Specialised Competencies and Artificial Intelligence in Perioperative Care: Contributions Toward Safer Practice
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Question
2.2. Search Strategy
2.3. Inclusion and Exclusion Criteria
2.4. Quality Assessment
3. Results
3.1. Specialised Competencies and Artificial Intelligence in Peri-Operative Care: Contributions Toward Safer Practice
3.1.1. Key Contributions of AI in Peri-Operative Care
3.1.2. Specialized Competencies Enhanced by AI
3.1.3. Challenges and Considerations
3.2. Enhancing Patient Safety in Peri-Operative CareThroughAI
3.2.1. Preoperative Risk Assessment and Planning
3.2.2. Intraoperative Management
3.2.3. Postoperative Monitoring and Follow-Up
3.2.4. Enhancing Efficiency and Reducing Errors
3.2.5. Ethical and Practical Considerations
3.2.6. Robotic and Computer-Assisted Surgery
3.3. Stakeholders
Simulation and AI-Readiness in Perioperative Teams
3.4. Artificial Intelligence General Overview
3.5. Implications for Clinical Practice and Professional Education
3.6. Ethical, Legal, and Equity Considerations
3.7. Limitations of AI in Perioperative Care
3.8. Research Gaps and Future Directions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Waksman, R.; Medranda, G.A. Sutureless SAVR Versus TAVR for Symptomatic Severe Aortic Stenosis: Newer Is Not Always Better. JACC Cardiovasc. Interv. 2020, 13, 2655–2657. [Google Scholar] [CrossRef]
- Abukhadijah, H.J.; Nashwan, A.J. Transforming Hospital Quality Improvement through Harnessing the Power of Artificial Intelligence. Glob. J. Qual. Saf. Healthc. 2024, 7, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Epelde, F. Revolutionizing Patient Safety: The Economic and Clinical Impact of Artificial Intelligence in Hospitals. Hospitals 2024, 1, 185–194. [Google Scholar] [CrossRef]
- Li, F.; Wang, S.; Gao, Z.; Qing, M.; Pan, S.; Liu, Y.; Hu, C. Harnessing Artificial Intelligence in Sepsis Care: Advances in Early Detection, Personalized Treatment, and Real-Time Monitoring. Front. Med. 2025, 11, 1510792. [Google Scholar] [CrossRef] [PubMed]
- Pugalenthi, L.S.; Garapati, C.; Maddukuri, S.; Kanwal, F.; Kumar, J.; Asadimanesh, N.; Dadwal, S.; Ahluwalia, V.; Senapati, S.G.; Arunachalam, S.P. From Data to Decisions: AI in Varicose Veins—Predicting, Diagnosing, and Guiding Effective Management. J. Vasc. Dis. 2025, 4, 19. [Google Scholar] [CrossRef]
- Mizna, S.; Arora, S.; Saluja, P.; Das, G.; Alanesi, W.A. An Analytic Research and Review of the Literature on Practice of Artificial Intelligence in Healthcare. Eur. J. Med. Res. 2025, 30, 260. [Google Scholar] [CrossRef]
- Bates, D.W.; Levine, D.; Syrowatka, A.; Kuznetsova, M.; Craig, K.J.T.; Rui, A.; Jackson, G.P.; Rhee, K. The Potential of Artificial Intelligence to Improve Patient Safety: A Scoping Review. npj Digit. Med. 2021, 4, 54. [Google Scholar] [CrossRef]
- Baydili, I.; Tasci, B.; Tasci, G. Artificial Intelligence in Psychiatry: A Review of Biological and Behavioral Data Analyses. Diagnostics 2025, 15, 434. [Google Scholar] [CrossRef]
- Rony, M.K.K.; Parvin, M.R.; Ferdousi, S. Advancing Nursing Practice with Artificial Intelligence: Enhancing Preparedness for the Future. Nurs. Open 2024, 11, e2070. [Google Scholar] [CrossRef]
- Varnosfaderani, S.M.; Forouzanfar, M. The Role of AI in Hospitals and Clinics: Transforming Healthcare in the 21st Century. Bioengineering 2024, 11, 337. [Google Scholar] [CrossRef]
- Gala, D.; Behl, H.; Shah, M.; Makaryus, A.N. The Role of Artificial Intelligence in Improving Patient Outcomes and Future of Healthcare Delivery in Cardiology: A Narrative Review of the Literature. Healthcare 2024, 12, 481. [Google Scholar] [CrossRef]
- Saripan, H.; Putera, N.S.F.M.S.; Hassan, R.A.; Abdullah, S.M. Artificial Intelligence and Medical Negligence in Malaysia: Confronting the Informed Consent Dilemma. Int. J. Acad. Res. Bus. Soc. Sci. 2021, 11, 1020–1033. [Google Scholar] [CrossRef]
- Alowais, S.A.; Alghamdi, S.S.; Alsuhebany, N.; Alqahtani, T.; Alshaya, A.I.; Almohareb, S.N.; Aldairem, A.; Alrashed, M.; Bin Saleh, K.; Badreldin, H.A.; et al. Revolutionizing Healthcare: The Role of Artificial Intelligence in Clinical Practice. BMC Med. Educ. 2023, 23, 689. [Google Scholar] [CrossRef]
- Tariq, Z. Integrating Artificial Intelligence and Humanities in Healthcare. arXiv 2023, arXiv:2302.07081. [Google Scholar] [CrossRef]
- Kauttonen, J.; Rousi, R.; Alamaki, A. Trust and Acceptance Challenges in the Adoption of AI Applications in Health Care: Quantitative Survey Analysis. J. Med. Internet Res. 2025, 27, e65567. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Jiang, Y.; Zhi, H.; Dong, Y.; Li, H.; Ma, S.; Wang, Y.; Dong, Q.; Shen, H.; Wang, Y. Artificial Intelligence in Healthcare: Past, Present and Future. Stroke Vasc. Neurol. 2017, 2, 230–243. [Google Scholar] [CrossRef]
- Chang, A. The Role of Artificial Intelligence in Digital Health. In Computers in Health Care; Springer: Cham, Switzerland, 2019; pp. 71–88. [Google Scholar] [CrossRef]
- Li, Y.-H.; Li, Y.; Wei, M.-Y.; Li, G. Innovation and Challenges of Artificial Intelligence Technology in Personalized Healthcare. Sci. Rep. 2024, 14, 18627. [Google Scholar] [CrossRef]
- Diaconu, C.; State, M.; Birligea, M.; Ifrim, M.; Bajdechi, G.; Georgescu, T.; Mateescu, B.; Voiosu, T. The Role of Artificial Intelligence in Monitoring Inflammatory Bowel Disease—The Future Is Now. Diagnostics 2023, 13, 735. [Google Scholar] [CrossRef] [PubMed]
- Akinrinmade, A.O.; Adebile, T.M.; Ezuma-Ebong, C.; Bolaji, K.; Ajufo, A.; Adigun, A.O.; Mohammad, M.; Dike, J.C.; Okobi, O.E. Artificial Intelligence in Healthcare: Perception and Reality. Cureus 2023, 15, e45594. [Google Scholar] [CrossRef]
- Krive, J.; Isola, M.; Chang, L.; Patel, T.; Anderson, M.; Sreedhar, R. Grounded in Reality: Artificial Intelligence in Medical Education. JAMIA Open 2023, 6, ooad037. [Google Scholar] [CrossRef]
- Liu, H.; Tripathy, R.K. Machine Learning and Deep Learning for Healthcare Data Processing and Analyzing: Towards Data-Driven Decision-Making and Precise Medicine. Diagnostics 2025, 15, 1051. [Google Scholar] [CrossRef]
- Abadir, P.; Chellappa, R.; Choudhry, N.; Demiris, G.; Ganesan, D.; Karlawish, J.; Li, R.M.; Moore, J.H.; Walston, J.D.; Directors & Advisors of the AITCs. The Promise of AI and Technology to Improve Quality of Life and Care for Older Adults. Nat. Aging 2023, 3, 629–639. [Google Scholar] [CrossRef]
- Silcox, C.; Zimlichmann, E.; Huber, K.; Rowen, N.; Saunders, R.; McClellan, M.; Kahn, C.N.; Salzberg, C.A.; Bates, D.W. The Potential for Artificial Intelligence to Transform Healthcare: Perspectives from International Health Leaders. npj Digit. Med. 2024, 7, 104. [Google Scholar] [CrossRef] [PubMed]
- Briganti, G.; Moine, O.L. Artificial Intelligence in Medicine: Today and Tomorrow. Front. Med. 2020, 7, 27. [Google Scholar] [CrossRef]
- Veluru, C.S. Impact of Artificial Intelligence and Generative AI on Healthcare: Security, Privacy Concerns and Mitigations. J. Artif. Intell. Cloud Comput. 2024, 3, 1–10. [Google Scholar] [CrossRef]
- Yu, K.; Beam, A.L.; Kohane, I.S. Artificial Intelligence in Healthcare. Nat. Biomed. Eng. 2018, 2, 719–731. [Google Scholar] [CrossRef]
- Ahuja, A.S. The Impact of Artificial Intelligence in Medicine on the Future Role of the Physician. PeerJ 2019, 7, e7702. [Google Scholar] [CrossRef] [PubMed]
- Aravazhi, P.S.; Gunasekaran, P.; Benjamin, N.Z.Y.; Thai, A.; Chandrasekar, K.K.; Kolanu, N.D.; Prajjwal, P.; Tekuru, Y.; Brito, L.V.; Inban, P. The Integration of Artificial Intelligence into Clinical Medicine: Trends, Challenges, and Future Directions. Dis. A Mon. 2025, 71, 101882. [Google Scholar] [CrossRef] [PubMed]
- Faiyazuddin, M.; Rahman, S.J.Q.; Anand, G.; Siddiqui, R.K.; Mehta, R.; Khatib, M.N.; Gaidhane, S.; Zahiruddin, Q.S.; Hussain, A.; Sah, R. The Impact of Artificial Intelligence on Healthcare: A Comprehensive Review of Advancements in Diagnostics, Treatment, and Operational Efficiency. Health Sci. Rep. 2025, 8, e70312. [Google Scholar] [CrossRef]
- Ali, O.; Abdelbaki, W.; Shrestha, A.; Elbasi, E.; Alryalat, M.A.A.; Dwivedi, Y.K. A Systematic Literature Review of Artificial Intelligence in the Healthcare Sector: Benefits, Challenges, Methodologies, and Functionalities. J. Innov. Knowl. 2023, 8, 100333. [Google Scholar] [CrossRef]
- Reason, J. Human Error: Models and Management. BMJ 2000, 320, 768–770. [Google Scholar] [CrossRef]
- Weiser, T.G.; Donaldson, L.S.D.; Gawande, A. WHO Guidelines for Safe Surgery; World Health Organization: Geneva, Switzerland, 2009; p. 124. [Google Scholar]
- Fowler, A.J.; Abbott, T.E.F.; Prowle, J.; Pearse, R.M. Age of Patients Undergoing Surgery. Br. J. Surg. 2019, 106, 1012–1018. [Google Scholar] [CrossRef] [PubMed]
- Weiser, T.G.; Haynes, A.B.; Molina, G.; Lipsitz, S.R.; Esquivel, M.M.; Uribe-Leitz, T.; Fu, R.; Azad, T.; Chao, T.E.; Berry, W.R.; et al. Estimate of the Global Volume of Surgery in 2012: An Assessment Supporting Improved Health Outcomes. Lancet 2015, 385, S11. [Google Scholar] [CrossRef] [PubMed]
- Haynes, A.B.; Weiser, T.G.; Berry, W.R.; Lipsitz, S.R.; Breizat, A.-H.S.; Dellinger, E.P.; Herbosa, T.; Joseph, S.; Kibatala, P.L.; Lapitan, M.C.M.; et al. A Surgical Safety Checklist to Reduce Morbidity and Mortality in a Global Population. N. Engl. J. Med. 2009, 360, 491–499. [Google Scholar] [CrossRef]
- Davenport, T.; Kalakota, R. The Potential for Artificial Intelligence in Healthcare. Future Healthc. J. 2019, 6, 94–98. [Google Scholar] [CrossRef]
- Bellini, V.; Russo, M.; Domenichetti, T.; Panizzi, M.; Allai, S.; Bignami, E.G. Artificial Intelligence in Operating Room Management. J. Med. Syst. 2024, 48, 18. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.K.; Hofer, I.; Gabel, E.; Baldi, P.; Cannesson, M. Development and Validation of a Deep Neural Network Model for Prediction of Postoperative In-Hospital Mortality. Anesthesiology 2018, 129, 649–662. [Google Scholar] [CrossRef]
- Lin, S.J.; Sun, C.-Y.; Chen, D.-N.; Kang, Y.-N.; Lai, N.M.; Chen, K.-H.; Chen, C. Perioperative Application of Chatbots: A Systematic Review and Meta-Analysis. BMJ Health Care Inform. 2024, 31, e100985. [Google Scholar] [CrossRef]
- Abuzaid, M.M.; Elshami, W.; Fadden, S.M. Integration of Artificial Intelligence into Nursing Practice. Health Technol. 2022, 12, 1109–1115. [Google Scholar] [CrossRef]
- O’Connor, S.; Nogueira, A.; Barbieri-Figueiredo, M.D.C. Artificial Intelligence in Nursing and Midwifery: A Systematic Review. J. Clin. Nurs. 2023, 32, 3103–3113. [Google Scholar] [CrossRef]
- Davoud, S.C.; Kovacheva, V.P. On the Horizon: Specific Applications of Automation and Artificial Intelligence in Anesthesiology. Curr. Anesthesiol. Rep. 2023, 13, 31–40. [Google Scholar] [CrossRef]
- Loftus, T.J.; Vlaar, A.P.; Hung, A.J.; Bihorac, A.; Dennis, B.M.; Juillard, C.; Hashimoto, D.A.; Kaafarani, H.M.; Tighe, P.J.; Kuo, P.C.; et al. Executive Summary of the Artificial Intelligence in Surgery Series. Surgery 2022, 171, 1269–1273. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, O.; Dubey, G.; Benkabbou, A.; Majbar, M.A.; Souadka, A. Comprehensive Overview of Artificial Intelligence in Surgery: A Systematic Review and Perspectives. Pflug. Arch. 2025, 477, 617–626. [Google Scholar] [CrossRef]
- Maheshwari, K.; Cywinski, J.B.; Papay, F.; Khanna, A.K.; Mathur, P. Artificial Intelligence for Perioperative Medicine: Perioperative Intelligence. Anesth. Analg. 2023, 136, 637–645. [Google Scholar] [CrossRef]
- Khojastehnezhad, M.A.; Youseflee, P.P.; Moradi, A.; Ebrahimzadeh, M.H.; Jirofti, N. Artificial Intelligence and the State of the Art of Orthopedic Surgery. Arch. Bone Jt. Surg. 2025, 13, 17–22. [Google Scholar]
- Eijkemans, M.P.; Myburgh, M.G.; Samuel, J.S.T. Science Without Conscience Is but the Ruin of the Soul: The Ethics of Big Data and Artificial Intelligence in Perioperative Medicine. Anesth. Analg. 2020, 131, 696–702. [Google Scholar] [CrossRef]
- Shah, S.; Bughrara, R.; Urman, R.D. Artificial Intelligence in Extended Perioperative Medicine. Trends Anaesth. Crit. Care 2024, 56, 101376. [Google Scholar] [CrossRef]
- Chan, L.K.M. A Bibliometric Analysis of Perioperative Medicine and Artificial Intelligence. J. Perioper. Pract. 2025. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Byrd, T.F., IV; Tignanelli, C.J. Artificial Intelligence in Surgery—A Narrative Review. J. Med. Artif. Intell. 2024, 7, 24. [Google Scholar] [CrossRef]
- Shafiee, M.A.; Kalantari, S.M.; Shafiee, S.M. Artificial Intelligence-Powered Quality Assurance: Transforming Diagnostics, Surgery, and Patient Care—Innovations, Limitations, and Future Directions. Life 2025, 15, 654. [Google Scholar] [CrossRef]
- El Sherbini, A.; Glicksberg, B.S.; Krittanawong, C. Artificial Intelligence in General Internal Medicine. In Artificial Intelligence in Clinical Practice: How AI Technologies Impact Medical Research and Clinics; Chapter 25; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Lanzagorta-Ortega, D.; Carrillo-Pérez, D.L.; Carrillo-Esper, R. Inteligencia Artificial en Medicina: Presente y Futuro. Gac. Med. Mex. 2022, 158, 564–570. [Google Scholar] [CrossRef]
- Maroufi, S.S.; Sarkhosh, M.; Movahed, M.S.; Behmanesh, A.; Ejmalian, A. Revolutionizing Post Anesthesia Care Unit with Artificial Intelligence: A Narrative Review. Arch. Anesthesiol. Crit. Care 2025, 11, 218–223. [Google Scholar] [CrossRef]
- Pardo, E.; Le Cam, E.; Verdonk, F. Artificial Intelligence and Nonoperating Room Anesthesia. Curr. Opin. Anaesthesiol. 2024, 37, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.; Bozic, K.J.; Jayakumar, P. Artificial Intelligence in Value-Based Health Care. HSS J. 2025. online ahead of print. [Google Scholar] [CrossRef]
- Oettl, F.C.; Zsidai, B.; Oeding, J.F.; Samuelsson, K. Artificial Intelligence and Musculoskeletal Surgical Applications. HSS J. 2025. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Bobade, S.; Asutkar, S.; Nagpure, D.; Kadav, A. A Brief Review of Practical Use of Artificial Intelligence in Surgery in the Current Era. Multimed. Rev. 2024, 8, 2025085. [Google Scholar] [CrossRef]
- Naik, N.B.; Mathew, P.J.; Kundra, P. Scope of Artificial Intelligence in Airway Management. Indian J. Anaesth. 2024, 68, 662–667. [Google Scholar] [CrossRef]
- Ardon, A.; Chadha, R.; George, J. Post-Discharge Care and Monitoring: What’s New, What’s Controversial. Curr. Anesthesiol. Rep. 2024, 14, 285–292. [Google Scholar] [CrossRef]
- Leivaditis, V.; Maniatopoulos, A.A.; Lausberg, H.; Mulita, F.; Papatriantafyllou, A.; Liolis, E.; Beltsios, E.; Adamou, A.; Kontodimopoulos, N.; Dahm, M. Artificial Intelligence in Thoracic Surgery: A Review Bridging Innovation and Clinical Practice for the Next Generation of Surgical Care. J. Clin. Med. 2025, 14, 2729. [Google Scholar] [CrossRef]
- Carvalho, L.A.; Buss, T.M.; Simone Coelho, A.; Nara Jaci da Silva, N.; Helen Nicoletti, F. O Uso de Tecnologias para a Qualificação da Assistência de Enfermagem: Uma Revisão Integrativa. J. Nurs. Health 2018, 8, e188104. [Google Scholar] [CrossRef]
- Males, I.; Kumric, M.; Males, A.H.; Cvitkovic, I.; Šantic, R.; Pogorelic, Z.; Božić, J. A Systematic Integration of Artificial Intelligence Models in Appendicitis Management: A Comprehensive Review. Diagnostics 2025, 15, 866. [Google Scholar] [CrossRef] [PubMed]
- Panch, T.; Szolovits, P.; Atun, R. Artificial Intelligence, Machine Learning and Health Systems. J. Glob. Health 2018, 8, 020303. [Google Scholar] [CrossRef]
- Bindon, S.L. Professional Development Strategies to Enhance Nurses’ Knowledge and Maintain Safe Practice. AORN J. 2017, 106, 99–110. [Google Scholar] [CrossRef]
- Beydler, K.W. The Role of Emotional Intelligence in Perioperative Nursing and Leadership: Developing Skills for Improved Performance. AORN J. 2017, 106, 317–323. [Google Scholar] [CrossRef]
- Carayon, P.; Hundt, A.S.; Karsh, B.-T.; Gurses, A.P.; Alvarado, C.J.; Smith, M.; Brennan, P.F. Work System Design for Patient Safety: The SEIPS Model. Qual. Saf. Health Care 2006, 15 (Suppl. S1), i50–i58. [Google Scholar] [CrossRef]
- Miller, K.K.; Riley, W.; Davis, S.; Hansen, H.E. In situ simulation: A method of experiential learning to promote safety and team behavior. J. Perinat. Neonatal Nurs. 2008, 22, 105–113. [Google Scholar] [CrossRef]
- Hashimoto, D.A.; Rosman, G.; Rus, D.; Meireles, O.R. Artificial Intelligence in Surgery: Promises and Perils. Ann. Surg. 2018, 268, 70–76. [Google Scholar] [CrossRef]
- Topol, E.J. Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again; Basic Books: New York, NY, USA, 2019. [Google Scholar]
- Martinez-Nicolas, I.; Arnal-Velasco, D.; Romero-García, E.; Fabregas, N.; Otero, Y.S.; Leon, I.; Bartakke, A.A.; Silva-Garcia, J.; Rodriguez, A.; Valli, C.; et al. Perioperative Patient Safety Recommendations: Systematic Review of Clinical Practice Guidelines. BJS Open 2024, 8, zrae143. [Google Scholar] [CrossRef]
- Da Silva, E.R.; Parapinski, S.T.; de Oliveira, W.D.; Batista, J. Tecnologias para Promoção da Segurança da Assistência de Enfermagem Perioperatória: Revisão Integrativa. In Pesquisas e Ações em Saúde Pública – Edição XII; de Freitas, G.B.L., Ed.; Editora Pasteur: São Paulo, Brazil, 2023; ISBN 978-65-6029-039-6. [Google Scholar]
- Harmon, J.; Pitt, V.; Summons, P.; Inder, K.J. Use of Artificial Intelligence and Virtual Reality within Clinical Simulation for Nursing Pain Education: A Scoping Review. Nurse Educ. Today 2021, 97, 104694. [Google Scholar] [CrossRef] [PubMed]
- Mesko, B.; Hetényi, G.H.; Győrffy, Z. Will Artificial Intelligence Solve the Human Resource Crisis in Healthcare? BMC Health Serv. Res. 2018, 18, 545. [Google Scholar] [CrossRef] [PubMed]
- van der Meijden, S.L.; Arbous, M.S.; Geerts, B.F. Possibilities and Challenges for Artificial Intelligence and Machine Learning in Perioperative Care. BJA Educ. 2023, 23, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Benevides, G.P.; Resplande, C.A.; Dias, L.R.; Pereira, T.A.; Mendonça, C.G.A.d.; Silva, K.A.L.e.; Silva, L.A.; Júnior, N.A.d.S. Transformação na Sala de Operações: O Impacto da Inteligência Artificial na Cirurgia Geral. Cuad. Educ. Desarro. 2024, 16, e5374. [Google Scholar] [CrossRef]
- Ye, J. Patient Safety of Perioperative Medication through the Lens of Digital Health and Artificial Intelligence. JMIR Perioper. Med. 2023, 6, e34453. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, R.; Federico, W.A. Inteligência Artificial: Potencialidades e Desafios para a Enfermagem Perioperatória. Rev. SOBECC 2025, 30, 1038. [Google Scholar] [CrossRef]
- Knop, M.; Weber, S.; Mueller, M.; Niehaves, B. Human Factors and Technological Characteristics Influencing the Interaction with AI-Enabled Clinical Decision Support Systems: A Literature Review. JMIR Hum. Factors 2022, 9, e22810. [Google Scholar] [CrossRef]
- O’Shea, E. Self-Directed Learning in Nurse Education: A Review of the Literature. J. Adv. Nurs. 2003, 43, 62–70. [Google Scholar] [CrossRef]
- Obermeyer, Z.; Powers, B.; Vogeli, C.; Mullainathan, S. Dissecting Racial Bias in an Algorithm Used to Manage the Health of Populations. Science 2019, 366, 447–453. [Google Scholar] [CrossRef]
- von Gerich, H.; Moen, H.; Block, L.J.; Chu, C.H.; DeForest, H.; Hobensack, M.; Michalowski, M.; Mitchell, J.; Nibber, R.; Olalia, M.A.; et al. Artificial Intelligence-Based Technologies in Nursing: A Scoping Literature Review of the Evidence. Int. J. Nurs. Stud. 2022, 127, 104153. [Google Scholar] [CrossRef]
- Sousa, C.S. Transformação Digital na Enfermagem Perioperatória. Enferm. Foco 2024, 15, e-202401. [Google Scholar] [CrossRef]
- Benjamens, S.; Dhunnoo, P.; Mesko, B. The State of Artificial Intelligence-Based FDA-Approved Medical Devices and Algorithms: An Online Database. npj Digit. Med. 2020, 3, 118. [Google Scholar] [CrossRef]

| Competency Domain | Risk Prediction | Real-Time Decision Support | Computer Vision | Automation/Robotics | Documentation/Narrative Intelligence |
|---|---|---|---|---|---|
| Data/AI literacy | ✓ | ✓ | • | • | ✓ |
| Clinical reasoning & decision-making | ✓ | ✓ | • | • | • |
| Team communication & collaboration | • | ✓ | • | • | ✓ |
| Ethical & legal reasoning (governance) | • | ✓ | • | ✓ | ✓ |
| Digital workflow & informatics | • | • | ✓ | ✓ | ✓ |
| Safety, quality & human factors | • | ✓ | ✓ | ✓ | ✓ |
| Phase | Technical (Examples) | Non-Technical (Examples) |
|---|---|---|
| Preoperative | Device setup; data validation; EHR feature checks; threshold tuning; consent capture | Shared decision-making; briefing with AI risks; leadership of preop huddles; ethics of consent |
| Intraoperative | Monitor/device operation; model output interpretation; CV overlays; override execution | Communication under time pressure; closed-loop on alerts; leadership & role clarity; ethical escalation |
| Postoperative | Remote monitoring tools; trend analysis; note generation QA; discharge risk scoring | Handover quality; team situational awareness during rescue; family communication; governance of follow-up |
| Application | Benefits | Challenges |
|---|---|---|
| Preoperative Risk Assessment | Improved risk stratification and patient optimization | Data integration and accessibility |
| Intraoperative Management | Real-time decision support, enhanced precision, and control | Algorithmic transparency and bias |
| Postoperative Monitoring | Early complication detection, personalized recovery plans, remote monitoring | Data privacy and security |
| Efficiency and Error Reduction | Optimized scheduling, reduced errors | Integration with existing systems |
| Ethical Considerations | Ensuring patient safety and ethical AI governance | Addressing ethical and legal concerns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raposo, S.; Mascarenhas, M.; Correia Bezerra, R.; Ferreira, J.C. Specialised Competencies and Artificial Intelligence in Perioperative Care: Contributions Toward Safer Practice. Healthcare 2025, 13, 3286. https://doi.org/10.3390/healthcare13243286
Raposo S, Mascarenhas M, Correia Bezerra R, Ferreira JC. Specialised Competencies and Artificial Intelligence in Perioperative Care: Contributions Toward Safer Practice. Healthcare. 2025; 13(24):3286. https://doi.org/10.3390/healthcare13243286
Chicago/Turabian StyleRaposo, Sara, Miguel Mascarenhas, Ricardo Correia Bezerra, and João Carlos Ferreira. 2025. "Specialised Competencies and Artificial Intelligence in Perioperative Care: Contributions Toward Safer Practice" Healthcare 13, no. 24: 3286. https://doi.org/10.3390/healthcare13243286
APA StyleRaposo, S., Mascarenhas, M., Correia Bezerra, R., & Ferreira, J. C. (2025). Specialised Competencies and Artificial Intelligence in Perioperative Care: Contributions Toward Safer Practice. Healthcare, 13(24), 3286. https://doi.org/10.3390/healthcare13243286

