Sarcopenia as a Prognostic Factor for the Outcomes of Surgical Treatment of Colorectal Carcinoma
Abstract
:1. Introduction
- Metabolic Changes Induced by Tumors and Imbalance in Muscle Protein Synthesis and Degradation—Aging as well as tumor diseases lead to a decline in anabolic signaling pathways. One such pathway is the insulin-like growth factor 1 (IGF-1) pathway, which is essential for muscle growth. Simultaneously, there is an increase in catabolic factors, such as myostatin and inflammatory cytokines (e.g., TNF-α, IL-6). These factors promote proteolysis and muscle degradation. This process can be exacerbated by chronic inflammation, resulting in increased production of pro-inflammatory cytokines. It can also accelerate protein breakdown, ultimately leading to muscle mass loss.
- Systemic Inflammation—Tumor diseases often induce a chronic inflammatory state, leading to increased production of pro-inflammatory cytokines such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α). These molecules contribute to the activation of the proteasome system and the degradation of muscle proteins. Inflammatory cytokines enhance the activity of proteolytic pathways. This results in protein degradation and muscle mass loss. This inflammatory process can be exacerbated by conditions such as obesity and chronic diseases, further accelerating muscle loss. Inflammation also increases the activity of the proteasome system, which regulates the breakdown of muscle proteins.
- Oxidative Stress and Mitochondrial Dysfunction—Oxidative stress, caused by an imbalance between the production of reactive oxygen species (ROS) and antioxidant defense mechanisms, damages muscle cells. This impairs their function and contributes to sarcopenia. Increased oxidative stress can activate pathways, leading to muscle fiber atrophy and apoptosis. Moreover, mitochondrial dysfunction, which affects the energy metabolism of muscles, can worsen oxidative stress and inflammation in muscle tissues. This further promotes muscle degradation.
- Inadequate Nutrient Intake—Anorexia and malnutrition, common in patients with colorectal carcinoma, significantly reduce the availability of amino acids necessary for muscle tissue regeneration. Insufficient protein intake disrupts the balance between protein synthesis and proteolysis, leading to muscle atrophy. Malnutrition can also impair the body’s ability to synthesize new muscle proteins and maintain existing muscle mass.
- Physiological Aging—In older patients, sarcopenia is exacerbated by a natural decline in muscle mass due to hormonal changes, such as decreased testosterone and growth hormone levels, as well as reduced physical activity. Aging increases the accumulation of fat tissue within muscles (myosteatosis). It also affects the energy metabolism of muscle cells. Both of these aging-related factors promote muscle degradation processes. In elderly individuals and those with chronic diseases, satellite cell function may decline, reducing their ability to regenerate muscle tissue. This reduced muscle regeneration contributes to the muscle mass loss characteristic of sarcopenia.
2. Materials and Methods
Research Questions
- RQ1. How has research on sarcopenia as a prognostic factor in surgical treatment outcomes for colorectal carcinoma evolved?
- RQ2. What are the main themes and research directions in publications focusing on the impact of sarcopenia on CRC surgical treatment outcomes?
- RQ3. What connections exist between authors, their countries of origin, and their publications in the study of sarcopenia in oncologic surgery?
- RQ4. Which keywords and concepts dominate research on sarcopenia and its impact on CRC surgical treatment outcomes?
3. Results
3.1. General Information from Bibliometric Analysis
- From 2013 to 2017, studies began to appear in the literature focusing on the relationship between sarcopenia and postoperative complications in CRC patients. These works primarily addressed the basic concept of sarcopenia, including its definition and diagnostic approaches through CT imaging. Also, many demonstrated the negative impact of muscle mass depletion on surgical outcomes [11,12,13,14].Among the key studies is the work by the authors of [15], which examined the link between sarcopenia and postoperative complications after cytoreductive surgery with hyperthermic intraperitoneal chemotherapy; their findings showed that sarcopenia increases the risk of severe complications. Similarly, ref. [16] reported a negative effect of sarcopenia on survival following curative resection for CRC. Several studies also focused on morphometric analysis of muscle mass [17,18,19]. Ref. [20] demonstrated that muscle density is a strong predictor of postoperative complications. And ref. [21], in a systematic review, confirmed that a smaller muscle mass—measured via CT—is associated with a higher risk of complications and elevated mortality.Research on the psoas muscle as an indicator of sarcopenia has also emerged. For instance, ref. [22] investigated changes in the psoas muscle and their relationship to postoperative complications. And ref. [23] explored the influence of the psoas muscle on the occurrence of postoperative infections. Ref. [24] further confirmed that low muscle mass measured on CT increases the risk of postoperative complications and infections, emphasizing the importance of psoas muscle assessment when evaluating surgical risk.
- From 2018 to 2020, research on sarcopenia in the CRC context shifted from the basic concept and diagnostics to a deeper examination of its specific aspects and clinical significance. Publications began to focus more on particular facets of sarcopenia, such as its relationship to myosteatosis (excess fat infiltration in muscles) [27,28,29,30,31,32] and visceral obesity [33,34,35]. These studies investigated how the combination of sarcopenia, myosteatosis, and visceral obesity affects postoperative outcomes and patient survival.During this period, there was also a growing number of studies evaluating various methods of measuring muscle mass and their accuracy [29,36,37,38,39,40,41]. In addition to CT scans—considered the gold standard—other methods, such as bioelectrical impedance analysis (BIA), were compared, and different indices like the psoas index (PI), the L3 skeletal muscle index (L3SMI), and the psoas cross-sectional area were assessed.A push toward integrating sarcopenia measurements into clinical practice can also be observed [42,43,44,45]. These studies investigate how sarcopenia metrics can aid in predicting postoperative complications, hospital length of stay, and overall survival, which could facilitate better treatment planning and improve patient outcomes.Besides overall survival, research also addresses the impact of sarcopenia on laparoscopic surgery outcomes [46,47,48], on neoadjuvant and adjuvant therapies [49,50,51,52], and on patients with metastases as well as older patient populations [53,54,55,56]. Findings from individual studies suggest that sarcopenia can also negatively affect these dimensions of treatment.
- Current Period (2021–2024/2025)—Recent research on sarcopenia in the context of CRC has become increasingly in-depth and expansive, emphasizing the clinical application of findings and the identification of new prognostic markers. Studies from this period build on previous evidence that sarcopenia serves as a predictor of postoperative complications and survival, while introducing fresh insights into its dynamics, interactions with other factors, and potential therapeutic approaches.One key development involves the examination of sarcopenia dynamic changes in muscle mass before and after surgery—and its effect on survival, with persistent postoperative sarcopenia negatively impacting overall survival [59,60]. Researchers have also explored the role of sarcopenia in exacerbating inflammatory processes before and after surgery. Sarcopenia was found to amplify inflammatory responses, further worsening prognosis and complications [61]. However, the inflammatory role in sarcopenia is not entirely clear, necessitating a comprehensive approach that includes nutrition, exercise, and anti-inflammatory therapy [62].In the context of neoadjuvant therapy, studies have focused on sarcopenia’s impact on the response and toxicity of chemoradiotherapy (NACRT), finding that its presence can diminish treatment efficacy and heighten side effects [63,64,65,66]. A multidisciplinary team (MDT) approach has emerged as beneficial in reducing postoperative complications and shortening hospital stays in CRC patients, potentially yielding positive outcomes for sarcopenic patients as well [67]. Research has also assessed the influence of sarcopenia on robotic surgery outcomes, revealing higher complication rates and lower survival even with this surgical modality [68].Additional investigations have highlighted the connection between sarcopenia and socioeconomic and environmental factors [69]. Findings suggest that socioeconomic deprivation may increase the prevalence of sarcopenia and myosteatosis, thereby impairing CRC prognosis [70]. Diagnostic studies have turned to developing novel methods and indices for assessing sarcopenia, including artificial intelligence (AI), to analyze CT images and predict complication risks [71,72,73,74,75,76,77]. Emphasis has been placed on psoas muscle density and the visceral-to-subcutaneous fat (V/P) ratio as predictors of postoperative outcomes and survival [78,79,80,81,82,83,84].Several studies have examined the preoperative nutritional factors (sarcopenia, osteosarcopenia, malnutrition, obesity, dietary inflammatory potential) affecting postoperative CRC outcomes. These studies show that sarcopenia is an independent risk factor for complications and prolonged hospitalization [85,86,87,88,89,90]. Researchers have also evaluated the synergistic effects of sarcopenia with factors such as anemia [91], aerobic fitness [92], malnutrition [93,94,95,96], inflammatory markers [86,97,98], sarcopenic obesity [99,100,101,102,103,104], age [105,106,107,108], and frailty [109,110] on survival and morbidity.In the realm of prehabilitation and rehabilitation, studies have investigated the benefits of multimodal prehabilitation [111,112,113], nutritional status, and the efficacy of nutritional supplements [114,115,116], as well as neuromuscular electrical stimulation (NMES) [117] in reducing postoperative sarcopenia. Besides complications and survival, researchers have also examined quality of life in post-operative CRC patients [118].Findings from this period confirm that sarcopenia is an independent risk factor for postoperative complications, reduced survival, and poorer responses to treatment in CRC patients. Importantly, not only muscle quantity but also muscle quality (density) is crucial. However, minimally invasive surgery may mitigate some of the negative effects of sarcopenia and myosteatosis [119,120]. Across these studies, the importance of preoperative screening for sarcopenia [68,121,122,123,124] and the need for a personalized treatment approach [125,126]—accounting for muscle mass, overall health, and social factors—are strongly emphasized. Nevertheless, standardizing diagnostic methods and definitions of sarcopenia remains essential for a more effective comparison of study outcomes [127,128,129,130].
3.2. Network Analysis of Co-Authorship and Keywords
- Red cluster (4 countries)—England, Japan, Scotland, Wales
- Green cluster (4 countries)—Brazil, Italy, Jordan, Switzerland
- Dark blue cluster (3 countries)—Australia, Iran, Netherlands
- Yellow cluster (3 countries)—Canada, Ireland, Slovenia
- Purple cluster (3 countries)—France, South Korea, USA
- Light blue cluster (3 countries)—Austria, Germany, China
- The red cluster includes authors with strong mutual connections, focusing on similar research topics. This cluster is characterized by a high level of internal collaboration, suggesting a specialized research focus.
- The green cluster represents another group of collaborating authors, with multiple connections among its members. This cluster primarily focuses on specific aspects of sarcopenia research and surgical oncology.
- The blue cluster consists of a smaller number of authors with weaker connections to other clusters, yet forming a cohesive research network. This cluster is linked to the red cluster through a few key authors, indicating an interdisciplinary connection among researchers.
- Red cluster (20 keywords): This cluster, focused on clinical and methodological factors related to surgical treatment, includes the following terms: classification, colorectal surgery, consensus, frailty, impact, index, infection, inflammation, morbidity, mortality, muscle mass, outcomes, postoperative complications, predictor, prehabilitation, recovery, resection, risk factors, sarcopenia, surgical complications.
- Green cluster (14 keywords): It reflects physical parameters and imaging methods associated with sarcopenia and oncological diseases, featuring terms such as body composition, body mass index, cancer, colon, colorectal-cancer, complications, computed-tomography, malnutrition, obesity, rectal cancer, risk, sarcopenic obesity, skeletal-muscle, surgery.
- Blue cluster (13 keywords): This group centers on prognostic factors and treatment outcomes of CRC, with terms such as chemotherapy, clinical implications, colon cancer, colorectal cancer, curative resection, diagnosis, mass, prevalence, prognosis, skeletal–muscle mass, solid tumors, survival, toxicity.
- Yellow cluster (10 keywords): Oriented toward specific patient conditions and risk factors associated with sarcopenia, this cluster includes terms like body composition, cachexia, depletion, elderly patients, meta-analysis, myosteatosis, prognostic factor, short-term outcomes, tomography, visceral obesity.
3.3. Overview of the Most Cited Scientific Publications on Sarcopenia as a Prognostic Factor in Surgical Treatment of Colorectal Cancer
4. Discussion
Limitations and Future Research Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | artificial intelligence |
BIA | bioelectrical impedance analysis |
BMI | body mass index |
CRC | colorectal cancer/carcinoma |
IGF-1 | insulin-like growth factor 1 |
IL-6 | interleukin-6 |
L3SMI | L3 skeletal muscle index |
MTD | multidisciplinary team |
NMES | neuromuscular electrical stimulation |
PI | psoas index |
SMI | skeletal muscle index |
TNF-α | tumor necrosis factor-alpha |
ROS | reactive oxygen species |
References
- Morgan, E.; Arnold, M.; Gini, A.; Lorenzoni, V.; Cabasag, C.J.; Laversanne, M.; Vignat, J.; Ferlay, J.; Murphy, N.; Bray, F. Global burden of colorectal cancer in 2020 and 2040: Incidence and mortality estimates from Globocan. Gut 2022, 72, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Dekker, E.; Tanis, P.J.; Vleugels, J.L.; Kasi, P.M.; Wallace, M.B. Colorectal cancer. Lancet 2019, 394, 1467–1480. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 601. [Google Scholar] [CrossRef] [PubMed]
- Joglekar, S.; Nau, P.N.; Mezhir, J.J. The impact of sarcopenia on survival and complications in Surgical Oncology: A review of the current literature. J. Surg. Oncol. 2015, 112, 503–509. [Google Scholar] [CrossRef]
- Park, S.S.; Kwon, E.-S.; Kwon, K.-S. Molecular mechanisms and therapeutic interventions in Sarcopenia. Osteoporos. Sarcopenia 2017, 3, 117–122. [Google Scholar] [CrossRef]
- Riuzzi, F.; Sorci, G.; Arcuri, C.; Giambanco, I.; Bellezza, I.; Minelli, A.; Donato, R. Cellular and molecular mechanisms of sarcopenia: The S100B perspective. J. Cachexia Sarcopenia Muscle 2018, 9, 1255–1268. [Google Scholar] [CrossRef]
- Vergara-Fernandez, O.; Trejo-Avila, M.; Salgado-Nesme, N. Sarcopenia in patients with colorectal cancer: A comprehensive review. World J. Clin. Cases 2020, 8, 1188–1202. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.-Y.; Kim, C.Y. A comprehensive review of pathological mechanisms and natural dietary ingredients for the management and prevention of sarcopenia. Nutrients 2023, 15, 2625. [Google Scholar] [CrossRef]
- Wu, J.; Ding, P.; Wu, H.; Yang, P.; Guo, H.; Tian, Y.; Meng, L.; Zhao, Q. Sarcopenia: Molecular Regulatory Network for loss of Muscle Mass and function. Front. Nutr. 2023, 10, 1037200. [Google Scholar] [CrossRef]
- Waltman, L.; Noyons, E. Bibliometrics for Research Management and Research Evaluation. A Brief Introduction. Universiteit Leiden. March 2018. Available online: https://www.cwts.nl/pdf/CWTS_bibliometrics.pdf (accessed on 10 January 2025).
- Zhou, G.; Bao, H.; Zeng, Q.; Hu, W.; Zhang, Q. Sarcopenia as a prognostic factor in hepatolithiasis-associated intrahepatic cholangiocarcinoma patients following hepatectomy: A retrospective study. Int. J. Clin. Exp. Med. 2015, 8, 18245. [Google Scholar]
- Huang, D.-D.; Wang, S.-L.; Zhuang, C.-L.; Zheng, B.-S.; Lu, J.-X.; Chen, F.-F.; Zhou, C.-J.; Shen, X.; Yu, Z. Sarcopenia, as defined by low muscle mass, strength and physical performance, predicts complications after surgery for colorectal cancer. Color. Dis. 2015, 17, 11. [Google Scholar] [CrossRef] [PubMed]
- Prado, C.M.; Cushen, S.J.; Orsso, C.E.; Ryan, A.M. Sarcopenia and Cachexia in the era of obesity: Clinical and nutritional impact. Proc. Nutr. Soc. 2016, 75, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Reisinger, K.W.; van Vugt, J.L.; Tegels, J.J.; Snijders, C.; Hulsewé, K.W.; Hoofwijk, A.G.; Stoot, J.H.; Von Meyenfeldt, M.F.; Beets, G.L.; Derikx, J.P.; et al. Functional compromise reflected by sarcopenia, frailty, and nutritional depletion predicts adverse postoperative outcome after colorectal cancer surgery. Ann. Surg. 2015, 261, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Van Vugt, J.L.; Braam, H.J.; van Oudheusden, T.R.; Vestering, A.; Bollen, T.L.; Wiezer, M.J.; de Hingh, I.H.; van Ramshorst, B.; Boerma, D. Skeletal muscle depletion is associated with severe postoperative complications in patients undergoing cytoreductive surgery with hyperthermic intraperitoneal chemotherapy for peritoneal carcinomatosis of colorectal cancer. Ann. Surg. Oncol. 2015, 22, 3625–3631. [Google Scholar] [CrossRef]
- Miyamoto, Y.; Baba, Y.; Sakamoto, Y.; Ohuchi, M.; Tokunaga, R.; Kurashige, J.; Hiyoshi, Y.; Iwagami, S.; Yoshida, N.; Yoshida, M.; et al. Sarcopenia is a negative prognostic factor after curative resection of colorectal cancer. Ann. Surg. Oncol. 2015, 22, 2663–2668. [Google Scholar] [CrossRef]
- Jung, H.-W.; Kim, J.W.; Kim, J.-Y.; Kim, S.-W.; Yang, H.K.; Lee, J.W.; Lee, K.-W.; Kim, D.-W.; Kang, S.-B.; Kim, K.; et al. Effect of muscle mass on toxicity and survival in patients with colon cancer undergoing adjuvant chemotherapy. Support. Care Cancer 2015, 23, 687–694. [Google Scholar] [CrossRef]
- Boer, B.C.; de Graaff, F.; Brusse-Keizer, M.; Bouman, D.E.; Slump, C.H.; Slee-Valentijn, M.; Klaase, J.M. Skeletal muscle mass and quality as risk factors for postoperative outcome after open colon resection for cancer. Int. J. Color. Dis. 2016, 31, 1117–1124. [Google Scholar] [CrossRef]
- Margadant, C.C.; Bruns, E.R.J.; Sloothaak, D.A.M.; van Duijvendijk, P.; van Raamt, A.F.; van der Zaag, H.J.; Buskens, C.J.; van Munster, B.C.; van der Zaag, E.S. Lower muscle density is associated with major postoperative complications in older patients after surgery for colorectal cancer. Eur. J. Surg. Oncol. (EJSO) 2016, 42, 1654–1659. [Google Scholar] [CrossRef]
- Sabel, M.S.; Terjimanian, M.; Conlon, A.S.C.; Griffith, K.A.; Morris, A.M.; Mulholland, M.W.; Englesbe, M.J.; Holcombe, S.; Wang, S.C. Analytic morphometric assessment of patients undergoing colectomy for colon cancer. J. Surg. Oncol. 2013, 108, 169–175. [Google Scholar] [CrossRef]
- Hasselager, R.; Gögenur, I. Core muscle size assessed by perioperative abdominal CT scan is related to mortality, postoperative complications, and hospitalization after major abdominal surgery: A systematic review. Langenbeck’s Arch. Surg. 2014, 399, 287–295. [Google Scholar] [CrossRef]
- Hanaoka, M.; Yasuno, M.; Ishiguro, M.; Yamauchi, S.; Kikuchi, A.; Tokura, M.; Ishikawa, T.; Nakatani, E.; Uetake, H. Morphologic change of the psoas muscle as a surrogate marker of sarcopenia and predictor of complications after colorectal cancer surgery. Int. J. Color. Dis. 2017, 32, 847–856. [Google Scholar] [CrossRef]
- Fujikawa, H.; Araki, T.; Okita, Y.; Kondo, S.; Kawamura, M.; Hiro, J.; Toiyama, Y.; Kobayashi, M.; Tanaka, K.; Inoue, Y.; et al. Impact of sarcopenia on surgical site infection after restorative proctocolectomy for ulcerative colitis. Surg. Today 2017, 47, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Matsushima, K.; Inaba, K.; Jhaveri, V.; Cheng, V.; Herr, K.; Siboni, S.; Strumwasser, A.; Demetriades, D. Loss of muscle mass: A significant predictor of postoperative complications in acute diverticulitis. J. Surg. Res. 2017, 211, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Ouchi, A.; Asano, M.; Aono, K.; Watanabe, T.; Oya, S. Laparoscopic colorectal resection in patients with sarcopenia: A retrospective case-control study. J. Laparoendosc. Adv. Surg. Tech. 2016, 26, 366–370. [Google Scholar] [CrossRef]
- Pędziwiatr, M.; Pisarska, M.; Major, P.; Grochowska, A.; Matłok, M.; Przęczek, K.; Stefura, T.; Budzyński, A.; Kłęk, S. Laparoscopic colorectal cancer surgery combined with Enhanced Recovery After Surgery Protocol (ERAS) reduces the negative impact of sarcopenia on short-term outcomes. Eur. J. Surg. Oncol. (EJSO) 2016, 42, 779–787. [Google Scholar] [CrossRef]
- Sueda, T.; Takahasi, H.; Nishimura, J.; Hata, T.; Matsuda, C.; Mizushima, T.; Doki, Y.; Mori, M. Impact of low muscularity and myosteatosis on long-term outcome after curative colorectal cancer surgery: A propensity score–matched analysis. Dis. Colon Rectum 2018, 61, 364–374. [Google Scholar] [CrossRef]
- Okugawa, Y.; Toiyama, Y.; Yamamoto, A.; Shigemori, T.; Yin, C.; Narumi, A.; Omura, Y.; Ide, S.; Kitajima, T.; Fujikawa, H.; et al. Clinical impact of muscle quantity and quality in colorectal cancer patients: A propensity score matching analysis. J. Parenter. Enter. Nutr. 2018, 42, 1322–1333. [Google Scholar] [CrossRef]
- Klassen, P.; Baracos, V.; Gramlich, L.; Nelson, G.; Mazurak, V.; Martin, L. Computed-tomography body composition analysis complements pre-operative nutrition screening in colorectal cancer patients on an enhanced recovery after surgery pathway. Nutrients 2020, 12, 3745. [Google Scholar] [CrossRef]
- Schaffler-Schaden, D.; Mittermair, C.; Birsak, T.; Weiss, M.; Hell, T.; Schaffler, G.; Weiss, H. Skeletal muscle index is an independent predictor of early recurrence in non-obese colon cancer patients. Langenbeck’s Arch. Surg. 2020, 405, 469–477. [Google Scholar] [CrossRef]
- Giani, A.; Famularo, S.; Riva, L.; Tamini, N.; Ippolito, D.; Nespoli, L.; Conconi, P.; Sironi, S.; Braga, M.; Gianotti, L. Association between specific presurgical anthropometric indexes and morbidity in patients undergoing rectal cancer resection. Nutrition 2020, 75–76, 110779. [Google Scholar] [CrossRef]
- Aro, R.; Mäkäräinen-Uhlbäck, E.; Ämmälä, N.; Rautio, T.; Ohtonen, P.; Saarnio, J.; Meriläinen, S. The impact of sarcopenia and myosteatosis on postoperative outcomes and 5-year survival in curatively operated colorectal cancer patients—A retrospective register study. Eur. J. Surg. Oncol. 2020, 46, 1656–1662. [Google Scholar] [CrossRef]
- Chen, W.-Z.; Chen, X.-D.; Ma, L.-L.; Zhang, F.-M.; Lin, J.; Zhuang, C.-L.; Yu, Z.; Chen, X.-L.; Chen, X.-X. Impact of visceral obesity and sarcopenia on short-term outcomes after colorectal cancer surgery. Dig. Dis. Sci. 2018, 63, 1620–1630. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.; Hopkins, J.; Malietzis, G.; Jenkins, J.T.; Sawyer, M.B.; Brisebois, R.; MacLean, A.; Nelson, G.; Gramlich, L.; Baracos, V.E. Assessment of computed tomography (ct)-defined muscle and adipose tissue features in relation to short-term outcomes after elective surgery for colorectal cancer: A multicenter approach. Ann. Surg. Oncol. 2018, 25, 2669–2680. [Google Scholar] [CrossRef] [PubMed]
- Gigic, B.; Nattenmüller, J.; Schneider, M.; Kulu, Y.; Syrjala, K.L.; Böhm, J.; Schrotz-King, P.; Brenner, H.; Colditz, G.A.; Figueiredo, J.C.; et al. The role of CT-quantified body composition on longitudinal health-related quality of life in colorectal cancer patients: The COLOCARE study. Nutrients 2020, 12, 1247. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Li, Y.; Peng, Y.; Lu, D.; Zhang, F.; Cui, X.; Zhang, Q.; Li, Z. Can sarcopenia be a predictor of prognosis for patients with non-metastatic colorectal cancer? A systematic review and meta-analysis. Int. J. Color. Dis. 2018, 33, 1419–1427. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, T.; Feng, D.; Dai, X.; Lv, T.; Wang, X.; Gong, J.; Zhu, W.; Li, J. A new diagnostic index for Sarcopenia and its association with short-term postoperative complications in patients undergoing surgery for colorectal cancer. Color. Dis. 2019, 21, 538–547. [Google Scholar] [CrossRef]
- Kim, E.Y.; Kim, S.R.; Won, D.D.; Choi, M.H.; Lee, I.K. Multifrequency bioelectrical impedance analysis compared with computed tomography for assessment of skeletal muscle mass in primary colorectal malignancy: A predictor of short-term outcome after surgery. Nutr. Clin. Pract. 2019, 35, 664–674. [Google Scholar] [CrossRef]
- Xie, H.; Gong, Y.; Kuang, J.; Yan, L.; Ruan, G.; Tang, S.; Gao, F.; Gan, J. Computed tomography–determined sarcopenia is a useful imaging biomarker for predicting postoperative outcomes in elderly colorectal cancer patients. Cancer Res. Treat. 2020, 52, 957–972. [Google Scholar] [CrossRef]
- Wang, S.; Xie, H.; Gong, Y.; Kuang, J.; Yan, L.; Ruan, G.; Gao, F.; Gan, J. The value of L3 skeletal muscle index in evaluating preoperative nutritional risk and long-term prognosis in colorectal cancer patients. Sci. Rep. 2020, 10, 8153. [Google Scholar] [CrossRef]
- Richards, S.J.G.; Senadeera, S.C.; Frizelle, F.A. Sarcopenia, as assessed by Psoas cross-sectional area, is predictive of adverse postoperative outcomes in patients undergoing colorectal cancer surgery. Dis. Colon Rectum 2020, 63, 807–815. [Google Scholar] [CrossRef]
- Nakanishi, R.; Oki, E.; Sasaki, S.; Hirose, K.; Jogo, T.; Edahiro, K.; Korehisa, S.; Taniguchi, D.; Kudo, K.; Kurashige, J.; et al. Sarcopenia is an independent predictor of complications after colorectal cancer surgery. Surg. Today 2018, 48, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Butter, M.; Weiler, S.; Biedermann, L.; Scharl, M.; Rogler, G.; Bischoff-Ferrari, H.A.; Misselwitz, B. Clinical manifestations, pathophysiology, treatment and outcome of inflammatory bowel diseases in older people. Maturitas 2018, 110, 71–78. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, S.; Twomey, M.; Moloney, F.; Kavanagh, R.G.; Carey, B.W.; Power, D.; Maher, M.M.; O’Connor, O.J.; Ó’Súilleabháin, C. Sarcopenia and post-operative morbidity and mortality in patients with gastric cancer. J. Gastric Cancer 2018, 18, 242. [Google Scholar] [CrossRef] [PubMed]
- Dolan, D.R.; Knight, K.A.; Maguire, S.; Moug, S.J. The relationship between Sarcopenia and survival at 1 year in patients having elective colorectal cancer surgery. Tech. Coloproctol. 2019, 23, 877–885. [Google Scholar] [CrossRef]
- Chen, W.S.; Huang, Y.S.; Xu, L.B.; Shi, M.M.; Chen, X.D.; Ye, G.Q.; Wu, T.T.; Zhu, G.B. Effects of sarcopenia, hypoalbuminemia, and laparoscopic surgery on postoperative complications in elderly patients with colorectal cancer: A prospective study. Neoplasma 2020, 67, 922–932. [Google Scholar] [CrossRef]
- Oh, R.K.; Ko, H.M.; Lee, J.E.; Lee, K.H.; Kim, J.Y.; Kim, J.S. Clinical impact of sarcopenia in patients with colon cancer undergoing laparoscopic surgery. Ann. Surg. Treat. Res. 2020, 99, 153. [Google Scholar] [CrossRef]
- Zhang, F.-M.; Ma, B.-W.; Huang, Y.-Y.; Chen, W.-Z.; Chen, J.-J.; Dong, Q.-T.; Chen, W.-S.; Chen, X.-L.; Shen, X.; Yu, Z.; et al. Laparoscopic colorectal cancer surgery reduces the adverse impacts of sarcopenia on postoperative outcomes: A propensity score-matched analysis. Surg. Endosc. 2020, 34, 4582–4592. [Google Scholar] [CrossRef]
- Berkel, A.E.M.; Klaase, J.M.; de Graaff, F.; Brusse-Keizer, M.G.J.; Bongers, B.C.; van Meeteren, N.L.U. Patient’s skeletal muscle radiation attenuation and sarcopenic obesity are associated with postoperative morbidity after neoadjuvant chemoradiation and resection for rectal cancer. Dig. Surg. 2019, 36, 376–383. [Google Scholar] [CrossRef]
- Fukuoka, T.; Maeda, K.; Nagahara, H.; Shibutani, M.; Iseki, Y.; Matsutani, S.; Hirakawa, K.; Ohira, M. Change in PMI during neoadjuvant therapy is a predictive prognostic marker in rectal cancer. Anticancer Res. 2019, 39, 5157–5163. [Google Scholar] [CrossRef]
- Chung, E.; Lee, H.S.; Cho, E.-S.; Park, E.J.; Baik, S.H.; Lee, K.Y.; Kang, J. Changes in body composition during adjuvant folfox chemotherapy and overall survival in non-metastatic colon cancer. Cancers 2019, 12, 60. [Google Scholar] [CrossRef]
- De Nardi, P.; Salandini, M.; Chiari, D.; Pecorelli, N.; Cristel, G.; Damascelli, A.; Ronzoni, M.; Massimino, L.; De Cobelli, F.; Braga, M. Changes in body composition during neoadjuvant therapy can affect prognosis in rectal cancer patients: An exploratory study. Curr. Probl. Cancer 2020, 44, 100510. [Google Scholar] [CrossRef] [PubMed]
- Tamagawa, H.; Aoyama, T.; Iguchi, K.; Fujikawa, H.; Sawazaki, S.; Sato, T.; Musiake, H.; Oshima, T.; Yukawa, N.; Rino, Y.; et al. Preoperative evaluation of skeletal muscle mass in the risk assessment for the short-term outcome of elderly colorectal cancer patients undergoing colectomy. Mol. Clin. Oncol. 2018, 8, 779–784. [Google Scholar] [CrossRef] [PubMed]
- Park, S.E.; Hwang, I.G.; Choi, C.H.; Kang, H.; Kim, B.G.; Park, B.K.; Cha, S.J.; Jang, J.-S.; Choi, J.H. Sarcopenia is poor prognostic factor in older patients with locally advanced rectal cancer who received preoperative or postoperative chemoradiotherapy. Medicine 2018, 97, e13363. [Google Scholar] [CrossRef] [PubMed]
- Zattoni, D.; Christoforidis, D. How best to palliate and treat emergency conditions in geriatric patients with colorectal cancer. Eur. J. Surg. Oncol. 2020, 46, 369–378. [Google Scholar] [CrossRef]
- Agalar, C.; Sokmen, S.; Arslan, C.; Altay, C.; Basara, I.; Canda, A.E.; Obuz, F. The impact of sarcopenia on morbidity and long-term survival among patients with peritoneal metastases of colorectal origin treated with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy: A 10-year longitudinal analysis of a single-center experience. Tech. Coloproctol. 2020, 24, 301–308. [Google Scholar] [CrossRef]
- Moug, S.J.; Barry, S.J.; Maguire, S.; Johns, N.; Dolan, D.; Steele, R.J.; Buchan, C.; Mackay, G.; Anderson, A.S.; Mutrie, N. Does prehabilitation modify muscle mass in patients with rectal cancer undergoing Neoadjuvant therapy? A subanalysis from the Rex randomised controlled trial. Tech. Coloproctol. 2020, 24, 959–964. [Google Scholar] [CrossRef]
- Mercan, Ü.; Akinci, M.; Cerit, N.; Yilmaz, K.B.; Seki, A.; Hekimoğlu, B. Surgical outcome assessment of gastrointestinal malignancies: Opportunity prediction by sarcopenia on CT Measurement. Indian J. Surg. 2020, 82, 1119–1125. [Google Scholar] [CrossRef]
- Lin, W.; Nguyen, T.; Huang, W.; Guo, H.; Wu, L. Sarcopenia and survival in colorectal cancer without distant metastasis: A systematic review and meta-analysis. J. Gastroenterol. Hepatol. 2024, 39, 2250–2259. [Google Scholar] [CrossRef]
- Kumamoto, T.; Takamizawa, Y.; Miyake, M.; Inoue, M.; Moritani, K.; Tsukamoto, S.; Eto, K.; Kanemitsu, Y. Clinical utility of sarcopenia dynamics assessed by psoas muscle volume in patients with colorectal cancer. World J. Surg. 2024, 48, 2098–2108. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, K.; Yuan, Q.; Liu, L.; Miao, J.; Wang, H.; Ding, C.; Guan, W. The role of sarcopenia in pre- and postoperative inflammation: Implications of outcomes in patients with colorectal cancer. J. Gastrointest. Surg. 2024, 28, 1791–1798. [Google Scholar] [CrossRef]
- Bozzetti, F. Evolving Concepts on perioperative nutrition of Sarcopenic Cancer patients. Eur. J. Surg. Oncol. 2024, 50, 106748. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Lu, S.; Wang, Y.; Lin, X.; Ran, P.; Zhou, X.; Fu, W.; Wang, H. Impact of body composition during neoadjuvant chemoradiotherapy on complications, survival and tumor response in patients with locally advanced rectal cancer. Front. Nutr. 2022, 9, 796601. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Deng, Q.; Chen, Z.; Chen, Y.; Fu, Z. Body composition parameters combined with blood biomarkers and magnetic resonance imaging predict responses to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Front. Oncol. 2023, 13, 1242193. [Google Scholar] [CrossRef] [PubMed]
- Curcean, S.; Gherman, A.; Tipcu, A.; Fekete, Z.; Muntean, A.-S.; Curcean, A.; Craciun, R.; Stanciu, S.; Irimie, A. Impact of sarcopenia on treatment outcomes and toxicity in locally advanced rectal cancer. Medicina 2024, 60, 1606. [Google Scholar] [CrossRef]
- Su, Q.; Shen, J. Predictive role of preoperative sarcopenia for long-term survival in rectal cancer patients: A meta-analysis. PLoS ONE 2024, 19, e0303494. [Google Scholar] [CrossRef]
- Kuwabara, S.; Ishido, K.; Aoki, Y.; Yamamoto, K.; Shoji, Y.; Ichimura, T.; Manase, H.; Hirano, S. Clinical impact of multidisciplinary team management on postoperative short-term outcomes in colorectral cancer surgery. Updates Surg. 2024, 76, 2777–2785. [Google Scholar] [CrossRef]
- Fu, Y.; Zhao, S.; Zhang, C.; Wang, J.; Li, R.; Cheng, Y.; Zhou, J.; Wang, W.; Wang, L.; Ren, J.; et al. The impact of sarcopenia on postoperative complications and survival outcomes after robotic colorectal cancer surgery: A study based on single-center propensity score matching. J. Robot. Surg. 2024, 19, 13. [Google Scholar] [CrossRef]
- Fay, K.A.; Maeder, M.E.; Emond, J.A.; Hasson, R.M.; Millington, T.M.; Finley, D.J.; Phillips, J.D. Residing in a food desert is associated with an increased risk of readmission following esophagectomy for cancer. J. Thorac. Dis. 2022, 14, 1854–1868. [Google Scholar] [CrossRef]
- Pring, E.T.; Gould, L.E.; Malietzis, G.; Lung, P.; Mai, D.V.C.; Drami, I.; Athanasiou, T.; Jenkins, J.T. Sarcopenia in colorectal cancer is related to socio-economic deprivation and body mass index alone misrepresents underlying muscle loss in the deprived. Clin. Nutr. ESPEN 2024, 63, 13–19. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, J.; Cho, E.; Lee, H.S.; Shin, S.; Park, E.J.; Baik, S.H.; Lee, K.Y.; Kang, J. Albumin-myosteatosis gauge as a novel prognostic risk factor in patients with non-metastatic colorectal cancer. J. Cachexia Sarcopenia Muscle 2023, 14, 860–868. [Google Scholar] [CrossRef]
- Kemper, M.; Melling, N.; Krause, L.; Kühn, K.; Graß, J.-K.; Izbicki, J.R.; Gerdes, L.; Adam, G.; Yamamura, J.; Molwitz, I. Muscle Quality, not quantity, is associated with outcome after colorectal cancer surgery. Eur. J. Surg. Oncol. 2023, 49, 107098. [Google Scholar] [CrossRef] [PubMed]
- Soria-Utrilla, V.; Sánchez-Torralvo, F.J.; Palmas-Candia, F.X.; Fernández-Jiménez, R.; Mucarzel-Suarez-Arana, F.; Guirado-Peláez, P.; Olveira, G.; García-Almeida, J.M.; Burgos-Peláez, R. Ai-assisted body composition assessment using CT Imaging in colorectal cancer patients: Predictive capacity for sarcopenia and malnutrition diagnosis. Nutrients 2024, 16, 1869. [Google Scholar] [CrossRef] [PubMed]
- Suthakaran, R.; Cao, K.; Arafat, Y.; Yeung, J.; Chan, S.; Master, M.; Faragher, I.G.; Baird, P.N.; Yeung, J.M. Body composition assessment by Artificial Intelligence can be a predictive tool for short-term postoperative complications in Hartmann’s reversals. BMC Surg. 2024, 24, 111. [Google Scholar] [CrossRef]
- Feng, Y.; Cheng, X.; Xu, M.; Zhao, R.; Wan, Q.; Feng, W.; Gan, H. CT-determined low skeletal muscle index predicts poor prognosis in patients with colorectal cancer. Cancer Med. 2024, 13, 12. [Google Scholar] [CrossRef]
- Kim, Y.J.; Bae, S.U.; Kim, K.E.; Jeong, W.K.; Baek, S.K. Effects of the strength, assistance in walking, rise from a chair, Climb Stairs, and falls score on postoperative clinical outcomes following colorectal cancer surgery: A retrospective study. Eur. J. Clin. Nutr. 2024. [Google Scholar] [CrossRef]
- Bimurzayeva, A.; Kim, M.J.; Ahn, J.; Ku, G.Y.; Moon, D.; Choi, J.; Kim, H.J.; Lim, H.; Shin, R.; Park, J.W.; et al. Three-dimensional body composition parameters using automatic volumetric segmentation allow accurate prediction of colorectal cancer outcomes. J. Cachexia Sarcopenia Muscle 2023, 15, 281–291. [Google Scholar] [CrossRef]
- De Carvalho, A.L.; Gonzalez, M.C.; Sousa, I.M.; das Virgens, I.P.; Medeiros, G.O.; Oliveira, M.N.; Dantas, J.C.; Trussardi Fayh, A.P. Low skeletal muscle radiodensity is the best predictor for short-term major surgical complications in gastrointestinal surgical cancer: A cohort study. PLoS ONE 2021, 16, e0247322. [Google Scholar] [CrossRef]
- Pekařová, A.; Pekař, M.; Soltes, M.; Havrlentová, L.; Chovancová, T. Psoas density—An optimal sarcopaenic indicator associated with postoperative complications after colorectal resection for cancer? Videosurgery Other Miniinvasive Tech. 2020, 16, 91–97. [Google Scholar] [CrossRef]
- Pacquelet, B.; Morello, R.; Pelage, J.-P.; Eid, Y.; Lebreton, G.; Alves, A.; Fohlen, A. Abdominal adipose tissue quantification and distribution with CT: Prognostic value for surgical and oncological outcome in patients with rectal cancer. Eur. Radiol. 2022, 32, 6258–6269. [Google Scholar] [CrossRef]
- Xiao, Y.-Z.; Wen, X.-T.; Ying, Y.-Y.; Zhang, X.-Y.; Li, L.-Y.; Wang, Z.-C.; Su, M.-G.; Zheng, X.-W.; Miao, S.-L. The psoas muscle density as a predictor of postoperative complications in elderly patients undergoing rectal cancer resection. Front. Oncol. 2023, 13, 1189324. [Google Scholar] [CrossRef]
- Kotek, J.; Lochman, P.; Hulek, M.; Sirovy, M.; Merkl, T.; Cermakova, E.; Kotkova, K.; Paral, J.; Dusek, T. Does computed tomography-derived volumometry and densitometry of psoas muscle really correlate with complications in rectal cancer patients after elective surgery? J. Clin. Imaging Sci. 2024, 14, 26. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Feng, Z.; Ma, M.; Song, F.; Zeng, S.; Shao, F.; Yu, X.; Rong, P.; Chen, J. Different impacts of adipose tissue dynamics on prognosis in patients with resectable locally advanced rectal cancer treated with and without neoadjuvant treatment. Front. Oncol. 2024, 14, 1421651. [Google Scholar] [CrossRef] [PubMed]
- Hosoi, N.; Shiraishi, T.; Okada, T.; Osone, K.; Yokobori, T.; Sakai, M.; Ogawa, H.; Sohda, M.; Shirabe, K.; Saeki, H. Evaluation of preoperative visceral fat area/psoas muscle area ratio and prognosis in patients with colorectal cancer. Ann. Gastroenterol. Surg. 2024, 9, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, P.L.; Dock-Nascimento, D.B.; de Aguilar-Nascimento, J.E. Extending the benefit of nutrition intervention beyond the operative setting. Curr. Opin. Clin. Nutr. Metab. Care 2022, 25, 388–392. [Google Scholar] [CrossRef]
- Xiang, S.; Yang, Y.-X.; Pan, W.-J.; Li, Y.; Zhang, J.-H.; Gao, Y.; Liu, S. Prognostic value of systemic immune inflammation index and Geriatric Nutrition Risk Index in early-onset colorectal cancer. Front. Nutr. 2023, 10, 1134300. [Google Scholar] [CrossRef]
- Chen, W.-Z.; Lin, F.; Yu, D.-Y.; Ren, Q.; Zhang, F.-M.; Shen, Z.-L.; Chen, W.-H.; Dong, Q.-T.; Yu, Z. Clinical impact of sarcopenia for overweight or obese patients with colorectal cancer. Jpn. J. Clin. Oncol. 2023, 54, 23–30. [Google Scholar] [CrossRef]
- Kopuz, T.N.Y.; Yildiz, H.F.; Fisunoglu, M.; Er, S. Preoperative nutritional factors as predictors of postoperative early outcomes in colorectal cancer—A prospective cohort study. Nutr. Hosp. 2024, 41, 1032. [Google Scholar] [CrossRef]
- Van Helsdingen, C.P.M.; van Wijlick, J.G.A.; de Vries, R.; Bouvy, N.D.; Leeflang, M.M.G.; Hemke, R.; Derikx, J.P.M. Association of Computed tomography-derived body composition and complications after colorectal cancer surgery: A systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 2024, 15, 2234–2269. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, T.; Tamura, K.; Nagayoshi, K.; Mizuuchi, Y.; Oh, Y.; Nara, T.; Matsumoto, H.; Horioka, K.; Shindo, K.; Nakata, K.; et al. Osteosarcopenia: The coexistence of Sarcopenia and osteopenia is predictive of prognosis and postoperative complications after curative resection for colorectal cancer. Surg. Today 2024, 55, 78–89. [Google Scholar] [CrossRef]
- Cho, H.J.; Lee, H.S.; Kang, J. Synergistic prognostic impact of hemoglobin and Skeletal Muscle Index in patients with colorectal cancer. Clin. Nutr. ESPEN 2024, 63, 371–377. [Google Scholar] [CrossRef]
- Cuijpers, A.C.; Bongers, B.C.; Heldens, A.F.; Bours, M.J.; van Meeteren, N.L.; Stassen, L.P.; Lubbers, T. Aerobic fitness and muscle density play a vital role in postoperative complications in colorectal cancer surgery. J. Surg. Oncol. 2022, 125, 1013–1023. [Google Scholar] [CrossRef] [PubMed]
- Abe, S.; Nozawa, H.; Kawai, K.; Sasaki, K.; Murono, K.; Emoto, S.; Kishikawa, J.; Ozawa, T.; Yokoyama, Y.; Nagai, Y.; et al. Poor nutrition and sarcopenia are related to systemic inflammatory response in patients with rectal cancer undergoing preoperative chemoradiotherapy. Int. J. Color. Dis. 2021, 37, 189–200. [Google Scholar] [CrossRef]
- Van Rees, J.M.; Visser, E.; van Vugt, J.L.; Rothbarth, J.; Verhoef, C.; van Verschuer, V.M. Impact of nutritional status and body composition on postoperative outcomes after pelvic exenteration for locally advanced and locally recurrent rectal cancer. BJS Open 2021, 5, zrab096. [Google Scholar] [CrossRef] [PubMed]
- Shiraishi, T.; Yamaguchi, A.; Shibasaki, Y.; Osone, K.; Okada, T.; Sano, A.; Sakai, M.; Ogawa, H.; Sohda, M.; Shirabe, K.; et al. Risk factors of poor outcomes after colorectal cancer surgery for patients with severe comorbidities. Anticancer Res. 2024, 44, 4073–4083. [Google Scholar] [CrossRef]
- Li, Z.-Z.; Yan, X.-L.; Jiang, H.-J.; Ke, H.-W.; Chen, Z.-T.; Chen, D.-H.; Xu, J.-Y.; Liu, X.-C.; Shen, X.; Huang, D.-D. Sarcopenia predicts postoperative complications and survival in colorectal cancer patients with GLIM-defined malnutrition: Analysis from a prospective Cohort Study. Eur. J. Surg. Oncol. 2024, 50, 107295. [Google Scholar] [CrossRef]
- Hu, W.-H.; Chang, C.-D.; Liu, T.-T.; Chen, H.-H.; Hsiao, C.-C.; Kang, H.-Y.; Chuang, J.-H. Association of sarcopenia and expression of interleukin-23 in colorectal cancer survival. Clin. Nutr. 2021, 40, 5322–5326. [Google Scholar] [CrossRef]
- Lee, S.Y.; Chung, E.; Cho, E.-S.; Lee, J.-H.; Park, E.J.; Shin, S.-J.; Baik, S.H.; Lee, K.Y.; Kang, J. The clinical impact of combining neutrophil-to-lymphocyte ratio with sarcopenia for improved discrimination of progression-free survival in patients with colorectal cancer. J. Clin. Med. 2022, 11, 431. [Google Scholar] [CrossRef]
- Wang, P.; Wang, S.; Ma, Y.; Li, H.; Liu, Z.; Lin, G.; Li, X.; Yang, F.; Qiu, M. SARCOPENIC obesity and therapeutic outcomes in gastrointestinal surgical oncology: A meta-analysis. Front. Nutr. 2022, 9, 921817. [Google Scholar] [CrossRef]
- Conti, C.; Turri, G.; Gecchele, G.; Conci, S.; Zamboni, G.A.; Ruzzenente, A.; Guglielmi, A.; Pedrazzani, C. SARCOBESITY index predicts poor disease-specific survival after resection for colorectal cancer. J. Surg. Res. 2022, 279, 398–408. [Google Scholar] [CrossRef]
- Pring, E.T.; Malietzis, G.; Gould, L.E.; Lung, P.; Drami, I.; Athanasiou, T.; Jenkins, J.T. Tumour grade and stage are associated with specific body composition phenotypes with visceral obesity predisposing the host to a less aggressive tumour in colorectal cancer. Eur. J. Surg. Oncol. 2022, 48, 1664–1670. [Google Scholar] [CrossRef]
- Cheong, C.M.; Golder, A.M.; Horgan, P.G.; McMillan, D.C.; Roxburgh, C.S.D. Evaluation of clinical prognostic variables on short-term outcome for colorectal cancer surgery: An overview and minimum dataset. Cancer Treat. Res. Commun. 2022, 31, 100544. [Google Scholar] [CrossRef] [PubMed]
- Tschann, P.; Weigl, M.P.; Clemens, P.; Szeverinski, P.; Attenberger, C.; Kowatsch, M.; Jäger, T.; Emmanuel, K.; Brock, T.; Königsrainer, I. SARCOPENIC obesity is a risk factor for worse oncological long-term outcome in locally advanced rectal cancer patients: A retrospective single-center cohort study. Nutrients 2023, 15, 2632. [Google Scholar] [CrossRef]
- Feng, Z.; Pang, K.; Tian, M.; Gu, X.; Lin, H.; Yang, X.; Yang, Y.; Zhang, Z. Sarcobesity, but not visceral fat, is an independent risk factor for complications after radical resection of colorectal cancer. Front. Nutr. 2023, 10, 1126127. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Wu, L.; Huang, W.; Guo, H.; Chen, J. Age as a modifier of the effects of sarcopenia on survival among colon cancer patients after surgery. J. Surg. Oncol. 2023, 128, 1121–1132. [Google Scholar] [CrossRef] [PubMed]
- Rasa, H.K.; Erdemir, A. Our experience with left colon and rectal cancer surgery and the impact of preoperative sarcopenia on complication rates. Cureus 2023, 15, e45209. [Google Scholar] [CrossRef]
- Nishikawa, T.; Taira, T.; Kakizawa, N.; Ohno, R.; Nagasaki, T. Negative impact of sarcopenia on survival in elderly patients with colorectal cancer receiving surgery: A propensity score matched analysis. Oncol. Lett. 2024, 27, 3. [Google Scholar] [CrossRef]
- Parnasa, S.Y.; Lev-Cohain, N.; Bader, R.; Shweiki, A.; Mizrahi, I.; Abu-Gazala, M.; Pikarsky, A.J.; Shussman, N. Predictors of perioperative morbidity in elderly patients undergoing colorectal cancer resection. Tech. Coloproctol. 2025, 29, 4. [Google Scholar] [CrossRef]
- Humphry, N.A.; Wilson, T.; Cox, M.C.; Carter, B.; Arkesteijn, M.; Reeves, N.L.; Brakenridge, S.; McCarthy, K.; Bunni, J.; Draper, J.; et al. Association of postoperative clinical outcomes with sarcopenia, frailty, and nutritional status in older patients with colorectal cancer: Protocol for a prospective Cohort Study. JMIR Res. Protoc. 2021, 10, 8. [Google Scholar] [CrossRef]
- Snitkjær, C.; Jensen, T.K.; Kokotovic, D.; Burcharth, J. The cumulative risk and severity of postoperative complications in patients with frailty undergoing major emergency abdominal surgery—A prospective cohort study. World J. Surg. 2024, 49, 55–65. [Google Scholar] [CrossRef]
- Fiorindi, C.; Cuffaro, F.; Piemonte, G.; Cricchio, M.; Addasi, R.; Dragoni, G.; Scaringi, S.; Nannoni, A.; Ficari, F.; Giudici, F. Effect of long-lasting nutritional prehabilitation on postoperative outcome in elective surgery for IBD. Clin. Nutr. 2021, 40, 928–935. [Google Scholar] [CrossRef]
- Traeger, L.; Bedrikovetski, S.; Nguyen, T.-M.; Moore, J.W.; Sammour, T. Incidence and associated morbidity of sarcopenia in non-malignant small and large bowel anastomosis: Propensity score-matched analysis. Int. J. Color. Dis. 2023, 38, 159. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Chi, H.; Kok, S.; Chua, J.M.W.; Huang, X.-X.; Zhang, S.; Mah, S.; Foo, L.-X.; Peh, H.-Y.; Lee, H.-B.; et al. Multimodal prerehabilitation for elderly patients with sarcopenia in colorectal surgery. Ann. Coloproctol. 2024, 40, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Takiguchi, K.; Furuya, S.; Sudo, M.; Saito, R.; Yamamoto, A.; Ashizawa, N.; Hirayama, K.; Shoda, K.; Akaike, H.; Hosomura, N.; et al. Prognostic effect of sarcopenia in colorectal cancer recurrence. Nutrition 2021, 91–92, 111362. [Google Scholar] [CrossRef] [PubMed]
- De Leeuwerk, M.; de Groot, V.; ten Dam, S.; Kruizenga, H.; Weijs, P.; Geleijn, E.; van der Leeden, M.; van der Schaaf, M.; Dickhoff, C.; Besselink, M.G.; et al. The efficacy of a blended intervention to improve physical activity and protein intake for optimal physical recovery after oncological gastrointestinal and lung cancer surgery, the optimal physical recovery after hospitalization (Oprah) trial: Study protocol for a randomized controlled Multicenter Trial. Trials 2023, 24, 757. [Google Scholar] [CrossRef]
- Qin, X.; Sun, J.; Liu, M.; Zhang, L.; Yin, Q.; Chen, S. The effects of oral nutritional supplements interventions on nutritional status in patients undergoing colorectal cancer surgery: A systematic review. Int. J. Nurs. Pract. 2023, 30, e13226. [Google Scholar] [CrossRef]
- Pring, E.T.; Gould, L.E.; Malietzis, G.; Lung, P.; Bharal, M.; Fadodun, T.; Bassett, P.; Naghibi, M.; Taylor, C.; Drami, I.; et al. Bicycle NMES—Neuromuscular electrical stimulation in the perioperative treatment of sarcopenia and myosteatosis in advanced rectal cancer patients: Design and methodology of a phase II randomised controlled trial. Trials 2021, 22, 621. [Google Scholar] [CrossRef]
- Besson, A.; Deftereos, I.; Gough, K.; Taylor, D.; Shannon, R.; Yeung, J.M. The association between Sarcopenia and quality of life in patients undergoing colorectal cancer surgery: An exploratory study. Support. Care Cancer 2021, 29, 3411–3420. [Google Scholar] [CrossRef]
- Okabe, H.; Osaki, T.; Ogawa, K.; Yusa, T.; Takeyama, H.; Ozaki, N.; Hayashi, H.; Akahoshi, S.; Ikuta, Y.; Ogata, K.; et al. Frailty predicts severe postoperative complications after elective minimally invasive surgery in patients with colorectal cancer. Indian J. Surg. 2020, 83, 731–736. [Google Scholar] [CrossRef]
- Schaffler-Schaden, D.; Mittermair, C.; Bittner, F.; Zintl, R.; Schaffler, G.; Weiss, H. Effects of sarcopenia and myosteatosis are alleviated in reduced port surgery for diverticulitis. Int. J. Color. Dis. 2023, 38, 202. [Google Scholar] [CrossRef]
- Xie, H.; Wei, L.; Gao, S.; Liu, M.; Liang, Y.; Yuan, G.; Wang, Q.; Xu, Y.; Tang, S.; Gan, J. Prognostic significance of sarcopenia diagnosed based on the anthropometric equation for progression-free survival and overall survival in patients with colorectal cancer. Front. Nutr. 2023, 10, 1076589. [Google Scholar] [CrossRef]
- Portale, G.; Spolverato, Y.C.; Bartolotta, P.; Gregori, D.; Mazzeo, A.; Rettore, C.; Cancian, L.; Fiscon, V. Skeletal muscle mass and surgical morbidity after laparoscopic rectal cancer resection. J. Laparoendosc. Adv. Surg. Tech. 2023, 33, 570–578. [Google Scholar] [CrossRef]
- Abe, S.; Nozawa, H.; Sasaki, K.; Murono, K.; Emoto, S.; Kaneko, K.; Yokoyama, Y.; Matsuzaki, H.; Nagai, Y.; Ishihara, S. Preoperative sarcopenia negatively impacts short- and long-term outcomes of rectal cancer: A propensity score-matched analysis. Ann. Gastroenterol. Surg. 2024. [Google Scholar] [CrossRef]
- Springer, J.E.; Beauharnais, C.; Chicarilli, D.; Coderre, D.; Crawford, A.; Baima, J.A.; McIntosh, L.J.; Davids, J.S.; Sturrock, P.R.; Maykel, J.A.; et al. S184: Preoperative sarcopenia is associated with worse short-term outcomes following transanal total mesorectal excision (tatme) for rectal cancer. Surg. Endosc. 2022, 36, 5408–5415. [Google Scholar] [CrossRef]
- Scislo, L.; Walewska, E.; Bodys-Cupak, I.; Skorus-Zadecka, U.; Richter, P.; Szczepanik, A.M. Selected body composition parameters analysis based on bioelectrical impedance in patients operated for gastrointestinal cancer. In Vivo 2022, 36, 2936–2944. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Liu, X.; Wang, J.; Tang, M.; Xu, J.; Tan, S.; Liu, X.; Wu, G. Prognostic value of body composition in patients with digestive tract cancers: A prospective cohort study of 8,267 adults from China. Clin. Nutr. ESPEN 2024, 62, 192–198. [Google Scholar] [CrossRef]
- Waalboer, R.B.; Meyer, Y.M.; Galjart, B.; Olthof, P.B.; van Vugt, J.L.A.; Grünhagen, D.J.; Verhoef, C. Sarcopenia and long-term survival outcomes after local therapy for colorectal liver metastasis: A meta-analysis. HPB 2022, 24, 9–16. [Google Scholar] [CrossRef] [PubMed]
- MacLaine, T.D.; Baker, O.; Omura, M.; Clarke, C.; Howell, S.J.; Burke, D. Prospective comparison of two methods for assessing sarcopenia and Interobserver Agreement on retrospective CT Images. Postgrad. Med. J. 2022, 99, 455–462. [Google Scholar] [CrossRef]
- Saino, Y.; Kawase, F.; Nagano, A.; Ueshima, J.; Kobayashi, H.; Murotani, K.; Inoue, T.; Nagami, S.; Suzuki, M.; Maeda, K. Diagnosis and prevalence of sarcopenic obesity in patients with colorectal cancer: A scoping review. Clin. Nutr. 2023, 42, 1595–1601. [Google Scholar] [CrossRef]
- Cho, H.J.; Kang, J. Sarcopenia diagnosis in patients with colorectal cancer: A review of computed tomography-based assessments and emerging ways to enhance practicality. Ann. Surg. Treat. Res. 2024, 106, 305. [Google Scholar] [CrossRef]
- Abe, S.; Nozawa, H.; Sasaki, K.; Murono, K.; Emoto, S.; Yokoyama, Y.; Matsuzaki, H.; Nagai, Y.; Yoshioka, Y.; Shinagawa, T.; et al. Sarcopenia is associated with oncological prognosis and the incidence of secondary cancer in patients with middle/lower rectal cancer. Clin. Color. Cancer 2023, 22, 143–152. [Google Scholar] [CrossRef]
- Trejo-Avila, M.; Bozada-Gutiérrez, K.; Valenzuela-Salazar, C.; Herrera-Esquivel, J.; Moreno-Portillo, M. Sarcopenia predicts worse postoperative outcomes and decreased survival rates in patients with colorectal cancer: A systematic review and meta-analysis. Int. J. Color. Dis. 2021, 36, 1077–1096. [Google Scholar] [CrossRef]
- Ryan, A.M.; Power, D.G.; Daly, L.; Cushen, S.J.; Ní Bhuachalla, Ē.; Prado, C.M. Cancer-associated malnutrition, cachexia and sarcopenia: The Skeleton in the hospital closet 40 years later. Proc. Nutr. Soc. 2016, 75, 199–211. [Google Scholar] [CrossRef] [PubMed]
- Caccialanza, R.; Pedrazzoli, P.; Cereda, E.; Gavazzi, C.; Pinto, C.; Paccagnella, A.; Beretta, G.D.; Nardi, M.; Laviano, A.; Zagonel, V. Nutritional support in cancer patients: A position paper from the Italian Society of Medical Oncology (AIOM) and the Italian Society of Artificial Nutrition and metabolism (SINPE). J. Cancer 2016, 7, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.; Birdsell, L.; MacDonald, N.; Reiman, T.; Clandinin, M.T.; McCargar, L.J.; Murphy, R.; Ghosh, S.; Sawyer, M.B.; Baracos, V.E. Cancer cachexia in the age of obesity: Skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J. Clin. Oncol. 2013, 31, 1539–1547. [Google Scholar] [CrossRef]
- Minnella, E.M.; Carli, F. Prehabilitation and functional recovery for colorectal cancer patients. Eur. J. Surg. Oncol. 2018, 44, 919–926. [Google Scholar] [CrossRef]
- Baracos, V.E.; Martin, L.; Korc, M.; Guttridge, D.C.; Fearon, K.C. Cancer-associated cachexia. Nat. Rev. Dis. Primers 2018, 4, 17105. [Google Scholar] [CrossRef]
Publication Year | Total Number of Publications | Article (Including Early Access) | Review Article | Proceeding Papers | Letter | Correction |
---|---|---|---|---|---|---|
2025 | 1 | 1 | 0 | 0 | 0 | 0 |
2024 | 42 | 39 | 3 | 0 | 0 | 0 |
2023 | 34 | 29 | 5 | 1 | 0 | 0 |
2022 | 35 | 28 | 7 | 0 | 0 | 0 |
2021 | 25 | 22 | 3 | 0 | 0 | 0 |
2020 | 28 | 26 | 2 | 0 | 0 | 0 |
2019 | 13 | 13 | 0 | 0 | 0 | 0 |
2018 | 26 | 22 | 4 | 0 | 0 | 0 |
2017 | 10 | 8 | 1 | 1 | 1 | 0 |
2016 | 12 | 10 | 2 | 1 | 0 | 0 |
2015 | 10 | 8 | 1 | 0 | 0 | 1 |
2014 | 1 | 0 | 1 | 0 | 0 | 0 |
2013 | 1 | 1 | 0 | 0 | 0 | 0 |
Total | 238 | 207 | 29 | 3 | 1 | 1 |
Year | Count | Article | Review Article | Proceeding Paper | Meeting Abstract | Early Access | Editorial Material | Letter | Book Chapters | Retracted Publication | Correction Note Reprint |
---|---|---|---|---|---|---|---|---|---|---|---|
2025 | 26 | 24 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
2024 | 1319 | 1158 | 142 | 4 | 3 | 93 | 10 | 5 | 0 | 0 | 0 |
2023 | 1457 | 1238 | 207 | 27 | 4 | 18 | 4 | 1 | 0 | 0 | 3 |
2022 | 1437 | 1207 | 216 | 12 | 1 | 5 | 6 | 4 | 0 | 6 | 2 |
2021 | 1457 | 1240 | 199 | 10 | 6 | 3 | 7 | 3 | 1 | 2 | 0 |
2020 | 1362 | 1164 | 183 | 44 | 13 | 0 | 2 | 0 | 0 | 0 | 0 |
2019 | 1110 | 971 | 121 | 46 | 8 | 0 | 2 | 3 | 2 | 0 | 1 |
2018 | 1090 | 956 | 122 | 29 | 8 | 0 | 1 | 2 | 3 | 1 | 0 |
2017 | 1036 | 910 | 104 | 38 | 4 | 0 | 10 | 5 | 1 | 1 | 1 |
2016 | 1015 | 889 | 108 | 27 | 10 | 0 | 2 | 5 | 3 | 1 | 1 |
2015 | 928 | 816 | 83 | 13 | 16 | 0 | 7 | 3 | 2 | 2 | 2 |
2014 | 854 | 759 | 81 | 20 | 6 | 0 | 6 | 2 | 0 | 1 | 0 |
2013 | 759 | 667 | 73 | 25 | 10 | 0 | 4 | 3 | 1 | 0 | 0 |
2012 | 691 | 616 | 54 | 38 | 7 | 0 | 8 | 3 | 0 | 0 | 0 |
2011 | 646 | 580 | 54 | 27 | 5 | 0 | 2 | 4 | 2 | 0 | 1 |
2010 | 551 | 482 | 50 | 35 | 9 | 0 | 9 | 1 | 5 | 1 | 0 |
2009 | 503 | 449 | 40 | 44 | 3 | 0 | 4 | 5 | 2 | 0 | 0 |
2008 | 414 | 364 | 42 | 46 | 5 | 0 | 1 | 0 | 0 | 0 | 0 |
2007 | 433 | 378 | 39 | 54 | 8 | 0 | 6 | 0 | 0 | 0 | 0 |
2006 | 371 | 327 | 34 | 61 | 1 | 0 | 3 | 3 | 0 | 0 | 0 |
2005 | 288 | 262 | 19 | 38 | 3 | 0 | 0 | 0 | 1 | 0 | 0 |
2004 | 263 | 227 | 25 | 50 | 6 | 0 | 1 | 0 | 0 | 0 | 0 |
2003 | 226 | 206 | 14 | 44 | 1 | 0 | 3 | 0 | 0 | 0 | 0 |
2002 | 251 | 237 | 8 | 34 | 0 | 0 | 3 | 1 | 0 | 1 | 0 |
2001 | 223 | 197 | 18 | 42 | 1 | 0 | 3 | 0 | 0 | 0 | 0 |
2000 | 200 | 172 | 23 | 40 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
1999 | 194 | 177 | 11 | 35 | 3 | 0 | 2 | 0 | 0 | 0 | 0 |
1998 | 191 | 161 | 25 | 37 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
1997 | 143 | 126 | 7 | 24 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
1996 | 132 | 125 | 4 | 13 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
1995 | 104 | 94 | 2 | 9 | 1 | 0 | 0 | 4 | 0 | 0 | 0 |
1994 | 84 | 78 | 3 | 6 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
1993 | 67 | 62 | 2 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
1992 | 62 | 60 | 2 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1991 | 60 | 53 | 4 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 2 |
1990 | 10 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1989 | 10 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1988 | 11 | 9 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1987 | 16 | 14 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1986 | 9 | 8 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1985 | 14 | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1984 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1983 | 7 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1982 | 8 | 7 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1981 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1980 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1979 | 5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1978 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1977 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1976 | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1975 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
∑ | 20,055 | 17,532 | 2124 | 983 | 147 | 121 | 109 | 59 | 23 | 16 | 20 |
WOS Category | N | WOS Category | N |
---|---|---|---|
Surgery | 10,037 | Transplantation | 14 |
Oncology | 6706 | Dermatology | 13 |
Gastroenterology Hepatology | 4930 | Anatomy Morphology | 12 |
Medicine General Internal | 1296 | Materials Science Multidisciplinary | 11 |
Radiology Nuclear Medicine Medical Imaging | 539 | Toxicology | 11 |
Medicine Research Experimental | 470 | Psychiatry | 10 |
Multidisciplinary Sciences | 286 | Sport Sciences | 10 |
Pathology | 263 | Environmental Sciences | 9 |
Pharmacology Pharmacy | 251 | Education Scientific Disciplines | 8 |
Cell Biology | 228 | Economics | 6 |
Health Care Sciences Services | 161 | Engineering Electrical Electronic | 6 |
Nutrition Dietetics | 156 | Food Science Technology | 6 |
Biochemistry Molecular Biology | 153 | Materials Science Biomaterials | 6 |
Respiratory System | 145 | Physics Applied | 6 |
Obstetrics Gynecology | 120 | Social Sciences Biomedical | 6 |
Immunology | 119 | Anthropology | 5 |
Public Environmental Occupational Health | 112 | Chemistry Analytical | 5 |
Geriatrics Gerontology | 105 | Ophthalmology | 5 |
Anesthesiology | 102 | Computer Science Theory Methods | 4 |
Cardiac Cardiovascular Systems | 92 | Instruments Instrumentation | 4 |
Hematology | 88 | Optics | 4 |
Biotechnology Applied Microbiology | 87 | Tropical Medicine | 4 |
Urology Nephrology | 76 | Veterinary Sciences | 4 |
Orthopedics | 72 | Acoustics | 3 |
Genetics Heredity | 62 | Andrology | 3 |
Rehabilitation | 55 | Cell Tissue Engineering | 3 |
Dentistry Oral Surgery Medicine | 55 | Chemistry Applied | 3 |
Clinical Neurology | 54 | Computer Science Artificial Intelligence | 3 |
Nursing | 53 | Computer Science Information Systems | 3 |
Chemistry Multidisciplinary | 51 | Computer Science Interdisciplinary Applications | 3 |
Health Policy Services | 40 | Imaging Science Photographic Technology | 3 |
Medical Laboratory Technology | 32 | Primary Health Care | 3 |
Endocrinology Metabolism | 32 | Psychology | 3 |
Pediatrics | 30 | Statistics Probability | 3 |
Critical Care Medicine | 30 | Automation Control Systems | 2 |
Peripheral Vascular Disease | 29 | Chemistry Physical | 2 |
Biology | 29 | Engineering Chemical | 2 |
Otorhinolaryngology | 27 | Engineering Multidisciplinary | 2 |
Microbiology | 27 | Robotics | 2 |
Emergency Medicine | 26 | Audiology Speech Language Pathology | 1 |
Developmental Biology | 25 | Chemistry Organic | 1 |
Biochemical Research Methods | 21 | Computer Science Cybernetics | 1 |
Integrative Complementary Medicine | 20 | Engineering Environmental | 1 |
Medical Informatics | 19 | Management | 1 |
Gerontology | 19 | Nuclear Science Technology | 1 |
Neurosciences | 18 | Physics Condensed Matter | 1 |
Mathematical Computational Biology | 18 | Plant Sciences | 1 |
Engineering Biomedical | 18 | Polymer Science | 1 |
Physiology | 17 | Psychology Multidisciplinary | 1 |
Infectious Diseases | 17 | Remote Sensing | 1 |
Biophysics | 16 | Social Sciences Interdisciplinary | 1 |
Nanoscience Nanotechnology | 16 | Spectroscopy | 1 |
Chemistry Medicinal | 15 | Water Resources | 1 |
Reproductive Biology | 14 | Women’s Studies | 1 |
Intervention | Description | Expected Benefit | References |
---|---|---|---|
Oral Nutritional Supplements | High-protein supplements, BCAA, omega-3 fatty acids | Improved muscle protein synthesis, reduced inflammation | [116] |
Prehabilitation | Combination of nutritional support and physical activity before surgery | Increased functional reserve, reduced postoperative complications | [58] |
Resistance Training | Targeted strength exercises to maintain muscle mass | Increased muscle strength, faster recovery | [113] |
NMES | Electrical stimulation of muscles in inactive patients | Preservation of muscle mass in patients with limited mobility | [117] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leščák, Š.; Košíková, M.; Jenčová, S. Sarcopenia as a Prognostic Factor for the Outcomes of Surgical Treatment of Colorectal Carcinoma. Healthcare 2025, 13, 726. https://doi.org/10.3390/healthcare13070726
Leščák Š, Košíková M, Jenčová S. Sarcopenia as a Prognostic Factor for the Outcomes of Surgical Treatment of Colorectal Carcinoma. Healthcare. 2025; 13(7):726. https://doi.org/10.3390/healthcare13070726
Chicago/Turabian StyleLeščák, Šimon, Martina Košíková, and Sylvia Jenčová. 2025. "Sarcopenia as a Prognostic Factor for the Outcomes of Surgical Treatment of Colorectal Carcinoma" Healthcare 13, no. 7: 726. https://doi.org/10.3390/healthcare13070726
APA StyleLeščák, Š., Košíková, M., & Jenčová, S. (2025). Sarcopenia as a Prognostic Factor for the Outcomes of Surgical Treatment of Colorectal Carcinoma. Healthcare, 13(7), 726. https://doi.org/10.3390/healthcare13070726