.; Brewer, L.C.; Foraker, R.E.; Grandner, M.A.; Lavretsky, H.; Perak, A.M.; Sharma, G.; et al. Life’s essential 8: Updating and enhancing the American Heart Association’s construct of cardiovascular health: A presidential advisory from the American Heart Association. Circulation 2022, 146, e18–e43. [Google Scholar] [CrossRef]
- Ministry of Health, Labour and Welfare. Sleep Guide for Health Promotion, 2023 [Draft]. 2023. Available online: https://www.mhlw.go.jp/content/10904750/001181265.pdf (accessed on 13 February 2024).
- Mekary, R.A.; Willett, W.C.; Hu, F.B.; Ding, E.L. Isotemporal substitution paradigm for physical activity epidemiology and weight change. Am. J. Epidemiol. 2009, 170, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.J.; Härmä, M.; Ropponen, A.; Karhula, K.; Koskinen, A.; Oksanen, T. Shift work and physical inactivity: Findings from the Finnish Public Sector Study with objective working hour data. Scand. J. Work Environ. Health 2020, 46, 293–301. [Google Scholar] [CrossRef]
- Galmes-Panades, A.M.; Varela-Mato, V.; Konieczna, J.; Wärnberg, J.; Martínez-González, M.Á.; Salas-Salvadó, J.; Corella, D.; Schröder, H.; Vioque, J.; Alonso-Gómez, Á.M. Isotemporal substitution of inactive time with physical activity and time in bed: Cross-sectional associations with cardiometabolic health in the PREDIMED-Plus study. Int. J. Behav. Nutr. Phys. Act. 2019, 16, 137. [Google Scholar] [CrossRef]
- Matsuo, M.; Masuda, F.; Sumi, Y.; Takahashi, M.; Yamada, N.; Ohira, M.H.; Fujiwara, K.; Kanemura, T.; Kadotani, H. Comparisons of Portable Sleep Monitors of Different Modalities: Potential as Naturalistic Sleep Recorders. Front. Neurol. 2016, 7, 110. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nakazaki, K.; Kitamura, S.; Motomura, Y.; Hida, A.; Kamei, Y.; Miura, N.; Mishima, K. Validity of an algorithm for determining sleep/wake states using a new actigraph. J. Physiol. Anthropol. 2014, 33, 31. [Google Scholar] [CrossRef]
- Pate, R.R.; O’Neill, J.R.; Lobelo, F. The evolving definition of “sedentary”. Exerc. Sport Sci. Rev. 2008, 36, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Haskell, W.L.; Lee, I.M.; Pate, R.R.; Powell, K.E.; Blair, S.N.; Franklin, B.A.; Macera, C.A.; Heath, G.W.; Thompson, P.D.; Bauman, A.; et al. Physical activity and public health: Updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation 2007, 116, 1081–1093. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health, Labour and Welfare, Japan. Medical Examination Workers Engaged in Specified Work, Industrial Safety and Health Law, Industrial Safety and Health Regulations, 2024; p. 1972 Last Amended on 1st April, 2024, Article 45. Available online: https://elaws.e-gov.go.jp/document?lawid=347M50002000032 (accessed on 22 April 2024).
- Batsis, J.A.; Nieto-Martinez, R.E.; Lopez-Jimenez, F. Metabolic syndrome: From global epidemiology to individualized medicine. Clin. Pharmacol. Ther. 2007, 82, 509–524. [Google Scholar] [CrossRef]
- Lim, S.; Shin, H.; Song, J.H.; Kwak, S.H.; Kang, S.M.; Won Yoon, J.; Choi, S.H.; Cho, S.I.; Park, K.S.; Lee, H.K.; et al. Increasing prevalence of metabolic syndrome in Korea: The Korean National Health and Nutrition Examination Survey for 1998–2007. Diabetes Care 2011, 34, 1323–1328. [Google Scholar] [CrossRef]
- Kinoshita, K.; Ozato, N.; Yamaguchi, T.; Sudo, M.; Yamashiro, Y.; Mori, K.; Ishida, M.; Katsuragi, Y.; Sasai, H.; Yasukawa, T.; et al. Association of sedentary behaviour and physical activity with cardiometabolic health in Japanese adults. Sci. Rep. 2022, 12, 2262. [Google Scholar] [CrossRef]
- Gupta, N.; Heiden, M.; Aadahl, M.; Korshøj, M.; Jørgensen, M.B.; Holtermann, A. What is the effect on obesity indicators from replacing prolonged sedentary time with brief sedentary bouts, standing and different types of physical activity during working days? A cross-sectional accelerometer-based study among blue-collar workers. PLoS ONE 2016, 11, e0154935. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Dumuid, D.; Bengoechea, E.G.; Shrestha, N.; Bauman, A.; Olds, T.; Pedisic, Z. Health outcomes associated with reallocations of time between sleep, sedentary behaviour, and physical activity: A systematic scoping review of isotemporal substitution studies. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 69. [Google Scholar] [CrossRef] [PubMed]
- Buman, M.P.; Winkler, E.A.H.; Kurka, J.M.; Hekler, E.B.; Baldwin, C.M.; Owen, N.; Ainsworth, B.E.; Healy, G.N.; Gardiner, P.A. Reallocating time to sleep, sedentary behaviors, or active behaviors: Associations with cardiovascular disease risk biomarkers, NHANES 2005–2006. Am. J. Epidemiol. 2014, 179, 323–334. [Google Scholar] [CrossRef]
- Blodgett, J.M.; Ahmadi, M.N.; Atkin, A.J.; Chastin, S.; Chan, H.W.; Suorsa, K.; Bakker, E.A.; Hettiarcachchi, P.; Johansson, P.J.; Sherar, L.B.; et al. Device-measured physical activity and cardiometabolic health: The Prospective Physical Activity, Sitting, and Sleep (ProPASS) consortium. Eur. Heart J. 2024, 45, 458–471. [Google Scholar] [CrossRef]
- Che, T.; Yan, C.; Tian, D.; Zhang, X.; Liu, X.; Wu, Z. The association between sleep and metabolic syndrome: A systematic review and meta-analysis. Front. Endocrinol. 2021, 12, 773646. [Google Scholar] [CrossRef]
- Kim, J.Y.; Yadav, D.; Ahn, S.V.; Koh, S.B.; Park, J.T.; Yoon, J.; Yoo, B.S.; Lee, S.H. A prospective study of total sleep duration and incident metabolic syndrome: The ARIRANG study. Sleep Med. 2015, 16, 1511–1515. [Google Scholar] [CrossRef] [PubMed]
- Taheri, S.; Lin, L.; Austin, D.; Young, T.; Mignot, E. Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Med. 2004, 1, e62. [Google Scholar] [CrossRef]
- Al Khatib, H.K.; Harding, S.V.; Darzi, J.; Pot, G.K. The effects of partial sleep deprivation on energy balance: A systematic review and meta-analysis. Eur. J. Clin. Nutr. 2017, 71, 614–624. [Google Scholar] [CrossRef]
- Banks, W.A.; Farr, S.A.; Salameh, T.S.; Niehoff, M.L.; Rhea, E.M.; Morley, J.E.; Hanson, A.J.; Hansen, K.M.; Craft, S. Triglycerides cross the blood-brain barrier and induce central leptin and insulin receptor resistance. Int. J. Obes. 2018, 42, 391–397. [Google Scholar] [CrossRef]
- Kim, K.N.; Joo, J.; Sung, H.K.; Kim, C.H.; Kim, H.; Kwon, Y.J. Associations of serum liver enzyme levels and their changes over time with all-cause and cause-specific mortality in the general population: A large-scale national health screening cohort study. BMJ Open 2019, 9, e026965. [Google Scholar] [CrossRef]
- Dumitrascu, D.L.; Neuman, M.G. Non-alcoholic fatty liver disease: An update on diagnosis. Clujul Med. 2018, 91, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Duell, P.; Welty, F.; Miller, M.; Chait, A.; Hammond, G.; Ahmad, Z.; Cohen, D.; Horton, J.; Pressman, G.; Toth, P. Nonalcoholic fatty liver disease and cardiovascular risk: A scientific statement from the American heart association. Arterioscler. Thromb. Vasc. Biol. 2022, 42, e168–e185. [Google Scholar] [CrossRef]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J. Hepatol. 2023, 79, 1542–1556. [Google Scholar] [CrossRef]
- Paul, S.; Davis, A.M. Diagnosis and management of nonalcoholic fatty liver disease. JAMA 2018, 320, 2474–2475. [Google Scholar] [CrossRef]
- Kenneally, S.; Sier, J.H.; Moore, J.B. Efficacy of dietary and physical activity intervention in non-alcoholic fatty liver disease: A systematic review. BMJ Open Gastroenterol. 2017, 4, e000139. [Google Scholar] [CrossRef] [PubMed]
- Chun, H.S.; Lee, M.; Lee, H.A.; Oh, S.Y.; Baek, H.J.; Moon, J.W.; Kim, Y.J.; Lee, J.; Kim, H.; Kim, H.Y.; et al. Association of physical activity with risk of liver fibrosis, sarcopenia, and cardiovascular disease in nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 2023, 21, 358–369.e12. [Google Scholar] [CrossRef]
- Targher, G.; Byrne, C.D.; Tilg, H. MASLD: A systemic metabolic disorder with cardiovascular and malignant complications. Gut 2024, 73, 691–702. [Google Scholar] [CrossRef] [PubMed]
- Miyake, T.; Kumagi, T.; Furukawa, S.; Hirooka, M.; Kawasaki, K.; Koizumi, M.; Todo, Y.; Yamamoto, S.; Tokumoto, Y.; Ikeda, Y.; et al. Short sleep duration reduces the risk of nonalcoholic fatty liver disease onset in men: A community-based longitudinal cohort study. J. Gastroenterol. 2015, 50, 583–589. [Google Scholar] [CrossRef]
- Bonnet, M.H.; Berry, R.B.; Arand, D.L. Metabolism during normal, fragmented, and recovery sleep. J. Appl. Physiol. 1991, 71, 1112–1118. [Google Scholar] [CrossRef]
- Ministry of Health, Labor and Welfare. Active Guide, Physical Activity and Exercise Guide for Health Promotion 2023. Japan. Available online: https://www.mhlw.go.jp/content/001361383.pdf (accessed on 27 March 2025).
Mean | SD | ||
---|---|---|---|
Age (years) | 40.2 | 9.9 | |
Weight (kg) | 69.5 | 9.7 | |
BMI (kg/m2) | 23.7 | 3.5 | |
WC (cm) | 84.8 | 9.3 | |
SBP (mmHg) | 121.9 | 13.0 | |
DBP (mmHg) | 75.2 | 9.6 | |
HDL (mg/dL) | 55.7 | 14.2 | |
LDL (mg/dL) | 115.4 | 27.4 | |
logTG | 2.0 | 0.3 | |
logAST | 1.4 | 0.1 | |
logALT | 1.5 | 0.2 | |
logγGPT | 1.7 | 0.3 | |
Number of accelerometer-wearing days | 6.2 | 1.3 | |
Number of workdays | 1.9 | 0.6 | |
Number of leisure days | 4.2 | 1.1 | |
Alcohol consumption status | n | % | |
Drinker | 39 | 59 | |
Non-drinker | 27 | 41 |
Workdays | ||||
---|---|---|---|---|
Lifestyle Behaviors | Reallocation | WC | AST | TG |
SB | LPA | ↓ | ns | ns |
Sleep | SB | ns | ns | ↑ |
Sleep | MVPA | ns | ns | ↑ |
Leisure days | ||||
SB | MVPA | ns | ↓ | ns |
Sleep | MVPA | ns | ↓ | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Umeda, Y.; Kinoshita, K.; Sugimura, Y.; Yang, Y.; Wai, K.M.; Li, Y.; Ihara, K. Associations Between Workday/Leisure Day Lifestyle Behavior and Cardiovascular Disease Risk Factors Among Night Shift Workers Using the Isotemporal Substitution Model. Healthcare 2025, 13, 908. https://doi.org/10.3390/healthcare13080908
Umeda Y, Kinoshita K, Sugimura Y, Yang Y, Wai KM, Li Y, Ihara K. Associations Between Workday/Leisure Day Lifestyle Behavior and Cardiovascular Disease Risk Factors Among Night Shift Workers Using the Isotemporal Substitution Model. Healthcare. 2025; 13(8):908. https://doi.org/10.3390/healthcare13080908
Chicago/Turabian StyleUmeda, Yoko, Keita Kinoshita, Yoshikuni Sugimura, Yichi Yang, Kyi Mar Wai, Yitao Li, and Kazushige Ihara. 2025. "Associations Between Workday/Leisure Day Lifestyle Behavior and Cardiovascular Disease Risk Factors Among Night Shift Workers Using the Isotemporal Substitution Model" Healthcare 13, no. 8: 908. https://doi.org/10.3390/healthcare13080908
APA StyleUmeda, Y., Kinoshita, K., Sugimura, Y., Yang, Y., Wai, K. M., Li, Y., & Ihara, K. (2025). Associations Between Workday/Leisure Day Lifestyle Behavior and Cardiovascular Disease Risk Factors Among Night Shift Workers Using the Isotemporal Substitution Model. Healthcare, 13(8), 908. https://doi.org/10.3390/healthcare13080908