Intelligent Patient Management in Viral Diseases: An Integrated Regression Model and Multi-Criteria Decision-Making Approach to Convalescent Plasma Transfusion
Abstract
1. Introduction
1.1. Motivation
1.2. Problem Statement and Challenges
1.3. Research Gap and Objectives
2. Related Works
2.1. Decision-Support Frameworks for CP and Viral Disease Management
2.2. Trustworthy and Transparent Artificial Intelligence in Telemedicine
3. Framework Methodology
3.1. Dataset Selection and Identification
3.2. Trust Decision-Making Model Development
3.2.1. Stage 1: DMs for Patients-Donors Adoption
3.2.2. Stage 2: Integrated AHP-TOPSIS and AHP-VIKOR
3.2.3. Stage 3: Intelligent Matching Components
3.3. Regression Model Development
4. Results and Discussion
4.1. Weighting Results
4.2. Ranking Results
4.3. Matching Components Results
4.4. Regression Analysis Results
5. Correlation-Based Approaches to Establish Trustworthiness
6. State of the Art: Comparative Analysis
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CP | Convalescent plasma |
| MCDM | Multicriteria decision-making |
| AHP | Analytic hierarchy process |
| TOPSIS | Order preference by similarity to ideal solution |
| VIKOR | Višekriterijumsko kompromisno rangiranje |
| GDM | Group decision-making |
References
- Alsalem, M.A.; Albahri, O.S.; Zaidan, A.A.; Al-Obaidi, J.R.; Alnoor, A.; Alamoodi, A.H.; Albahri, A.S.; Zaidan, B.B.; Jumaah, F.M. Rescuing emergency cases of COVID-19 patients: An intelligent real-time MSC transfusion framework based on multicriteria decision-making methods. Appl. Intell. 2022, 52, 9676–9700. [Google Scholar] [CrossRef]
- Shyr, Z.A.; Cheng, Y.S.; Lo, D.C.; Zheng, W. Drug combination therapy for emerging viral diseases. Drug Discov. Today 2021, 26, 2367–2376. [Google Scholar] [CrossRef] [PubMed]
- Pouresmaieli, M.; Ekrami, E.; Akbari, A.; Noorbakhsh, N.; Moghadam, N.B.; Mamoudifard, M. A comprehensive review on efficient approaches for combating coronaviruses. Biomed. Pharmacother. 2021, 144, 112353. [Google Scholar] [CrossRef] [PubMed]
- Asselah, T.; Durantel, D.; Pasmant, E.; Lau, G.; Schinazi, R.F. COVID-19: Discovery, diagnostics and drug development. J. Hepatol. 2021, 74, 168–184. [Google Scholar] [CrossRef]
- Hassanzadeh, P. The significance of bioengineered nanoplatforms against SARS-CoV-2: From detection to genome editing. Life Sci. 2021, 274, 119289. [Google Scholar] [CrossRef]
- Nie, J.Z.; Karras, C.L.; Texakalidis, P.; Trybula, S.J.; Dahdaleh, N.S. A Systematic Review of Outpatient Telemedicine Use in Neurosurgery Since the Start of Coronavirus Disease 2019. World Neurosurg. 2022, 167, e1090–e1102. [Google Scholar] [CrossRef]
- Albahri, O.S.; Al-Obaidi, J.R.; Zaidan, A.; Albahri, A.; Zaidan, B.; Salih, M.M.; Qays, A.; Dawood, K.; Mohammed, R.; Abdulkareem, K.H.; et al. Helping doctors hasten COVID-19 treatment: Towards a rescue framework for the transfusion of best convalescent plasma to the most critical patients based on biological requirements via ml and novel MCDM methods. Comput. Methods Programs Biomed. 2020, 196, 105617. [Google Scholar] [CrossRef] [PubMed]
- Garai, T.; Garg, H. An interpreter ranking index-based MCDM technique for COVID-19 treatments under a bipolar fuzzy environment. Results Control Optim. 2023, 12, 100242. [Google Scholar] [CrossRef]
- Yang, J.; Liao, M.; Wang, Y.; Chen, L.; He, L.; Ji, Y.; Xiao, Y.; Lu, Y.; Fan, W.; Nie, Z.; et al. Opportunistic osteoporosis screening using chest CT with artificial intelligence. Osteoporos. Int. 2022, 33, 2547–2561. [Google Scholar] [CrossRef]
- Albahri, A.S.; Hamid, R.A.; Albahri, O.S.; Zaidan, A.A. Detection-based prioritisation: Framework of multi-laboratory characteristics for asymptomatic COVID-19 carriers based on integrated Entropy–TOPSIS methods. Artif. Intell. Med. 2021, 111, 101983. [Google Scholar] [CrossRef]
- Hossein Rabiee, A.; Tahmasbi, V.; Qasemi, M. Experimental evaluation, modeling and sensitivity analysis of temperature and cutting force in bone micro-milling using support vector regression and EFAST methods. Eng. Appl. Artif. Intell. 2023, 120, 105874. [Google Scholar] [CrossRef]
- Niemistö, D.; Finni, T.; Cantell, M.; Korhonen, E.; Sääkslahti, A. Individual, family, and environmental correlates of motor competence in young children: Regression model analysis of data obtained from two motor tests. Int. J. Environ. Res. Public Health 2020, 17, 2548. [Google Scholar] [CrossRef]
- Bardsiri, M.S.; Kouhbananinejad, S.M.; Vahidi, R.; Soleimany, S.; Moghadari, M.; Derakhshani, A.; Kashani, B.; Farsinejad, A. Ubiquitous convalescent plasma: An artificial universal plasma for COVID-19 patients. Transfus. Apher. Sci. 2021, 60, 103188. [Google Scholar] [CrossRef]
- Mohammed, T.J.; Albahri, A.S.; Zaidan, A.A.; Albahri, O.S.; Al-Obaidi, J.R.; Zaidan, B.B.; Larbani, M.; Mohammed, R.T.; Hadi, S.M. Convalescent-plasma-transfusion intelligent framework for rescuing COVID-19 patients across centralised/decentralised telemedicine hospitals based on AHP-group TOPSIS and matching component. Appl. Intell. 2021, 51, 2956–2987. [Google Scholar] [CrossRef]
- Stengel, D.; Augat, P.; Giannoudis, P.V. Large-scale, pragmatic randomized trials in the era of big data, precision medicine and machine learning. Valid and necessary, or outdated and a waste of resources? Injury 2023, 54, S2–S9. [Google Scholar] [CrossRef] [PubMed]
- Boyer, P.; Donia, J.; Whyne, C.; Burns, D.; Shaw, J. Regulatory regimes and procedural values for health-related motion data in the United States and Canada. Health Policy Technol. 2022, 11, 100648. [Google Scholar] [CrossRef]
- Holzinger, A.; Dehmer, M.; Emmert-Streib, F.; Cucchiara, R.; Augenstein, I.; Del Ser, J.; Samek, W.; Jurisica, I.; Díaz-Rodríguez, N. Information fusion as an integrative cross-cutting enabler to achieve robust, explainable, and trustworthy medical artificial intelligence. Inf. Fusion 2022, 79, 263–278. [Google Scholar] [CrossRef]
- Albahri, A.S.; Duhaim, A.M.; Fadhel, M.A.; Alnoor, A.; Baqer, N.S.; Alzubaidi, L.; Albahri, O.; Alamoodi, A.; Bai, J.; Salhi, A.; et al. A systematic review of trustworthy and explainable artificial intelligence in healthcare: Assessment of quality, bias risk, and data fusion. Inf. Fusion 2023, 96, 156–191. [Google Scholar] [CrossRef]
- Kumar, A.; Sinha, S.; Jameel, J.; Kumar, S. Telemedicine trends in orthopaedics and trauma during the COVID-19 pandemic: A bibliometric analysis and review. J. Taibah Univ. Med. Sci. 2022, 17, 203–213. [Google Scholar] [CrossRef]
- Morís, D.I.; de Moura, J.; Marcos, P.J.; Míguez Rey, E.; Novo, J.; Ortega, M. Efficient clinical decision-making process via AI-based multimodal data fusion: A COVID-19 case study. Heliyon 2024, 10, e38642. [Google Scholar] [CrossRef]
- Rana, H.S.; Umer, M.; Hassan, U.; Asgher, U. A novel multi-criteria decision-making approach for prioritization of elective surgeries through formulation of ‘weighted MeNTS scoring system. Heliyon 2022, 8, e10339. [Google Scholar] [CrossRef]
- Kirişci, M.; Demir, I.; Şimşek, N. Fermatean fuzzy ELECTRE multi-criteria group decision-making and most suitable biomedical material selection. Artif. Intell. Med. 2022, 127, 102278. [Google Scholar] [CrossRef]
- Hoffmann, S.; Schrezenmeier, E.; Desmarets, M.; Halleck, F.; Durrbach, A.; Peters, L.; Tremmel, A.-T.; Seidel, A.; Führer, M.; Bachmann, F.; et al. Articles Early, very high-titre convalescent plasma therapy in clinically vulnerable individuals with mild COVID-19: An international, randomised, open-label trial. eBioMedicine 2025, 113, 105613. [Google Scholar] [CrossRef]
- Park, H.S.; Yin, A.; Barranta, C.; Lee, J.S.; Caputo, C.A.; Sachithanandham, J.; Li, M.; Yoon, S.; Sitaras, I.; Jedlicka, A.; et al. Outpatient COVID-19 convalescent plasma recipient antibody thresholds correlated to reduced hospitalizations within a randomized trial. JCI Insight 2024, 9, 1–14. [Google Scholar] [CrossRef]
- Tun, H.M.; Rahman, H.A.; Naing, L.; Malik, O.A. Trust in Artificial Intelligence–Based Clinical Decision Support Systems Among Health Care Workers: Systematic Review. J. Med. Internet Res. 2025, 27, e69678. [Google Scholar] [CrossRef]
- Perez, K.; Wisniewski, D.; Ari, A.; Lee, K.; Lieneck, C.; Ramamonjiarivelo, Z. Investigation into Application of AI and Telemedicine in Rural Communities: A Systematic Literature Review. Healthcare 2025, 13, 324. [Google Scholar] [CrossRef]
- Deshpande, R. Smart match: Revolutionizing organ allocation through artificial intelligence. Front. Artif. Intell. 2024, 7, 1364149. [Google Scholar] [CrossRef]
- Lekadir, K.; Frangi, A.F.; Porras, A.R.; Glocker, B.; Cintas, C.; Langlotz, C.P.; Weicken, E.; Asselbergs, F.W.; Prior, F.; Collins, G.S.; et al. FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare. Bmj 2025, 388, e081554. [Google Scholar] [CrossRef] [PubMed]
- Klassen, S.A.; Senefeld, J.W.; Senese, K.A.; Johnson, P.W.; Wiggins, C.C.; Baker, S.E.; van Helmond, N.; Bruno, K.A.; Pirofski, L.-A.; Shoham, S.; et al. Convalescent Plasma Therapy for COVID-19: A Graphical Mosaic of the Worldwide Evidence. Front. Med. 2021, 8, 684151. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Schoenherr, T.; Wagner, S.M.; Soni, B.; Panigrahi, S.; Ramkumar, M. Convalescent Plasma Bank Facility Location–Allocation Problem for COVID-19. Transp. Res. Part E Logist. Transp. Rev. 2021, 156, 102517. [Google Scholar]
- Kajova, M.; Khawaja, T.; Levonen, I.; Pietilä, J.-P.; Virtanen, J.; Pakkanen, S.H.; Välimaa, H.; Nousiainen, A.; Hepojoki, J.; Sironen, T.; et al. Convalescent plasma therapy for COVID-19—Donor selection strategies and establishment of a plasma bank. New Microbes New Infect. 2024, 62, 101525. [Google Scholar] [CrossRef]
- Huang, B.; Huang, Y.; Ma, X.; Chen, Y. Intelligent Algorithm-Based Magnetic Resonance for Evaluating the Effect of Platelet-Rich Plasma in the Treatment of Intractable Pain of Knee Arthritis. Contrast Media Mol. Imaging 2022, 2022, 9223928. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, J.; Hu, J. Study on surface properties of nanosecond laser textured plasma nitrided titanium alloy. Mater. Today Commun. 2022, 31, 103746. [Google Scholar] [CrossRef]
- Ripoll, J.G.; van Helmond, N.; Senefeld, J.W.; Wiggins, C.C.; Klassen, S.A.; Baker, S.E.; Larson, K.F.; Murphy, B.M.; Andersen, K.J.; Ford, S.K.; et al. Convalescent Plasma for Infectious Diseases: Historical Framework and Use in COVID-19. Clin. Microbiol. Newsl. 2021, 43, 23–32. [Google Scholar] [CrossRef]
- Palanidurai, S.; Phua, J.; Chan, Y.H.; Mukhopadhyay, A. P/FP ratio: Incorporation of PEEP into the PaO2/FiO2 ratio for prognostication and classification of acute respiratory distress syndrome. Ann. Intensive Care 2021, 11, 124. [Google Scholar] [CrossRef]
- Duan, K.; Liu, B.; Li, C.; Zhang, H.; Yu, T.; Qu, J.; Zhou, M.; Chen, L.; Meng, S.; Hu, Y.; et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc. Natl. Acad. Sci. USA 2020, 117, 9490–9496. [Google Scholar] [CrossRef] [PubMed]
- Costela-ruiz, V.J.; Illescas-montes, R.; Puerta-puerta, J.M.; Ruiz, C.; Melguizo-Rodriguez, L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev. 2020, 54, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Aziz, M.; Fatima, R.; Lee-Smith, W.; Assaly, R. The association of low serum albumin level with severe COVID-19: A systematic review and meta-analysis. Crit. Care 2020, 24, 255. [Google Scholar] [CrossRef] [PubMed]
- Louis, M.L.; Dumonceau, R.G.; Jouve, E.; Cohen, M.; Djouri, R.; Richardet, N.; Jourdan, E.; Giraudo, L.; Dumoulin, C.; Grimaud, F.; et al. Intra-Articular Injection of Autologous Microfat and Platelet-Rich Plasma in the Treatment of Knee Osteoarthritis: A Double-Blind Randomized Comparative Study. Arthrosc.-J. Arthrosc. Relat. Surg. 2021, 37, 3125–3137.e3. [Google Scholar] [CrossRef]
- Blackall, D.; Wulff, S.; Roettger, T.; Jacobs, L.; Lacasse, A.; Patri, M.; Zinser, P.; Pherez, F.; Jamkhana, Z.; Frey, S.E.; et al. Rapid establishment of a COVID-19 convalescent plasma program in a regional health care delivery network. Transfusion 2020, 60, 2203–2209. [Google Scholar] [CrossRef]
- Catania, L.J. Immunology: The science of pandemics, infectious disease and COVID-19. Paradox Immune Syst. 2022, 7, 181–223. [Google Scholar]
- Annamalai, A.; Karuppaiya, V.; Ezhumalai, D.; Cheruparambath, P.; Balakrishnan, K.; Venkatesan, A. Nano-based techniques: A revolutionary approach to prevent COVID-19 and enhancing human awareness. J. Drug Deliv. Sci. Technol. 2023, 86, 104567. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, M.A.; Abdulkareem, K.H.; Al-Waisy, A.S.; Mostafa, S.A.; Al-Fahdawi, S.; Dinar, A.M.; Alhakami, W.; Baz, A.; Al-Mhiqani, M.N.; Alhakami, H.; et al. Benchmarking Methodology for Selection of Optimal COVID-19 Diagnostic Model Based on Entropy and TOPSIS Methods. IEEE Access 2020, 8, 99115–99131. [Google Scholar] [CrossRef]
- Pant, S.; Garg, P.; Kumar, A.; Ram, M.; Kumar, A.; Sharma, H.K.; Klochkov, Y. AHP-based multi-criteria decision-making approach for monitoring health management practices in smart healthcare system. Int. J. Syst. Assur. Eng. Manag. 2024, 15, 1444–1455. [Google Scholar] [CrossRef]
- XinYing, C.; Tiberius, V.; Alnoor, A.; Camilleri, M.; Khaw, K.W. The Dark Side of Metaverse: A Multi-Perspective of Deviant Behaviors From PLS-SEM and fsQCA Findings. Int. J. Hum. Comput. Interact. 2025, 41, 3128–3148. [Google Scholar] [CrossRef]
- Chang, K.M.; Chang, T.Y.; Cheng-Yuan Ku, C.; Chiu, C.W.; Ter Chang, C. Sharing decision-making in knee osteoarthritis using the AHP-FMCGP method. Expert Syst. Appl. 2024, 249, 123610. [Google Scholar] [CrossRef]
- Ortiz-Barrios, M.; Cleland, I.; Donnelly, M.; Gul, M.; Yucesan, M.; Jiménez-Delgado, G.I.; Nugent, C.; Madrid-Sierra, S. Integrated Approach Using Intuitionistic Fuzzy Multicriteria Decision-Making to Support Classifier Selection for Technology Adoption in Patients with Parkinson Disease: Algorithm Development and Validation. JMIR Rehabil. Assist. Technol. 2024, 11, e57940. [Google Scholar] [CrossRef]
- Alnoor, A.; Abbas, S.; Sadaa, A.M.; Chew, X.Y.; Bayram, G.E. Navigating the power of blockchain strategy: Analysis of technology-organization-environment (TOE) framework and innovation resistance theory using PLS-SEM and ANN insights. Technol. Forecast. Soc. Change 2025, 214, 124044. [Google Scholar] [CrossRef]
- Mohammed, T.J.; Xinying, C.; Alnoor, A.; Khaw, K.W.; Albahri, A.S.; Teoh, W.L.; Chong, Z.L.; Saha, S. A Systematic Review of Artificial Intelligence in Orthopaedic Disease Detection: A Taxonomy for Analysis and Trustworthiness Evaluation. Int. J. Comput. Intell. Syst. 2024, 17, 303. [Google Scholar] [CrossRef]
- Alnoor, A.; Abbas, S.; Khaw, K.W.; Muhsen, Y.R.; Chew, X.Y. Unveiling the optimal configuration of impulsive buying behavior using fuzzy set qualitative comparative analysis and multi-criteria decision approach. J. Retail. Consum. Serv. 2024, 81, 104057. [Google Scholar] [CrossRef]
- Albahri, A.S.; Jassim, M.M.; Alzubaidi, L.; Hamid, R.A.; Ahmed, M.A.; Al-Qaysi, Z.T.; Albahri, O.S.; Alamoodi, A.H.; Alqaysi, M.E.; Mohammed, T.J.; et al. A Trustworthy and Explainable Framework for Benchmarking Hybrid Deep Learning Models Based on Chest X-Ray Analysis in CAD Systems. Int. J. Inf. Technol. Decis. Mak. 2025, 24, 2533–2585. [Google Scholar] [CrossRef]
- Jana, C.; Garg, H.; Pal, M.; Sarkar, B.; Wei, G. MABAC framework for logarithmic bipolar fuzzy multiple attribute group decision-making for supplier selection. Complex Intell. Syst. 2024, 10, 273–288. [Google Scholar] [CrossRef]
- Singh, R.; Avikal, S. COVID-19: A decision-making approach for prioritization of preventive activities. Int. J. Healthc. Manag. 2020, 13, 257–262. [Google Scholar] [CrossRef]
- Majumder, P.; Biswas, P.; Majumder, S. Application of new topsis approach to identify the most significant risk factor and continuous monitoring of death of COVID-19. Electron. J. Gen. Med. 2020, 17, em234. [Google Scholar] [CrossRef] [PubMed]
- Somasundaram, M.; Pradeep Kumar, J.; Mathan, M. Investigation on surface Integrity, Machining and Form tolerance characteristics using TOPSIS approach for Electrical Discharge Machining of Biocompatible material. Mater. Today Proc. 2019, 22, 1853–1860. [Google Scholar] [CrossRef]
- Mian, S.H.; Abouel Nasr, E.; Moiduddin, K.; Saleh, M.; Abidi, M.H.; Alkhalefah, H. Assessment of consolidative multi-criteria decision making (C-MCDM) algorithms for optimal mapping of polymer materials in additive manufacturing: A case study of orthotic application. Heliyon 2024, 10, e30867. [Google Scholar] [CrossRef]
- Taherdoost, H.; Madanchian, M. Multi-Criteria Decision Making (MCDM) Methods and Concepts. Encyclopedia 2023, 3, 77–87. [Google Scholar] [CrossRef]
- Alsalem, M.A.; Zaidan, A.A.; Zaidan, B.B.; Albahri, O.S.; Alamoodi, A.H.; Albahri, A.S.; Mohsin, A.H.; Mohammed, K.I. Multiclass Benchmarking Framework for Automated Acute Leukaemia Detection and Classification Based on BWM and Group-VIKOR. J. Med. Syst. 2019, 43, 212. [Google Scholar] [CrossRef]
- Almahdi, E.M.; Zaidan, A.A.; Zaidan, B.B.; Alsalem, M.A.; Albahri, O.S.; Albahri, A.S. Mobile-Based Patient Monitoring Systems: A Prioritisation Framework Using Multi-Criteria Decision-Making Techniques. J. Med. Syst. 2019, 43, 219. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Zhang, W. Algorithm selection model based on fuzzy multi-criteria decision in big data information mining. Demonstr. Math. 2024, 57, 20230156. [Google Scholar] [CrossRef]
- Putera, D.D.; Hardianti, M.S. Efficacy and safety of convalescent plasma therapy in patients with COVID-19: A rapid review of case series. J. Thee Med. Sci. (Berk. Ilmu Kedokt.) 2020, 52, 134–147. [Google Scholar] [CrossRef]
- Mohammed, K.I.; Jaafar, J.; Zaidan, A.A.; Albahri, O.S.; Zaidan, B.B.; Abdulkareem, K.H.; Jasim, A.N.; Shareef, A.H.; Baqer, M.J.; Albahri, A.S.; et al. A Uniform Intelligent Prioritisation for Solving Diverse and Big Data Generated from Multiple Chronic Diseases Patients Based on Hybrid Decision-Making and Voting Method. IEEE Access 2020, 8, 91521–91530. [Google Scholar] [CrossRef]
- Park, C.W.; Oh, S.-J.; Kim, K.-S.; Jang, M.-C.; Kim, I.S.; Lee, Y.-K.; Chung, M.J.; Cho, B.H.; Seo, S.-W. Artificial intelligence-based classification of bone tumors in the proximal femur on plain radiographs: System development and validation. PLoS ONE 2022, 17, e0264140. [Google Scholar] [CrossRef]
- Chen, T.L.W.; Buddhiraju, A.; Seo, H.H.; Subih, M.A.; Tuchinda, P.; Kwon, Y.M. Internal and External Validation of the Generalizability of Machine Learning Algorithms in Predicting Non-home Discharge Disposition Following Primary Total Knee Joint Arthroplasty. J. Arthroplast. 2023, 38, 1973–1981. [Google Scholar] [CrossRef]
- Polce, E.M.; Kunze, K.N.; Fu, M.C.; Garrigues, G.E.; Forsythe, B.; Nicholson, G.P.; Cole, B.J.; Verma, N.N. Development of supervised machine learning algorithms for prediction of satisfaction at 2 years following total shoulder arthroplasty. J. Shoulder Elb. Surg. 2021, 30, e290–e299. [Google Scholar] [CrossRef]
- Akinnuwesi, B.A.; Olayanju, K.A.; Aribisala, B.S.; Fashoto, S.G.; Mbunge, E.; Okpeku, M.; Owate, P. Application of support vector machine algorithm for early differential diagnosis of prostate cancer. Data Sci. Manag. 2023, 6, 1–12. [Google Scholar] [CrossRef]
- Štern, D.; Payer, C.; Urschler, M. Automated age estimation from MRI volumes of the hand. Med. Image Anal. 2019, 58, 101538. [Google Scholar] [CrossRef]
- Pandey, G.; Chaudhary, P.; Gupta, R.; Pal, S. Machine Learning Models for Government to Predict COVID-19 Outbreak. Digit. Gov. Res. Pract. 2020, 1–6. [Google Scholar] [CrossRef]
- Nagurney, A.; Dutta, P. A Multiclass, Multiproduct COVID-19 Convalescent Plasma Donor Equilibrium Model. Oper. Res. Forum 2021, 2, 31. [Google Scholar] [CrossRef]
- Steele, J.R.; Jang, S.J.; Brilliant, Z.R.; Mayman, D.J.; Sculco, P.K.; Jerabek, S.A.; Vigdorchik, J.M. Deep Learning Phenotype Automation and Cohort Analyses of 1946 Knees Using the Coronal Plane Alignment of the Knee Classification. J. Arthroplast. 2023, 38, S215–S221.e1. [Google Scholar] [CrossRef]
- Cianciulli, A.; Santoro, E.; Manente, R.; Pacifico, A.; Quagliarella, S.; Bruno, N.; Schettino, V.; Boccia, G. Artificial Intelligence and Digital Technologies Against Health Misinformation: A Scoping Review of Public Health Responses. Healthcare 2025, 13, 2623. [Google Scholar] [CrossRef] [PubMed]




| Patients | Biomarker Measurements | ||||
|---|---|---|---|---|---|
| PAO2/FIO2 | CRP | IL-6 | Albumin | IgM ELISA | |
| P1_A | 128 | 93 | 244 | 21 | 94.09 |
| P1_B | 136 | 83.64 | 168 | 24 | 154 |
| P1_O | 182 | 141.78 | 78 | 31 | 263 |
| Donors | Biomarker Measurements | ||||
| D1_A | 453 | 1.3 | 1.4 | 41.6 | 64.99 |
| D1_B | 425 | 3.96 | 1.98 | 44.44 | 32.01 |
| D1_AB | 449 | 2.97 | 4.95 | 47.47 | 37.83 |
| D1_O | 445 | 5.94 | 3.96 | 55.55 | 35.89 |
| Criteria/Patients | C1 | C2 | C3 | C4 | C5 |
|---|---|---|---|---|---|
| Patient 1 | C1-P1 | C2-P1 | C3-P1 | C4-P1 | C5-P1 |
| Patient 2 | C1-P2 | C2-P2 | C3-P2 | C4-P2 | C5-P2 |
| Patient 3 | C1-P3 | C2-P3 | C3-P3 | C4-P3 | C5-P3 |
| Patient n | C1-P80 | C2-P80 | C3-P80 | C4-P80 | C5-P80 |
| Criteria/Donors | C1 | C2 | C3 | C4 | C5 |
| Donor 1 | C1-D1 | C2-D1 | C3-D1 | C4-D1 | C5-D1 |
| Donor 2 | C1-D2 | C2-D2 | C3-D2 | C4-D2 | C5-D2 |
| Donor 3 | C1-D3 | C2-D3 | C3-D3 | C4-D3 | C5-D3 |
| Donor n | C1-D80 | C2-D80 | C3-D80 | C4-D80 | C5-D80 |
| Intensity of Importance | Definition | Explanation |
|---|---|---|
| 1 | Equal importance | Two activities contribute equally to the objective |
| 3 | Weak importance of one over another | Experience and judgment slightly favor one activity over another |
| 5 | Essential or strong importance | Experience and judgment strongly favor one activity over another |
| 7 | Demonstrated importance | Activity is strongly favored and its dominance is demonstrated in practice |
| 9 | Absolute importance | The evidence favoring one activity over another is of the highest possible order of affirmation |
| 2, 4, 6, 8 | Intermediate values between the two adjacent judgments | When compromise is needed |
| Biomarker Criteria/Experts | C1 | C2 | C3 | C4 | C5 |
|---|---|---|---|---|---|
| First Expert Weights | 0.343 | 0.067 | 0.407 | 0.086 | 0.098 |
| Second Expert Weights | 0.054 | 0.118 | 0.283 | 0.054 | 0.491 |
| Third Expert Weights | 0.427 | 0.199 | 0.199 | 0.061 | 0.113 |
| Rank | External GDM | Internal GDM | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Patients | Score | Donors | Score | Patients | Score | Donors | Score | Patients | ||
| TOPSIS | 1 | P3_AB | 0.7471 | D20_AB | 0.6801 | P3_AB | 0.7429 | D20_AB | 0.6924 | P3_AB |
| 2 | P4_O | 0.7289 | D8_A | 0.61142 | P4_O | 0.7258 | D8_A | 0.6472 | P4_O | |
| 3 | P14_O | 0.7215 | D17_A | 0.58684 | P14_O | 0.7099 | D17_A | 0.6037 | P14_O | |
| 4 | P7_O | 0.6854 | D1_A | 0.57641 | P20_AB | 0.6936 | D1_A | 0.5671 | P20_AB | |
| 5 | P19_AB | 0.6832 | D6_O | 0.53056 | P7_O | 0.6836 | D6_O | 0.5605 | P7_O | |
| 6 | P16_A | 0.6810 | D6_A | 0.52952 | P16_A | 0.6750 | D14_A | 0.5466 | P16_A | |
| 7 | P20_AB | 0.6749 | D14_A | 0.50619 | P1_O | 0.6671 | D6_A | 0.5397 | P1_O | |
| 8 | P1_O | 0.6600 | D18_B | 0.49735 | P19_AB | 0.6647 | D18_B | 0.5267 | P19_AB | |
| 9 | P8_AB | 0.6465 | D11_A | 0.48283 | P8_AB | 0.6644 | D11_A | 0.5230 | P8_AB | |
| 10 | P17_O | 0.5996 | D7_A | 0.47616 | P12_A | 0.5743 | D7_A | 0.4418 | P12_A | |
| VIKOR | 1 | P8_A | 0.0580 | D11_O | 0 | P8_A | 0.002 | D11_O | 0.000 | P8_A |
| 2 | P16_O | 0.0853 | D20_O | 0.1663 | P16_O | 0.014 | D20_O | 0.180 | P16_O | |
| 3 | P20_A | 0.1703 | D2_AB | 0.2485 | P20_A | 0.106 | D2_AB | 0.230 | P20_A | |
| 4 | P15_A | 0.1844 | D19_B | 0.2574 | P15_A | 0.124 | D4_O | 0.300 | P15_A | |
| 5 | P20_O | 0.2004 | D17_O | 0.2655 | P17_B | 0.178 | D19_B | 0.310 | P17_B | |
| 6 | P17_B | 0.2076 | D4_O | 0.2794 | P20_O | 0.185 | D17_O | 0.326 | P20_O | |
| 7 | P6_O | 0.2123 | D18_AB | 0.2908 | P5_A | 0.212 | D18_AB | 0.327 | P5_A | |
| 8 | P5_A | 0.2652 | D10_AB | 0.2967 | P6_O | 0.218 | D10_AB | 0.328 | P6_O | |
| 9 | P4_B | 0.2735 | D3_AB | 0.3019 | P13_B | 0.276 | D3_AB | 0.339 | P13_B | |
| 10 | P6_AB | 0.2799 | D7_O | 0.3221 | P5_O | 0.283 | D6_AB | 0.341 | P5_O | |
| Rank | GDM AHP-TOPSIS | GDM AHP-VIKOR | ||
|---|---|---|---|---|
| Patients | Suitable Donors | Patients | Suitable Donors | |
| 1 | P3_AB | D13_AB | P8_A | D11_A |
| 2 | P4_O | D14_O | P16_O | D6_O |
| 3 | P14_O | D5_O | P20_A | D14_A |
| 4 | P7_O | D19_O | P15_A | D8_A |
| 5 | P19_AB | D8_AB | P20_O | D5_O |
| 6 | P16_A | D19_A | P17_B | D18_B |
| 7 | P20_AB | D5_AB | P6_O | D3_O |
| 8 | P1_O | D13_O | P5_A | D3_A |
| 9 | P8_AB | D4_AB | P4_B | D8_B |
| 10 | P17_O | D12_O | P6_AB | D8_AB |
| Alternatives | MODEL | MSE | RMSE | MAE | R2 |
|---|---|---|---|---|---|
| Patients | Internal GDM AHP-TOPSIS | 0.002213 | 0.047038 | 0.039334 | 0.865505 |
| External GDM AHP-TOPSIS | 0.001668 | 0.040841 | 0.033125 | 0.903908 | |
| Internal GDM AHP-VIKOR | 0.006353 | 0.079706 | 0.061567 | 0.877693 | |
| External GDM AHP-VIKOR | 0.001046 | 0.032348 | 0.025314 | 0.971319 | |
| Donors | Internal GDM AHP-TOPSIS | 0.005802 | 0.076168 | 0.058001 | 0.630192 |
| External GDM AHP-TOPSIS | 0.004773 | 0.06909 | 0.052701 | 0.672134 | |
| Internal GDM AHP-VIKOR | 0.003928 | 0.062674 | 0.049589 | 0.891921 | |
| External GDM AHP-VIKOR | 0.000971 | 0.031156 | 0.024869 | 0.969948 |
| Rank | Patients | Final Rank | Donors | Final Rank |
|---|---|---|---|---|
| 1 | P8_A | 0.058065821 | D1_A | 0.539869733 |
| 2 | P16_O | 0.085300918 | D2_A | 0.430855744 |
| 3 | P20_A | 0.170316404 | D3_A | 0.788494984 |
| 4 | P15_A | 0.184420827 | D4_A | 0.622832314 |
| 5 | P20_O | 0.200438641 | D5_A | 0.594066766 |
| 6 | P17_B | 0.207678132 | D6_A | 0.666066921 |
| 7 | P6_O | 0.212389723 | D7_A | 0.395474276 |
| 8 | P5_A | 0.265279477 | D8_A | 0.825240058 |
| 9 | P4_B | 0.273568837 | D9_A | 0.387741421 |
| 10 | P6_AB | 0.279913825 | D10_A | 0.726689541 |
| Model 1 | Model 2 | Model 3 | Model 4 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| V1 | V2 | r Value | V1 | V2 | r Value | V1 | V2 | r Value | V1 | V2 | r Value |
| C1 | Scoring | 0.569 | C1 | Scoring | 0.648 | C3 | Scoring | −0.707 | C1 | Scoring | −0.661 |
| C3 | Scoring | −0.557 | C3 | Scoring | −0.495 | C1 | Scoring | −0.527 | C3 | Scoring | −0.57 |
| C5 | Scoring | 0.388 | C5 | Scoring | 0.383 | C5 | Scoring | −0.357 | C5 | Scoring | −0.455 |
| C2 | C4 | −0.217 | C2 | C4 | −0.217 | C2 | C4 | −0.217 | C2 | Scoring | −0.238 |
| C4 | C5 | 0.144 | C4 | C5 | 0.144 | C2 | Scoring | −0.18 | C2 | C4 | −0.217 |
| C2 | C5 | 0.133 | C2 | C5 | 0.133 | C4 | C5 | 0.144 | C4 | C5 | 0.144 |
| C1 | C4 | −0.096 | C1 | C4 | −0.096 | C2 | C5 | 0.133 | C2 | C5 | 0.133 |
| C3 | C5 | 0.089 | C3 | C5 | 0.089 | C4 | Scoring | 0.096 | C1 | C4 | −0.096 |
| C4 | Scoring | 0.06 | C4 | Scoring | 0.077 | C1 | C4 | −0.096 | C3 | C5 | 0.089 |
| C3 | C4 | −0.036 | C2 | Scoring | −0.055 | C3 | C5 | 0.089 | C4 | Scoring | 0.039 |
| C2 | Scoring | −0.02 | C3 | C4 | −0.036 | C3 | C4 | −0.036 | C3 | C4 | −0.036 |
| C1 | C3 | 0.017 | C1 | C3 | 0.017 | C1 | C3 | 0.017 | C1 | C3 | 0.017 |
| C2 | C3 | −0.012 | C2 | C3 | −0.012 | C2 | C3 | −0.012 | C2 | C3 | −0.012 |
| C1 | C5 | −0.011 | C1 | C5 | −0.011 | C1 | C5 | −0.011 | C1 | C5 | −0.011 |
| C1 | C2 | 0.01 | C1 | C2 | 0.01 | C1 | C2 | 0.01 | C1 | C2 | 0.01 |
| Model 1 | Model 2 | Model 3 | Model 4 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| V1 | V2 | r value | V1 | V2 | r value | V1 | V2 | r value | V1 | V2 | r value |
| C3 | Scoring | −0.646 | C3 | Scoring | −0.635 | C1 | Scoring | −0.597 | C1 | Scoring | −0.658 |
| C5 | Scoring | 0.481 | C5 | Scoring | 0.457 | C3 | Scoring | −0.57 | C3 | Scoring | −0.495 |
| C2 | Scoring | −0.3 | C1 | Scoring | 0.33 | C2 | Scoring | −0.326 | C5 | Scoring | −0.426 |
| C1 | Scoring | 0.257 | C2 | Scoring | −0.284 | C5 | Scoring | −0.312 | C2 | Scoring | −0.245 |
| C2 | C5 | −0.177 | C2 | C5 | −0.177 | C2 | C5 | −0.177 | C2 | C5 | −0.177 |
| C1 | C2 | 0.143 | C1 | C2 | 0.143 | C1 | C2 | 0.143 | C1 | C2 | 0.143 |
| C4 | Scoring | 0.139 | C1 | C4 | 0.132 | C1 | C4 | 0.132 | C1 | C4 | 0.132 |
| C1 | C4 | 0.132 | C4 | Scoring | 0.127 | C1 | C3 | −0.103 | C1 | C3 | −0.103 |
| C1 | C3 | −0.103 | C1 | C3 | −0.103 | C3 | C4 | −0.097 | C3 | C4 | −0.097 |
| C3 | C4 | −0.097 | C3 | C4 | −0.097 | C3 | C5 | 0.079 | C3 | C5 | 0.079 |
| C3 | C5 | 0.079 | C3 | C5 | 0.079 | C2 | C4 | 0.074 | C2 | C4 | 0.074 |
| C2 | C4 | 0.074 | C2 | C4 | 0.074 | C2 | C3 | 0.056 | C4 | Scoring | −0.057 |
| C2 | C3 | 0.056 | C2 | C3 | 0.056 | C4 | C5 | −0.03 | C2 | C3 | 0.056 |
| C4 | C5 | −0.03 | C4 | C5 | −0.03 | C4 | Scoring | −0.028 | C4 | C5 | −0.03 |
| C1 | C5 | 0.023 | C1 | C5 | 0.023 | C1 | C5 | 0.023 | C1 | C5 | 0.023 |
| Comparison Points/Benchmarks | Benchmark#1 [29] | Benchmark#2 [30] | Benchmark#3 [31] | Benchmark#4 [14] | Benchmark#5 [24] | Proposed Framework | |
|---|---|---|---|---|---|---|---|
| 1st Development of a Decision-Support Method for Multi-Criteria Selection. | (a) Criteria Importance | ꭓ | ꭓ | ✔ | ✔ | ✔ | ✔ |
| (b) Criteria Trade-offs | ꭓ | ꭓ | ꭓ | ✔ | ꭓ | ✔ | |
| (c) Criteria Conflicts | ꭓ | ꭓ | ✔ | ✔ | ꭓ | ✔ | |
| 2nd Incorporation of the Telemedicine Environment. | ꭓ | ✔ | ꭓ | ✔ | ✔ | ✔ | |
| 3rd Integration of Regression-Based Validation Toward Trustworthy AI. | (a) Use of quantitative performance indices | ✔ | ✔ | ✔ | ꭓ | ✔ | ✔ |
| (b) Application of cross-validation to demonstrate generalizability | ꭓ | ꭓ | ꭓ | ꭓ | ꭓ | ✔ | |
| 4th Implementation of an Intelligent Matching Process. | (a) Compatibility safety embedded | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ |
| (b) Demonstration of scalability to multihospital datasets | ꭓ | ✔ | ꭓ | ꭓ | ✔ | ✔ | |
| 5th Empirical Trust Verification and Correlation Analysis. | ꭓ | ꭓ | ✔ | ꭓ | ✔ | ✔ | |
| Total | 33.3% | 44.4% | 55.5% | 66.6% | 44.4% | 100% | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, T.J.; Albahri, A.S.; Alnoor, A.; Khaw, K.W.; Chew, X.Y.; Lim, S.T. Intelligent Patient Management in Viral Diseases: An Integrated Regression Model and Multi-Criteria Decision-Making Approach to Convalescent Plasma Transfusion. Healthcare 2025, 13, 3199. https://doi.org/10.3390/healthcare13243199
Mohammed TJ, Albahri AS, Alnoor A, Khaw KW, Chew XY, Lim ST. Intelligent Patient Management in Viral Diseases: An Integrated Regression Model and Multi-Criteria Decision-Making Approach to Convalescent Plasma Transfusion. Healthcare. 2025; 13(24):3199. https://doi.org/10.3390/healthcare13243199
Chicago/Turabian StyleMohammed, Thura J., Ahmed S. Albahri, Alhamzah Alnoor, Khai Wah Khaw, Xin Ying Chew, and Shiuh Tong Lim. 2025. "Intelligent Patient Management in Viral Diseases: An Integrated Regression Model and Multi-Criteria Decision-Making Approach to Convalescent Plasma Transfusion" Healthcare 13, no. 24: 3199. https://doi.org/10.3390/healthcare13243199
APA StyleMohammed, T. J., Albahri, A. S., Alnoor, A., Khaw, K. W., Chew, X. Y., & Lim, S. T. (2025). Intelligent Patient Management in Viral Diseases: An Integrated Regression Model and Multi-Criteria Decision-Making Approach to Convalescent Plasma Transfusion. Healthcare, 13(24), 3199. https://doi.org/10.3390/healthcare13243199

