Determinants Impacting Daily Physical Activity Levels Among Chinese Adults and Its Association with Obesity
Abstract
1. Introduction
- The socio-demographic determinants (gender, age, education, income, marital status, fertility status) significantly associated with daily life-integrated PA levels among Chinese adults.
- The association between specific, quantifiable daily life-integrated PA behaviors (measured via DPABS items Q1-Q9) and obesity status (defined by BMI).
- The specific daily PA behaviors exhibiting the most significant differences between obese and non-obese individuals.
- Providing actionable evidence for developing targeted interventions promoting feasible, integrated PA strategies for weight management, particularly for time-constrained populations. This addresses a critical need in combating China’s obesity epidemic.
- Informing public health policy by highlighting modifiable socio-demographic factors (e.g., targeting women, lower-income, lower-education groups) and effective behavioral targets for population-level PA promotion.
- Focus on Daily Integration: Moving beyond structured exercise or specific sports [4], we uniquely quantify the role of integrating PA opportunities into daily routines (e.g., active transport, stair use, opportunistic movement, domestic activities) for weight management in the Chinese context.
- Granular Behavioral Assessment: We employ a novel, context-specific instrument (Daily Physical Activity Behavior Scale—DPABS) to quantify nine distinct, common daily life-integrated PA behaviors and directly link them to obesity status, providing specificity often absent in broader PA metrics.
- Contextual Relevance: The study explicitly targets contemporary Chinese adults, addressing challenges prevalent in high-pressure, time-scarce environments typified by the Yangtze River Delta region.
2. Methods
2.1. Research Design and Investigate Objects
2.2. Investigation Methods and Contents
2.2.1. Social Demography Information
2.2.2. Questionnaire of Daily Physical Activity
2.3. Statistical Analysis
3. Result
3.1. General Information of the Survey Respondents
3.2. Fundamental Aspects of the Daily Physical Activity
3.3. The Results of the ANOVA for Examining the Impact of Each Socio-Demographic Factor on Daily Physical Activity
3.4. The Results of the Multifactorial Analysis Investigating the Impact of Socio-Demographic Factors on Daily Physical Activity
3.5. Relevance of Daily Physical Activity in the Context of Obesity
3.5.1. Comparison of the Chi-Square Test for Daily Physical Activity Entries Between Obese and Non-Obese Groups
3.5.2. Comparison of Daily Physical Activity Scores Between Groups with and Without Obesity
4. Discussion
4.1. PA–Obesity Relationship: Potential Mechanisms
4.2. Socio-Demographic Determinants: Explanations and Critique
4.3. Specific PA Behaviors and Obesity
4.4. Study Contributions and Significance
- Contextual Focus: It uniquely targets daily life-integrated PA within the high-pressure, time-scarce environment characteristic of economically dynamic Chinese regions like the Yangtze Delta, directly addressing a major barrier to structured exercise.
- Granular Behavioral Assessment: By employing the novel DPABS instrument, we quantified and linked specific, common, integrated PA behaviors (e.g., planning for bad weather, compensating for missed sessions, creating micro-opportunities) directly to obesity status, providing actionable insights often missing in studies using generic PA metrics or total volume.
- Policy Relevance: Our findings directly inform the national “Healthy China 2030” strategy by identifying specific, modifiable behavioral targets (e.g., promoting planning skills via mHealth) and high-risk demographic groups for targeted public health investment.
- Actionable Levers for Intervention: Pinpointing the specific behavioral skills (planning, consistency, prioritization) and the critical importance of achieving the ~150 min/week target (Q1) offers concrete foci for behavior change programs.
4.5. Explaining Disparities and Proposing Interventions
4.6. Relevance Beyond the Chinese Context
4.7. Limitations and Distinguishing Evidence from Speculation
5. Conclusions
Implications for Practice and Policy
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dai, M.; Deng, R.; Yu, Y. The research of the relationship between Sleep duration and overweight/Obese in adults. Nurs. Res. 2022, 36, 2471–2475. [Google Scholar]
- Zhang, X.; Wang, W.; Zhang, R.; You, X.; Li, J. Prospective study on the relationship between BMI and Obesity and the incidence of acute myocardial infarction in Chinese adults. Chin. J. Dis. Control. 2022, 26, 750–755+789. [Google Scholar]
- Nedunchezhiyan, U.; Varughese, I.; Sun, A.R.; Wu, X.; Crawford, R.; Prasadam, I. Obesity, Inflammation, and Immune System in Osteoarthritis. Front. Immunol. 2022, 13, 907750. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Piché, M.-E.; Tchernof, A.; Després, J.-P. Obesity Phenotypes, Diabetes, and Cardiovascular Diseases. Circ. Res. 2020, 126, 1477–1500, Erratum in: Circ. Res. 2020, 127, e107. [Google Scholar] [CrossRef] [PubMed]
- Bremner, J.D.; Moazzami, K.; Wittbrodt, M.T.; Nye, J.A.; Lima, B.B.; Gillespie, C.F.; Rapaport, M.H.; Pearce, B.D.; Shah, A.J.; Vaccarino, V. Diet, Stress and Mental Health. Nutrients 2020, 12, 2428. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Maher, C.A.; Mire, E.; Harrington, D.M.; Staiano, A.E.; Katzmarzyk, P.T. The independent and combined associations of physical activity and sedentary behavior with obesity in adults: NHANES 2003-06. Obesity 2013, 21, E730–E737. [Google Scholar] [CrossRef]
- Spees, C.K.; Scott, J.M.; Taylor, C.A. Differences in Amounts and Types of Physical Activity by Obesity Status in US Adults. Am. J. Health Behav. 2012, 36, 56–65. [Google Scholar] [CrossRef]
- Zhao, H.; Shi, H.; Ren, Z.; He, M.; Cui, L.; Wang, S.; Zhao, J.; Li, W.; Wei, Y.; Zhang, W.; et al. Longitudinal relationship between body mass index and depressive symptoms among Chinese adults: The moderating roles of lifestyle factors and age. J. Psychosom. Res. 2023, 170, 111380. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Park, J.; Kim, J.-E.; Lee, J.-K.; Kang, D.; Lee, M.; Chung, I.-J.; Choi, J.-Y. Relative Effects of Demographic, Psychological, Behavioral, and Social Factors on the Initiation and Maintenance of Leisure-time Physical Activity: Results from a Confirmatory Path Analysis in a Longitudinal Study. J. Epidemiol. 2021, 31, 557–565. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schultz, W.M.; Kelli, H.M.; Lisko, J.C.; Varghese, T.; Shen, J.; Sandesara, P.; Quyyumi, A.A.; Taylor, H.A.; Gulati, M.; Harold, J.G. Socioeconomic Status and Cardiovascular Outcomes: Challenges and Interventions. Circulation 2018, 137, 2166–2178. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fung, T.T.; Rimm, E.B.; Spiegelman, D.; Rifai, N.; Tofler, G.H.; Willett, W.C.; Hu, F.B. Association between dietary patterns and plasma biomarkers of obesity and cardiovascular disease risk. Am. J. Clin. Nutr. 2001, 73, 61–67. [Google Scholar] [CrossRef]
- El Assar, M.; Álvarez-Bustos, A.; Sosa, P.; Angulo, J.; Rodríguez-Mañas, L. Effect of Physical Activity/Exercise on Oxidative Stress and Inflammation in Muscle and Vascular Aging. Int. J. Mol. Sci. 2022, 23, 8713. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ge, Y. Application of moderate intensity aerobic exercise as rehabilitation therapy in patients with essential hypertension. Electron. J. Cardiovasc. Dis. Integr. Chin. West. Med. 2016, 4, 17–18. [Google Scholar] [CrossRef]
- Deng, S.; Yuan, P.; Zhou, Q.; Ren, Y.; Wu, W. Effect of precise aerobic exercise prescription based on cardiopulmonary exercise test on body composition and metabolic indexes of central Obese patients. Chin. J. Rehabil. Med. 2023, 38, 199–206. [Google Scholar]
- Alpsoy, Ş. Exercise and hypertension. Adv. Exp. Med. Biol. 2020, 1228, 153–167. [Google Scholar] [PubMed]
- Oslawski-Lopez, J. Gender and Household Labor. In Encyclopedia of Family Studies; Wiley: Hoboken, NJ, USA, 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, M.; Chen, Y. Study on physical activity patterns and influencing factors of adult residents in Zhejiang Province. Dis. Surveill. 2008, 23, 244–246. [Google Scholar]
- Pekas, E.J.; Shin, J.; Son, W.-M.; Headid, R.J.; Park, S.-Y. Habitual Combined Exercise Protects against Age-Associated Decline in Vascular Function and Lipid Profiles in Elderly Postmenopausal Women. Int. J. Environ. Res. Public Health. 2020, 17, 3893. [Google Scholar] [CrossRef]
- Kramer, A.F.; Colcombe, S. Fitness Effects on the Cognitive Function of Older Adults: A Meta-Analytic Study—Revisited. Perspect. Psychol. Sci. 2018, 13, 213–217. [Google Scholar] [CrossRef]
- Kramer, A.F.; Hahn, S.; Cohen, N.J.; Banich, M.T.; McAuley, E.; Harrison, C.R.; Chason, J.; Vakil, E.; Bardell, L.; Boileau, R.A. Ageing, fitness and neurocognitive function. Nature 1999, 400, 418–419. [Google Scholar] [CrossRef] [PubMed]
- Guhl, E.; Althouse, A.; Sharbaugh, M.; Pusateri, A.M.; Paasche-Orlow, M.; Magnani, J.W. Association of income and health-related quality of life in atrial fibrillation. Open Hear. 2019, 6, e000974. [Google Scholar] [CrossRef]
- Deng, Q.; Wang, Y.; Zhu, J. Physical activity status and influencing factors of adult residents in Chengdu. Mod. Prev. Med. 2021, 48, 2791–2796. [Google Scholar]
- Gudmundsdottir, S.; Flanders, W.; Augestad, L. Physical activity and fertility in women: The North-Trøndelag Health Study. Hum. Reprod. 2009, 24, 3196–3204. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Llamas, A.; García-Mayor, J.; De la Cruz-Sánchez, E. Gender inequality is associated with gender differences and women participation in physical activity. J. Public Health 2022, 44, e519–e526. [Google Scholar] [CrossRef] [PubMed]
- Lee, D. Investigation of gender differences in multivariate associations between physical activity and psychological distress. J. Am. Coll. Health 2022, 70, 2220–2229. [Google Scholar] [CrossRef] [PubMed]
- Eckstrom, E.; Neukam, S.; Kalin, L.; Wright, J. Physical Activity and Healthy Aging. Clin. Geriatr. Med. 2020, 36, 671–683. [Google Scholar] [CrossRef] [PubMed]
- Alley, S.J.; Schoeppe, S.; Rebar, A.L.; Hayman, M.; Vandelanotte, C. Age differences in physical activity intentions and implementation intention preferences. J. Behav. Med. 2018, 41, 406–415. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Liu, W. Association of Physical Activity Level, Income and Environmental Factors Among Chinese Adults. Front. Public Health 2022, 10, 946756. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Landry, B.W.; Driscoll, S.W. Physical activity in children and adolescents. PMR 2012, 4, 826–832. [Google Scholar] [CrossRef] [PubMed]
- Oppert, J.-M.; Bellicha, A.; Ciangura, C. Physical activity in management of persons with obesity. Eur. J. Intern. Med. 2021, 93, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Hall, K.D.; Farooqi, I.S.; Friedman, J.M.; Klein, S.; Loos, R.J.F.; Mangelsdorf, D.J.; O’rAhilly, S.; Ravussin, E.; Redman, L.M.; Ryan, D.H.; et al. The energy balance model of obesity: Beyond calories in, calories out. Am. J. Clin. Nutr. 2022, 115, 1243–1254. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Elagizi, A.; Kachur, S.; Carbone, S.; Lavie, C.J.; Blair, S.N. A Review of Obesity, Physical Activity, and Cardiovascular Disease. Curr. Obes. Rep. 2020, 9, 571–581. [Google Scholar] [CrossRef] [PubMed]
- Pacy, P.J.; Webster, J.; Garrow, J.S. Exercise and obesity. Sports Med. 1986, 3, 89–113. [Google Scholar] [CrossRef]
- Westgarth-Taylor, C.; Hawley, J.A.; Rickard, S.; Myburgh, K.H.; Noakes, T.D.; Dennis, S.C. Metabolic and performance adaptations to interval training in endurance trained cyclists. Eur. J. Appl. Physiol. 1997, 75, 298–304. [Google Scholar] [CrossRef]
- TjØnna, A.E.; Lee, S.J.; Rognmo, Ø.; Stølen, T.O.; Bye, A.; Haram, P.M.; Loennechen, J.P.; Al-Share, Q.Y.; Skogvoll, E.; Slørdahl, S.A. Aerobic interval training versus continuous moderate exercise as a treatmen for the metabolic syndrome: A pilot study. Circulation 2008, 118, 346–354. [Google Scholar] [CrossRef]
- He, P. Study on the correlation between the dynamic load of patellofemoral joint and BMI in elderly people walking down stairs. J. Harbin Inst. Phys. Educ. 2021, 39, 89–96. [Google Scholar]
- Predel, H.G.; Meyer-Lehnert, H.; Bäcker, A.; Stelkens, H.; Kramer, H.J. Plasma concentrations of endothelin in patients with abnormal vascular reactivity. Effects of ergometric exercise and acute saline loading. Life Sci. 1990, 47, 1837–1843. [Google Scholar] [CrossRef] [PubMed]
- Jakicic, J.M.; Winters, C.; Lang, W.; Wing, R.R. Effects of intermittent exercise and use of home exercise equipment on adherence, weight loss, and fitness in overweight women: A randomized trial. JAMA 1999, 282, 1554–1560. [Google Scholar] [CrossRef] [PubMed]
- Bassett, A.J.; Ahlmen, A.; Rosendorf, J.M.; Romeo, A.A.; Erickson, B.J.; Bishop, M.E. The Biology of Sex and Sport. JBJS Rev. 2020, 8, e0140. [Google Scholar] [CrossRef] [PubMed]
- JaJaime, S.J.; Maharaj, A.; Alvarez-Alvarado, S.; Figueroa, A. Impact of low-intensity resistance and whole-body vibration training on aortic hemodynamics and vascular function in postmenopausal women. Hypertens. Res. 2019, 42, 1979–1988. [Google Scholar] [CrossRef]
- Sandvik, L.; Erikssen, J.; Thaulow, E.; Erikssen, G.; Mundal, R.; Rodahl, K. Physical Fitness as a Predictor of Mortality among Healthy, Middle-Aged Norwegian Men. N. Engl. J. Med. 1993, 328, 533–537. [Google Scholar] [CrossRef]
- Chodzko-Zajko, W.J.; Proctor, D.N.; Fiatarone Singh, M.A.; Minson, C.T.; Nigg, C.R.; Salem, G.J.; Skinner, J.S. Exercise and Physical Activity for Older Adults. Med. Sci. Sports Exerc. 2009, 41, 1510–1530. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Liu, H. Effect of brisk walking and square dancing on blood pressure reduction in middle-aged Female patients with hypertension. Sichuan Sports Sci. 2018, 37, 40–42. [Google Scholar]
- Guo, X.; Wang, Y.; Yan, Y. Study on the improvement of cardiovascular risk with moderate intensity aerobic exercise. J. Beijing Sport Univ. 2016, 39, 53–60. [Google Scholar]
| Group | Classification | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 | Total |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Gender | Male | 3.06 ± 1.07 | 2.95 ± 1.16 | 3.31 ± 1.03 | 2.64 ± 1.12 | 2.69 ± 1.09 | 2.58 ± 1.02 | 2.71 ± 1.00 | 2.72 ± 1.04 | 3.08 ± 0.98 | 57.19 ± 15.51 |
| Female | 2.70 ± 1.00 | 2.73 ± 1.17 | 3.12 ± 1.02 | 2.32 ± 1.04 | 2.53 ± 1.00 | 2.33 ± 0.93 | 2.58 ± 0.95 | 2.46 ± 0.95 | 3.02 ± 1.01 | 52.89 ± 14.43 | |
| Welch F | 25.106 | 7.001 | 6.872 | 18.897 | 4.649 | 13.18 | 3.751 | 14.008 | 0.61 | 16.966 | |
| P | <0.001 | 0.008 | 0.009 | <0.001 | 0.031 | <0.001 | 0.053 | <0.001 | 0.435 | <0.001 | |
| Age | 18~28 | 2.79 ± 1.04 | 2.91 ± 1.17 | 3.19 ± 1.03 | 2.50 ± 1.06 | 2.58 ± 0.97 | 2.50 ± 0.94 | 2.60 ± 0.93 | 2.54 ± 0.96 | 2.91 ± 0.98 | 54.51 ± 14.86 |
| 28~38 | 3.09 ± 1.05 | 2.91 ± 1.17 | 3.41 ± 1.06 | 2.79 ± 1.22 | 2.99 ± 1.16 | 2.74 ± 1.11 | 2.95 ± 1.09 | 2.84 ± 1.07 | 3.45 ± 0.98 | 60.41 ± 17.31 | |
| 38~48 | 2.91 ± 1.05 | 2.69 ± 1.15 | 3.13 ± 1.00 | 2.28 ± 0.96 | 2.55 ± 0.99 | 2.25 ± 0.87 | 2.53 ± 0.93 | 2.49 ± 0.96 | 3.07 ± 1.01 | 53.12 ± 13.00 | |
| 48~58 | 2.80 ± 0.96 | 2.63 ± 1.19 | 3.27 ± 0.95 | 2.2 ± 0.98 | 2.44 ± 1.07 | 2.14 ± 0.75 | 2.69 ± 0.92 | 2.66 ± 0.93 | 3.25 ± 0.80 | 53.47 ± 10.62 | |
| 58~ | 2.39 ± 1.03 | 2.21 ± 0.96 | 2.54 ± 0.92 | 1.46 ± 0.74 | 1.43 ± 0.74 | 1.50 ± 0.75 | 2.00 ± 0.90 | 1.79 ± 0.96 | 2.54 ± 0.96 | 39.68 ± 12.27 | |
| Welch F | 3.696 | 4.605 | 5.268 | 16.705 | 21.132 | 17.766 | 7.001 | 7.386 | 11.071 | 14.528 | |
| P | 0.007 | 0.002 | 0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
| Education background | Junior high school and below group | 2.45 ± 1.01 | 2.49 ± 0.99 | 2.82 ± 1.01 | 1.74 ± 0.82 | 1.95 ± 0.94 | 1.89 ± 0.94 | 2.25 ± 0.97 | 2.29 ± 0.99 | 3.03 ± 0.90 | 46.45 ± 12.79 |
| High Schools and Junior Colleges | 2.91 ± 1.13 | 2.76 ± 1.14 | 3.11 ± 0.97 | 2.43 ± 1.02 | 2.57 ± 1.08 | 2.35 ± 0.94 | 2.64 ± 0.94 | 2.44 ± 0.99 | 3.01 ± 1.10 | 53.81 ± 13.84 | |
| Junior college | 3.00 ± 0.96 | 2.71 ± 1.16 | 3.03 ± 0.96 | 2.39 ± 1.05 | 2.62 ± 0.95 | 2.49 ± 0.82 | 2.63 ± 0.93 | 2.63 ± 0.97 | 2.97 ± 0.95 | 54.38 ± 13.80 | |
| Undergraduate | 2.83 ± 1.03 | 2.87 ± 1.19 | 3.26 ± 1.05 | 2.51 ± 1.10 | 2.62 ± 1.02 | 2.49 ± 0.99 | 2.65 ± 0.97 | 2.57 ± 0.98 | 3.02 ± 1.01 | 55.14 ± 15.22 | |
| Master and above group | 3.15 ± 1.12 | 3.07 ± 1.15 | 3.52 ± 0.93 | 2.87 ± 0.97 | 3.12 ± 1.08 | 2.62 ± 0.92 | 2.93 ± 1.01 | 2.92 ± 1.09 | 3.43 ± 0.93 | 61.37 ± 15.23 | |
| Welch F | 4.569 | 3.136 | 5.735 | 16.608 | 12.139 | 7.328 | 4.224 | 3.369 | 2.838 | 10.427 | |
| P | 0.002 | 0.016 | <0.001 | <0.001 | <0.001 | <0.001 | 0.003 | 0.011 | 0.026 | <0.001 | |
| Income | Less than 3000 yuan/month | 2.69 ± 1.04 | 2.83 ± 1.19 | 3.19 ± 1.03 | 2.31 ± 1.09 | 2.45 ± 1.03 | 2.40 ± 1.00 | 2.52 ± 0.95 | 2.49 ± 1.02 | 2.94 ± 0.98 | 54.51 ± 14.86 |
| 3 K~8 K/month | 2.85 ± 1.01 | 2.83 ± 1.14 | 3.12 ± 1.04 | 2.41 ± 1.02 | 2.53 ± 0.96 | 2.38 ± 0.9 | 2.55 ± 0.92 | 2.46 ± 0.91 | 2.93 ± 0.97 | 60.41 ± 17.31 | |
| 8 k~15 k/month | 2.97 ± 1.08 | 2.66 ± 1.16 | 3.25 ± 0.97 | 2.57 ± 1.16 | 2.81 ± 1.13 | 2.48 ± 1.00 | 2.82 ± 0.97 | 2.78 ± 1.04 | 3.25 ± 1.00 | 53.12 ± 13.00 | |
| 15,000~30,000 yuan/month | 2.95 ± 0.97 | 3.08 ± 1.23 | 3.59 ± 0.87 | 2.89 ± 0.91 | 3.00 ± 1.08 | 2.84 ± 1.17 | 3.08 ± 1.19 | 2.84 ± 1.01 | 3.73 ± 0.87 | 53.47 ± 10.62 | |
| Greater than 30,000 yuan/month | 3.61 ± 0.94 | 3.3 ± 1.26 | 3.65 ± 1.23 | 3.09 ± 1.24 | 3.04 ± 1.15 | 2.74 ± 1.01 | 3.09 ± 1.28 | 3.13 ± 1.10 | 3.57 ± 1.08 | 39.68 ± 12.27 | |
| Welch F | 5.775 | 2.007 | 3.266 | 5.275 | 5.265 | 0.093 | 5.009 | 5.259 | 10.508 | 14.528 | |
| P | <0.001 | 0.099 | 0.014 | 0.001 | 0.001 | 0.087 | 0.001 | 0.001 | <0.001 | <0.001 | |
| Marriage | Married | 2.94 ± 1.06 | 2.75 ± 1.17 | 3.21 ± 1.04 | 2.43 ± 1.11 | 2.64 ± 1.12 | 2.39 ± 1.00 | 2.70 ± 1.05 | 2.63 ± 1.05 | 3.21 ± 1.01 | 55.35 ± 15.52 |
| Unmarried | 2.76 ± 1.01 | 2.89 ± 1.17 | 3.19 ± 1.02 | 2.46 ± 1.06 | 2.55 ± 0.96 | 2.47 ± 0.94 | 2.57 ± 0.89 | 2.50 ± 0.93 | 2.89 ± 0.97 | 53.97 ± 14.52 | |
| Welch F | 6.628 | 2.776 | 0.128 | 0.193 | 1.548 | 1.541 | 3.858 | 3.733 | 21.481 | 1.817 | |
| P | 0.01 | 0.096 | 0.721 | 0.66 | 0.214 | 0.215 | 0.05 | 0.054 | <0.001 | 0.178 | |
| Fertility | None | 2.77 ± 1.01 | 2.88 ± 1.16 | 3.17 ± 1.02 | 2.47 ± 1.05 | 2.56 ± 0.96 | 2.46 ± 0.93 | 2.56 ± 0.89 | 2.50 ± 0.93 | 2.92 ± 0.96 | 53.97 ± 14.34 |
| 1 | 3.00 ± 1.06 | 2.77 ± 1.19 | 3.23 ± 1.00 | 2.44 ± 1.08 | 2.69 ± 1.10 | 2.39 ± 0.95 | 2.69 ± 1.02 | 2.67 ± 1.02 | 3.18 ± 0.98 | 55.69 ± 14.93 | |
| 2 and above | 2.83 ± 1.11 | 2.73 ± 1.16 | 3.24 ± 1.14 | 2.38 ± 1.21 | 2.50 ± 1.19 | 2.40 ± 1.15 | 2.78 ± 1.17 | 2.60 ± 1.16 | 3.26 ± 1.12 | 54.95 ± 17.61 | |
| Welch F | 4.465 | 1.229 | 0.361 | 0.336 | 1.604 | 0.55 | 2.911 | 2.704 | 9.008 | 1.186 | |
| P | 0.012 | 0.294 | 0.698 | 0.715 | 0.203 | 0.578 | 0.056 | 0.069 | <0.001 | 0.307 |
| Factor | Unstandardized Coefficient | Standardized Coefficient | t | p | VIF | Confidence Interval | ||
|---|---|---|---|---|---|---|---|---|
| B | SE | β | Upper Limit | Lower Limit | ||||
| (Constant) | 57.145 | 5.908 | 9.672 | 0 | 45.548 | 68.741 | ||
| Educational attainment | 2.037 | 0.624 | 0.14 | 3.264 | 0.001 | 1.778 | 0.812 | 3.261 |
| Personal income | 1.593 | 0.671 | 0.102 | 2.374 | 0.018 | 1.767 | 0.276 | 2.911 |
| Gender | −4.16 | 0.996 | −0.136 | −4.178 | <0.001 | 1.021 | −9.014 | −0.871 |
| Age group | −4.291 | 0.746 | −0.327 | −5.75 | <0.001 | 3.118 | 0.753 | 5.729 |
| Fertility status | 3.241 | 1.268 | 0.156 | 2.557 | 0.011 | 3.587 | −5.756 | −2.826 |
| Marital status | −4.942 | 2.074 | −0.165 | −2.383 | 0.017 | 4.587 | −6.115 | −2.206 |
| Entry | Group | Never | Seldom | Sometimes | Frequently | Always | χ2 | P |
|---|---|---|---|---|---|---|---|---|
| Q1 | Non-obese | 59 (7.3%) | 249 (30.9%) | 293 (36.4%) | 142 (17.6%) | 62 (7.7%) | 12.187 | 0.016 |
| Obese | 11 (19%) | 19 (32.8%) | 20 (34.5%) | 5 (8.6%) | 3 (5.2%) | |||
| Q2 | Non-obese | 99 (12.3%) | 242 (30.1%) | 238 (29.6%) | 145 (18%) | 81 (10.1%) | 6.257 | 0.181 |
| Obese | 11 (19%) | 20 (34.5%) | 14 (24.1%) | 5 (8.6%) | 8 (13.8%) | |||
| Q3 | Non-obese | 34 (4.2%) | 167 (20.7%) | 283 (35.2%) | 232 (28.8%) | 89 (11.1%) | 5.922 | 0.205 |
| Obese | 3 (5.2%) | 15 (25.9%) | 26 (44.8%) | 9 (15.5%) | 5 (8.6%) | |||
| Q4 | Non-obese | 164 (20.4%) | 261a (32.4%) | 258 (32%) | 82 (10.2%) | 40 (5%) | 7.544 | 0.11 |
| Obese | 20 (34.5%) | 18a (31%) | 14 (24.1%) | 3 (5.2%) | 3 (5.2%) | |||
| Q5 | Non-obese | 113 (14%) | 259 (32.2%) | 292 (36.3%) | 100 (12.4%) | 41 (5.1%) | 15.015 | 0.05 |
| Obese | 18 (31%) | 19 (32.8%) | 17 (29.3%) | 2 (3.4%) | 2 (3.4%) | |||
| Q6 | Non-obese | 127 (15.8%) | 307 (38.1%) | 272 (33.8%) | 73 (9.1%) | 26 (3.2%) | 11.604 | 0.021 |
| Obese | 18 (31%) | 20 (34.5%) | 18 (31%) | 1 (1.7%) | 1 (1.7%) | |||
| Q7 | Non-obese | 89 (11.1%) | 268 (33.3%) | 308 (38.3%) | 113 (14%) | 27 (3.4%) | 13.326 | 0.01 |
| Obese | 15 (25.9%) | 17 (29.3%) | 21 (36.2%) | 3 (5.2%) | 2 (3.4%) | |||
| Q8 | Non-obese | 104 (12.9%) | 276 (34.3%) | 295 (36.6%) | 98 (12.2%) | 32 (4%) | 16.252 | 0.003 |
| Obese | 16 (27.6%) | 24 (41.4%) | 16 (27.6%) | 1 (1.7%) | 1 (1.7%) | |||
| Q9 | Non-obese | 58(7.2%) | 149(18.5%) | 346(43%) | 197(24.5%) | 55(6.8%) | 2.512 | 0.642 |
| Obese | 5(8.6%) | 12(20.7%) | 27(46.6%) | 9(15.5%) | 5(8.6%) |
| Entry | Non-Obese | Obese | t | p |
|---|---|---|---|---|
| n = 805 | n = 58 | |||
| Q1 | 2.87 ± 1.04 | 2.48 ± 1.06 | 2.777 | 0.006 |
| Q2 | 2.83 ± 1.16 | 2.64 ± 1.28 | 1.238 | 0.216 |
| Q3 | 3.22 ± 1.03 | 2.97 ± 0.99 | 1.803 | 0.072 |
| Q4 | 2.47 ± 1.08 | 2.16 ± 1.12 | 2.141 | 0.033 |
| Q5 | 2.62 ± 1.04 | 2.16 ± 1.02 | 3.332 | 0.001 |
| Q6 | 2.46 ± 0.97 | 2.09 ± 0.92 | 2.832 | 0.005 |
| Q7 | 2.65 ± 0.97 | 2.31 ± 1.03 | 2.604 | 0.009 |
| Q8 | 2.60 ± 0.99 | 2.09 ± 0.88 | 4.238 | <0.001 |
| Q9 | 3.05 ± 1.00 | 2.95 ± 1.03 | 0.766 | 0.444 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Y.; Ruan, S.; Zhou, X.; Chen, J.; Wu, X.; Zhu, Q. Determinants Impacting Daily Physical Activity Levels Among Chinese Adults and Its Association with Obesity. Healthcare 2025, 13, 3027. https://doi.org/10.3390/healthcare13233027
Tang Y, Ruan S, Zhou X, Chen J, Wu X, Zhu Q. Determinants Impacting Daily Physical Activity Levels Among Chinese Adults and Its Association with Obesity. Healthcare. 2025; 13(23):3027. https://doi.org/10.3390/healthcare13233027
Chicago/Turabian StyleTang, Yizhi, Sihan Ruan, Xihan Zhou, Jiayi Chen, Xiaoxiao Wu, and Qi Zhu. 2025. "Determinants Impacting Daily Physical Activity Levels Among Chinese Adults and Its Association with Obesity" Healthcare 13, no. 23: 3027. https://doi.org/10.3390/healthcare13233027
APA StyleTang, Y., Ruan, S., Zhou, X., Chen, J., Wu, X., & Zhu, Q. (2025). Determinants Impacting Daily Physical Activity Levels Among Chinese Adults and Its Association with Obesity. Healthcare, 13(23), 3027. https://doi.org/10.3390/healthcare13233027
