How to Assess Health Gains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Setting, Data Collection, and Inclusion Criteria
2.2. EQ-5D-5L
2.3. Cumulative Illness Rating Scale (CIRS)
2.4. Individual Care Plan
2.5. QALY and Cost–Utility Analysis
2.6. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Silva, A.F.; Cancela, J.M.; Mollinedo, I.; Camões, M.; Bezerra, P. The Relationship between Health Perception and Health Predictors among the Elderly across European Countries. Int. J. Environ. Res. Public Health 2021, 18, 4053. [Google Scholar] [CrossRef] [PubMed]
- Galluzzo, L.; Gandin, C.; Ghirini, S.; Scafato, E. L’invecchiamento Della Popolazione: Opportunità o Sfida? Bollettino Epidemiologico Nazionale. Available online: https://www.epicentro.iss.it/ben/2012/aprile/2 (accessed on 9 March 2024).
- Fineschi, D.; Acciai, S.; Napolitani, M.; Scarafuggi, G.; Messina, G.; Guarducci, G.; Nante, N. Game of Mirrors: Health Profiles in Patient and Physician Perceptions. Int. J. Environ. Res. Public Health 2022, 19, 1201. [Google Scholar] [CrossRef] [PubMed]
- McEntee, M.L.; Gandek, B.; Ware, J.E. Improving multimorbidity measurement using individualized disease-specific quality of life impact assessments: Predictive validity of a new comorbidity index. Health Qual. Life Outcomes 2022, 20, 1–16. [Google Scholar] [CrossRef]
- Stolk-Vos, A.C.; van de Klundert, J.J.; Maijers, N.; Zijlmans, B.L.; Busschbach, J.J. Multi-stakeholder perspectives in defining health-services quality in cataract care. Int. J. Qual. Health Care 2017, 29, 470–476. [Google Scholar] [CrossRef]
- Galán-Arroyo, C.; Pereira-Payo, D.; Hernández-Mocholí, M.A.; Merellano-Navarro, E.; Pérez-Gómez, J.; Rojo-Ramos, J.; Adsuar, J.C. Association between Agility, Health-Related Quality of Life, Depression, and Anthropometric Variables in Physically Active Older Adult Women with Depression. Healthcare 2022, 10, 100. [Google Scholar] [CrossRef] [PubMed]
- Napolitani, M.; Guarducci, G.; Abinova, G.; Messina, G.; Nante, N. How to Improve the Drafting of Health Profiles. Int. J. Environ. Res. Public Health 2022, 19, 3452. [Google Scholar] [CrossRef]
- Fernández-Sanchis, D.; la Cruz, N.B.-D.; Jiménez-Sánchez, C.; Gil-Calvo, M.; Herrero, P.; Calvo, S. Cost-Effectiveness of Upper Extremity Dry Needling in Chronic Stroke. Healthcare 2022, 10, 160. [Google Scholar] [CrossRef]
- Hegde, S.; Sreeram, S.; Bhat, K.R.; Satish, V.; Shekar, S.; Babu, M. Evaluation of post-COVID health status using the EuroQol-5D-5L scale. Ann. Trop. Med. Parasitol. 2022, 116, 498–508. [Google Scholar] [CrossRef]
- Sandberg, M.; Jakobsson, U.; Midlöv, P.; Kristensson, J. Cost-utility analysis of case management for frail older people: Effects of a randomised controlled trial. Health Econ. Rev. 2015, 5, 12. [Google Scholar] [CrossRef]
- Davis, J.C.; Liu-Ambrose, T.; Khan, K.M.; Robertson, M.C.; Marra, C.A. SF-6D and EQ-5D result in widely divergent incremental cost-effectiveness ratios in a clinical trial of older women: Implications for health policy decisions. Osteoporos. Int. 2011, 23, 1849–1857. [Google Scholar] [CrossRef]
- Neumann, P.J.; Cohen, J.T.; Weinstein, M.C. Updating Cost-Effectiveness—The Curious Resilience of the $50,000-per-QALY Threshold. New Engl. J. Med. 2014, 371, 796–797. [Google Scholar] [CrossRef]
- Marseille, E.; Larson, B.; Kazi, D.S.; Kahn, J.G.; Rosen, S. Thresholds for the cost–effectiveness of interventions: Alternative approaches. Bull. World Health Organ. 2014, 93, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Drummond, M.E.; Sculpher, M.J.; Torrance, G.W.; O’brien, B.J.; Stoddart, G.L. Methods for the Economic Evaluation of Health Care Programmes, 4th ed.; Oxford University Press (OUP): Oxford, UK, 2005; Available online: https://books.google.co.uk/books?id=lvWACgAAQBAJ (accessed on 27 March 2025).
- Christensen, C.M.; Jerome, H.; Grossman, M.D.; Jason Hwang, M.D. The Innovator’s Prescription: A Disruptive Solution for Health Care; McGraw-Hill: New York, NY, USA, 2009. [Google Scholar]
- Devlin, N.J.; Shah, K.K.; Feng, Y.; Mulhern, B.; Van Hout, B. Valuing health-related quality of life: An EQ-5D-5L value set for England. Health Econ. 2018, 27, 7–22. [Google Scholar] [CrossRef]
- Briggs, A.; Claxton, K.; Sculpher, M. Decision Modelling For Health Economic Evaluation; Oxford University Press (OUP): Oxford, UK, 2006. [Google Scholar]
- Wang, X.; Luo, H.B.; Yao, E.B.; Tang, R.B.; Dong, W.B.; Liu, F.B.; Liang, J.M.; Xiao, M.M.; Zhang, Z.M.; Niu, J.M.; et al. Health utility measurement for people living with HIV/AIDS under combined antiretroviral therapy: A comparison of EQ-5D-5L and SF-6D. Medicine 2022, 101, e31666. [Google Scholar] [CrossRef] [PubMed]
- Ticinesi, A.; Nouvenne, A.; Folesani, G.; Prati, B.; Morelli, I.; Guida, L.; Turroni, F.; Ventura, M.; Lauretani, F.; Maggio, M.; et al. Multimorbidity in elderly hospitalised patients and risk of Clostridium difficileinfection: A retrospective study with the Cumulative Illness Rating Scale (CIRS). BMJ Open 2015, 5, e009316. [Google Scholar] [CrossRef]
- Guarducci, G.; Messina, G.; Panichella, F.; Gentile, A.M.; Dionisi, L.; Nante, N. Health Gain Provided by Individual Care Plans. J. Health Manag. 2025, 09720634241307287. [Google Scholar] [CrossRef]
- Wichmann, A.B.; Adang, E.M.; Stalmeier, P.F.; Kristanti, S.; Block, L.V.D.; Vernooij-Dassen, M.J.; Engels, Y.; Pace, O.B.O. The use of Quality-Adjusted Life Years in cost-effectiveness analyses in palliative care: Mapping the debate through an integrative review. Palliat. Med. 2017, 31, 306–322. [Google Scholar] [CrossRef]
- The World Bank. Life Expectancy at Birth, Total (Years)—Italy. 2022. Available online: https://data.worldbank.org/indicator/SP.DYN.LE00.IN?name_desc=false&locations=IT (accessed on 27 January 2025).
- Sutherland, J.M.; Mok, J.; Liu, G.; Karimuddin, A.; Crump, T. A Cost-Utility Study of Laparoscopic Cholecystectomy for the Treatment of Symptomatic Gallstones. J. Gastrointest. Surg. 2019, 24, 1314–1319. [Google Scholar] [CrossRef]
- National Institute for Health and Clinical Excellence (NICE). Guide to the Methods of Technology Appraisal 2013; NICE: London, UK, 2013. [Google Scholar]
- The EuroQol Group. EuroQol-a new facility for the measurement of health-related quality of life. Health Policy 1990, 16, 199–208. [Google Scholar] [CrossRef]
- Abizanda, P.; López, M.D.; García, V.P.; Estrella, J.d.D.; González, Á.d.S.; Vilardell, N.B.; Torres, K.A. Effects of an Oral Nutritional Supplementation Plus Physical Exercise Intervention on the Physical Function, Nutritional Status, and Quality of Life in Frail Institutionalized Older Adults: The ACTIVNES Study. J. Am. Med. Dir. Assoc. 2015, 16, 439.e9–439.e16. [Google Scholar] [CrossRef]
- Chen, C.; Liu, G.G.; Shi, Q.L.; Sun, Y.; Zhang, H.; Wang, M.J.; Jia, H.P.; Zhao, Y.L.; Yao, Y. Health-Related Quality of Life and Associated Factors Among Oldest-Old in China. J. Nutr. Health Aging 2020, 24, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Herhaus, B.; Kersting, A.; Brähler, E.; Petrowski, K. Depression, anxiety and health status across different BMI classes: A representative study in Germany. J. Affect. Disord. 2020, 276, 45–52. [Google Scholar] [CrossRef] [PubMed]
- König, H.-H.; Brettschneider, C.; Lühmann, D.; Kaduszkiewicz, H.; Oey, A.; Wiese, B.; Werle, J.; Weyerer, S.; Fuchs, A.; Pentzek, M.; et al. EQ-5D-3L health status and health state utilities of the oldest-old (85 +) in Germany: Results from the AgeCoDe-AgeQualiDe study. Qual. Life Res. 2020, 29, 3223–3232. [Google Scholar] [CrossRef]
- Kangwanrattanakul, K. Normative profile of the EQ-5D-5L dimensions, EQ-5D-5L index and EQ-VAS scores for the general Thai population. Qual. Life Res. 2023, 32, 2489–2502. [Google Scholar] [CrossRef]
- Meregaglia, M.; Malandrini, F.; Finch, A.P.; Ciani, O.; Jommi, C. EQ-5D-5L Population Norms for Italy. Appl. Health Econ. Health Policy 2023, 21, 289–303. [Google Scholar]
- Prevolnik Rupel, V.; Ogorevc, M. EQ-5D-5L Slovenian population norms. Health Qual Life Outcomes 2020, 18, 333. [Google Scholar]
- Garratt, A.M.; Hansen, T.M.; Augestad, L.A.; Rand, K.; Stavem, K. Norwegian population norms for the EQ-5D-5L: Results from a general population survey. Qual. Life Res. 2021, 31, 517–526. [Google Scholar] [CrossRef]
- Ferreira, L.N.; Ferreira, P.L.; Pereira, L.N.; Oppe, M. EQ-5D Portuguese population norms. Qual. Life Res. 2013, 23, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Barton, G.R.; Sach, T.H.; Jenkinson, C.; Avery, A.J.; Doherty, M.; Muir, K.R. Do estimates of cost-utility based on the EQ-5D differ from those based on the mapping of utility scores? Health Qual Life Outcomes 2008, 6, 51. [Google Scholar]
- Salvi, F.; Miller, M.D.; Grilli, A.; Giorgi, R.; Towers, A.L.; Morichi, V.; Spazzafumo, L.; Mancinelli, L.; Espinosa, E.; Rappelli, A.; et al. A Manual of Guidelines to Score the Modified Cumulative Illness Rating Scale and Its Validation in Acute Hospitalized Elderly Patients. J. Am. Geriatr. Soc. 2008, 56, 1926–1931. [Google Scholar] [CrossRef]
- Di Raimondo, D.; Pirera, E.; Pintus, C.; De Rosa, R.; Profita, M.; Musiari, G.; Siscaro, G.; Tuttolomondo, A. The Role of the Cumulative Illness Rating Scale (CIRS) in Estimating the Impact of Comorbidities on Chronic Obstructive Pulmonary Disease (COPD) Outcomes: A Pilot Study of the MACH (Multidimensional Approach for COPD and High Complexity) Study. J. Pers. Med. 2023, 13, 1674. [Google Scholar] [CrossRef] [PubMed]
- Parmelee, P.A.; Thuras, P.D.; Katz, I.R.; Lawton, M.P. Validation of the Cumulative Illness Rating Scale in a Geriatric Residential Population. J. Am. Geriatr. Soc. 1995, 43, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Harboun, M.; Ankri, J. Indices de comorbidité: Revue de la littérature et application aux études des populations agées [Comorbidity indexes: Review of the literature and application to studies of elderly population]. Rev. Epidemiol. Sante. Publique. 2001, 49, 287–298. [Google Scholar] [PubMed]
- Simons, S.M.J.; Cillessen, F.H.J.M.; Hazelzet, J.A. Determinants of a successful problem list to support the implementation of the problem-oriented medical record according to recent literature. BMC Med. Informatics Decis. Mak. 2016, 16, 1–9. [Google Scholar] [CrossRef]
- Touré, M.; Kouakou, C.R.C.; Poder, T.G. Dimensions Used in Instruments for QALY Calculation: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 4428. [Google Scholar] [CrossRef]
- Lamers, L.M.; Stalmeier, P.F.; McDonnell, J.; Krabbe, P.F.; van Busschbach, J.J. Kwaliteit van leven meten in economische evaluaties: Het Nederlands EQ-5D-tarief [Measuring the quality of life in economic evaluations: The Dutch EQ-5D tariff]. Ned. Tijdschr Geneeskd. 2005, 149, 1574–1578. [Google Scholar]
- Salomon, J.A.; Vos, T.; Hogan, D.R.; Gagnon, M.; Naghavi, M.; Mokdad, A.; Begum, N.; Shah, R.; Karyana, M.; Kosen, S.; et al. Common values in assessing health outcomes from disease and injury: Disability weights measurement study for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2129–2143. [Google Scholar] [CrossRef]
- AIES (Italian Health Economic Association); Working Group (Coordinate by G. Fattore). Proposed guidelines for the economic evaluation of health interventions in Italy. Pharmacoeconomics Ital. Res. Artic. 2009, 11, 83–93. [Google Scholar]
- Martone, N.; Lucioni, C.; Mazzi, S.; Fadda, V. Cost-Effectiveness Evaluation of Oncological Drugs Newly Marketed in Italy. Glob. Reg. Health Technol. Assess. 2014, 1, GRHTA-5000182. [Google Scholar]
Patients | N° | % |
---|---|---|
TOTAL | 129 | 100% |
Sex | ||
Male | 56 | 43.4% |
Female | 73 | 56.6% |
Age (median 81 [11]) | ||
<65 years old | 6 | 4.7% |
≥65 years old | 123 | 95.3% |
BMI (median 25.5 [5.0]) | ||
Underweight | 9 | 7.0% |
Normal weight | 50 | 38.7% |
Overweight | 52 | 40.3% |
Obese I Class | 16 | 12.4% |
Obese II Class | 2 | 1.6% |
Length of stay (median 16 [16]) | ||
<16 days | 51 | 39.5% |
≥16 days | 78 | 60.5% |
Admission | Discharge | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
M | S-C | D-A | P-D | A-D | M | S-C | D-A | P-D | A-D | |
Sex | ||||||||||
Male | 4 [1] * | 3 [1] | 4 [1] * | 3 [1] * | 2 [1] | 3 [1] * | 3 [1] | 3 [1] * | 2 [1] * | 2 [1] |
Female | 4 [1] * | 3 [1] | 3 [1] * | 3 [2] * | 2 [2] | 2 [1] * | 3 [1] | 3 [1] * | 2 [1] * | 2 [1] |
Age | ||||||||||
<65 years old | 3 [2] | 3 [1] | 4 [1] * | 3 [1] | 2 [1] | 2 [1] | 2 [1] | 2 [1] * | 2 [1] | 2 [1] |
≥65 years old | 4 [1] * | 3 [1] | 4 [2] * | 3 [1] * | 2 [2] * | 3 [1] * | 3 [1] | 3 [1] * | 2 [1] * | 2 [1] * |
BMI | ||||||||||
Underweight | 3 [2] * | 3 [1] | 3 [1] | 3 [1] * | 3 [1] * | 2 [1] * | 3 [1] | 3 [1] | 2 [1] * | 2 [1] * |
Normal weight | 4 [1] * | 3 [1] | 4 [1] * | 3 [1] * | 2 [1] * | 3 [1] * | 3 [1] | 3 [1.5] * | 2 [1] * | 2 [1.5] * |
Overweight | 4 [1] * | 3 [1] | 4 [1] * | 3 [1] * | 2 [1] * | 3 [1] * | 3 [1] | 3 [1] * | 2 [1] * | 2 [1] * |
Obese I Class | 3 [1] * | 3 [1] | 4 [1] * | 3 [1] * | 2 [2] * | 2 [1] * | 2 [1] | 3 [0.5] * | 2 [1] * | 2 [1.5] * |
Obese II Class | 3 [1] | 3 [1] | 3 [1] | 2 [1] | 1 [1] | 2 [1] * | 2 [1] | 2 [1] | 1 [0] | 1 [0] |
Length of stay | ||||||||||
<16 days | 3 [1] * | 3 [1] | 3 [1] | 3 [1] * | 2 [1] | 2 [1] | 3 [1] | 3 [1] | 2 [1] * | 2 [1] |
≥16 days | 4 [1] * | 4 [1] * | 4 [1] * | 3 [1] * | 2 [1] * | 3 [1] * | 3 [1] * | 3 [1] * | 2 [1] * | 2 [2] * |
Total | 4 [2] * | 3 [2] * | 4 [2] * | 3 [1] * | 2 [1] * | 3 [1] * | 3 [1] * | 3 [1] * | 2 [1] * | 2 [1] * |
Admission | Discharge | Delta | |
---|---|---|---|
Sex | |||
Male | 0.378 [0.276] | 0.56 [0.167] | 0.158 [193] * |
Female | 0.423 [0.377] | 0.592 [0.247] | 0.098 [0.235] * |
Age | |||
<65 years old | 0.531 [0.225] | 0.740 [0.214] | 0.142 [0.302] |
≥65 years old | 0.381 [0.335] | 0.567 [0.197] | 0.120 [0.204] * |
BMI | |||
Underweight | 0.378 [0.551] | 0.558 [0.439] | 0.039 [0.173] |
Normal weight | 0.387 [0.318] | 0.565 [0.232] | 0.099 [0.233] * |
Overweight | 0.445 [0.303] | 0.570 [0.119] | 0.126 [0.199] * |
Obese I Class | 0.359 [0.676] | 0.586 [0.108] | 0.173 [0.273] * |
Obese II Class | 0.578 [0.314] | 0.812 [0.130] | 0.234 [0.184] |
Length of stay | |||
<16 days | 0.487 [0.442] | 0.586 [0.222] | 0.075 [0.229] * |
≥16 days | 0.310 [0.277] | 0.555 [0.129] | 0.190 [0.190] * |
Total | 0.406 [0.322] | 0.567 [0.197] | 0.120 [0.224] * |
CIRS Categories | Male | Female | Length of Stay < 16 | Length of Stay ≥ 16 | ||||
---|---|---|---|---|---|---|---|---|
Adm. | Dis. | Adm. | Dis. | Adm. | Dis. | Adm. | Dis. | |
Heart | 1 [2] * | 1 [2] * | 3 [2] * | 3 [2] * | 1 [2] | 1 [2] | 2 [2] | 2 [2] |
Blood pressure | 3 [2] | 3 [2] | 3 [2] | 3 [2] | 3 [1] | 3 [1] | 3 [2] | 3 [2] |
Vascular | 2 [1] | 2 [1] | 2 [2] | 2 [2] | 2 [1] * | 2 [1] * | 2 [2] * | 1 [2] * |
Respiratory | 1 [0] | 1 [0] | 1 [1] | 1 [1] | 1 [1] | 1 [1] | 1 [1] | 1 [1] |
Sense organs | 2 [1.5] * | 2 [1.5] * | 1 [1] * | 1 [1] * | 2 [1] | 2 [1] | 1 [1] | 1 [1] |
Upper G.I. | 3 [0] * | 3 [0] * | 1 [2] * | 1 [2] * | 3 [2] | 3 [2] | 3 [2] | 3 [2] |
Lower G.I. | 1 [0] | 1 [0] | 1 [0] | 1 [0] | 1 [0] | 1 [0] | 1 [0] | 1 [0] |
H-P | 1 [0] | 1 [0] | 1 [0] | 1 [0] | 1 [0] | 1 [0] | 1 [0] | 1 [0] |
Renal | 1 [0] | 1 [0] | 1 [0] | 1 [0] | 1 [0] | 1 [0] | 1 [0] | 1 [0] |
Genitourinary | 1 [1] * | 1 [1] * | 2 [2] * | 1 [2] * | 2 [1] | 1 [1] | 1 [1] | 1 [1] |
MS and skin | 4 [0] | 3 [0] | 4 [1] | 3 [1] | 4 [1] | 3 [1] | 4 [1] | 3 [1] |
Neurological | 1 [0] | 1 [0] | 1 [0] | 1 [0] | 1 [0] | 1 [0] | 1 [0] | 1 [0] |
Endocrine | 3 [2] * | 3 [2] * | 1 [2] * | 1 [2] * | 2 [2] | 2 [2] | 3 [2] | 3 [2] |
Psychiatric | 4 [3] * | 4 [3] * | 1 [3] * | 1 [3] * | 1 [3] * | 1 [3] * | 3 [3] * | 3 [3] * |
Comorbidity Index | 4.50 [2] | 4.50 [2] | 4 [2] | 4 [2] | 4 [1] * | 4 [1] * | 5 [2] * | 5 [2] * |
Severity Index | 1.92 [0.38] | 1.92 [0.38] | 1.85 [0.35] | 1.85 [0.35] | 1.85 [0.31] | 1.85 [0.31] | 1.92 [0.46] | 1.92 [0.46] |
Problem | N° Observation | Measuring Tool | Admission Value | Discharge Value | Significant Improvement |
---|---|---|---|---|---|
Pain | 108 | Scala NRS | 6 [2] | 3 [1] | p < 0.05 |
ADLs | 101 | Scala Barthel | 65 [40] | 85 [30] | p < 0.05 |
Walking difficulties | 101 | Scala Tinetti | 18 [13] | 23 [8] | p < 0.05 |
Anemia | 27 | Haemoglobin (g/dL) | 10.7 [1.4] | 11.3 [1.6] | p < 0.05 |
Surgical wound | 17 | C-reactive protein and Photo | 3.4 [2.0] | 1.1 [2.3] | p < 0.05 |
Patient | Median Gain in QALY | Hospitalization Costs (EUR) | QALY | |
---|---|---|---|---|
Median Cost (EUR) | IQR (EUR) | |||
Total | 0.32127 [0.37807] | 4.074 | 14.337 | 20.945 |
Sex | ||||
Male | 0.34642 [0.34641] | 3.957 | 13.804 | 17.658 |
Female | 0.2924 [0.44885] | 4.190 | 14.945 | 33.918 |
Age | ||||
<65 years old | 0.41346 [0.41532] | 3.841 | 13.744 | 15.164 |
≥65 years old | 0.32127 [0.38366] | 3.957 | 14.338 | 21.025 |
BMI | ||||
Underweight | 0.18252 [0.32034] | 4.888 | 14.474 | 88.942 |
Normal weight | 0.30358 [0.47864] | 3.958 | 14.228 | 25.807 |
Overweight | 0.31382 [0.40880] | 3.725 | 14.344 | 17.147 |
Obese I Class | 0.3995 [0.43471] | 4.191 | 7.948 | 17.360 |
Obese II Class | 0.43581 [0.34269] | 4.423 | 14.456 | 2.538 |
Length of stay | ||||
<16 days | 0.22908 [0.29240] | 3.026 | 10.671 | 19.407 |
≥16 days | 0.35387 [0.41718] | 6.751 | 15.064 | 18.348 |
Severity Index | ||||
<1.92 | 0.28868 [0.4061] | 3.724 | 14.344 | 19.660 |
≥1.92 | 0.3520 [0.40228] | 4.190 | 14.187 | 19.431 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guarducci, G.; Messina, G.; Siragusa, C.; Gurnari, J.; Gentile, A.M.; Nante, N. How to Assess Health Gains. Healthcare 2025, 13, 832. https://doi.org/10.3390/healthcare13070832
Guarducci G, Messina G, Siragusa C, Gurnari J, Gentile AM, Nante N. How to Assess Health Gains. Healthcare. 2025; 13(7):832. https://doi.org/10.3390/healthcare13070832
Chicago/Turabian StyleGuarducci, Giovanni, Gabriele Messina, Chiara Siragusa, Jolanda Gurnari, Anna Maria Gentile, and Nicola Nante. 2025. "How to Assess Health Gains" Healthcare 13, no. 7: 832. https://doi.org/10.3390/healthcare13070832
APA StyleGuarducci, G., Messina, G., Siragusa, C., Gurnari, J., Gentile, A. M., & Nante, N. (2025). How to Assess Health Gains. Healthcare, 13(7), 832. https://doi.org/10.3390/healthcare13070832