Post-COVID-19 Rehabilitation Improves Mobility and Gait Performance: Evidence from TUG and 10MWT
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patients
2.2. Rehabilitation Program
- -
- Stage 1: Early mobilization and diaphragmatic breathing in supine, lateral, and prone positions every 2 h; spirometer training (3×/day); simple upper and lower limb exercises (10 repetitions, 3 sets/day).
- -
- Stage 2: Transition to sitting and gradual verticalization, maintaining upright posture for 10–120 s under supervision; continued respiratory training.
- -
- Stage 3: Independent standing and short-distance walking (3–10 m), 3 repetitions every 3 h, supervised by physiotherapists.
- -
- Stage 4: Postural control and balance re-education (2 sessions/week for 10 days), progressing from level 1 to level 5 based on hemodynamic stability.
- -
- Stage 5: Dynamic Fortification Program—targeted strengthening of hip, knee, and ankle stabilizers (2 sessions/week, 10 repetitions per session).
2.3. Functional Assessments
- 10-Meter Walk Test (10MWT):
- <0.4 m/s: very limited walking capacity, mainly indoors;
- 0.4–0.8 m/s: limited community ambulation;
- 0.8–1.2 m/s: functional community ambulation;
- 1.2 m/s: normal walking capacity and independence.
- Timed Up and Go (TUG):
- ≤10 s: normal mobility;
- 10–20 s: good mobility, independent community ambulation;
- 20–30 s: mobility impairment, requiring an assistive device;
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Evolution of TUG Performance
3.3. Evolution of Gait Speed at the 10MWT
3.4. Functional Mobility and Walking Speed (TUG and 10MWT)
4. Discussion
4.1. Overview of Main Findings
4.2. Role of Functional Tests (TUG and 10MWT) in Post-COVID Assessment
4.3. Improvements After Rehabilitation
4.4. Age and Sex Differences in Recovery
4.5. Complementary Value of TUG and 10MWT
4.6. Comparison with Existing Evidence
4.7. Clinical and Public Health Implications
4.8. Implications for Service Design
4.9. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beladiya, J.; Kumar, A.; Vasava, Y.; Parmar, K.; Patel, D.; Patel, S.; Dholakia, S.; Sheth, D.; Boddu, S.H.S.; Patel, C. Safety and Efficacy of COVID-19 Vaccines: A Systematic Review and Meta-Analysis of Controlled and Randomized Clinical Trials. Rev. Med. Virol. 2024, 34, e2507. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.G.H.; Hadi, M.H.H.; Arsad, S.R.; Ker, P.J.; Ramanathan, S.; Afandi, N.A.M.; Afzal, M.M.; Yaw, M.W.; Krishnan, P.S.; Chen, C.P.; et al. Prerequisite for COVID-19 Prediction: A Review on Factors Affecting the Infection Rate. Int. J. Environ. Res. Public Health 2022, 19, 12997. [Google Scholar] [CrossRef] [PubMed]
- Hockele, L.F.; Sachet Affonso, J.V.; Rossi, D.; Eibel, B. Pulmonary and Functional Rehabilitation Improves Functional Capacity, Pulmonary Function and Respiratory Muscle Strength in Post COVID-19 Patients: Pilot Clinical Trial. Int. J. Environ. Res. Public Health 2022, 19, 14899. [Google Scholar] [CrossRef] [PubMed]
- Magdy, D.M.; Metwally, A.; Tawab, D.A.; Hassan, S.A.; Makboul, M.; Farghaly, S. Long-Term COVID-19 Effects on Pulmonary Function, Exercise Capacity, and Health Status. Ann. Thorac. Med. 2022, 17, 28–36. [Google Scholar] [CrossRef]
- Chaiwong, W.; Deesomchok, A.; Pothirat, C.; Liwsrisakun, C.; Duangjit, P.; Bumroongkit, C.; Theerakittikul, T.; Limsukon, A.; Tajarernmuang, P.; Trongtrakul, K.; et al. The Long-Term Impact of COVID-19 Pneumonia on Pulmonary Function and Exercise Capacity. J. Thorac. Dis. 2023, 15, 4725–4735. [Google Scholar] [CrossRef]
- Thomas, M.; Price, O.J.; Hull, J.H. Pulmonary Function and COVID-19. Curr. Opin. Physiol. 2021, 21, 29–35. [Google Scholar] [CrossRef]
- Magadum, A.; Kishore, R. Cardiovascular Manifestations of COVID-19 Infection. Cells 2020, 9, 2508. [Google Scholar] [CrossRef]
- Kang, Y.; Chen, T.; Mui, D.; Ferrari, V.; Jagasia, D.; Scherrer-Crosbie, M.; Chen, Y.; Han, Y. Cardiovascular Manifestations and Treatment Considerations in COVID-19. Heart 2020, 106, 1132–1141. [Google Scholar] [CrossRef]
- Shafi, A.M.A.; Shaikh, S.A.; Shirke, M.M.; Iddawela, S.; Harky, A. Cardiac Manifestations in COVID-19 Patients—A Systematic Review. J. Card. Surg. 2020, 35, 1988–2008. [Google Scholar] [CrossRef]
- Thakkar, S.; Arora, S.; Kumar, A.; Jaswaney, R.; Faisaluddin, M.; Ammad Ud Din, M.; Shariff, M.; Barssoum, K.; Patel, H.P.; Nirav, A.; et al. A Systematic Review of the Cardiovascular Manifestations and Outcomes in the Setting of Coronavirus-19 Disease. Clin. Med. Insights Cardiol. 2020, 14, 117954682097719. [Google Scholar] [CrossRef]
- Smer, A.; Squires, R.W.; Bonikowske, A.R.; Allison, T.G.; Mainville, R.N.; Williams, M.A. Cardiac Complications of COVID-19 Infection and the Role of Physical Activity. J. Cardiopulm. Rehabil. Prev. 2023, 43, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Safiriyu, I.; Fatuyi, M.; Mehta, A.; Naser, A.; Alexander, E.; Vovan, H.; Shamaki, G.R.; Bob-Manuel, T. Impact of COVID-19 Infection on the Clinical Outcomes of Pulmonary Embolism Hospitalizations: A Nationwide Analysis. Curr. Probl. Cardiol. 2023, 48, 101669. [Google Scholar] [CrossRef] [PubMed]
- Cascella, M.; Rajnik, M.; Aleem, A.; Dulebohn, S.C.; Di Napoli, R. Features, Evaluation, and Treatment of Coronavirus (COVID-19); StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Grannec, F.; Meddeb, L.; Tissot-Dupont, H.; Gentile, S.; Brouqui, P. Pre-Hospital Management of Patients with COVID-19 and the Impact on Hospitalization. Medicina 2023, 59, 1440. [Google Scholar] [CrossRef]
- Putenis, K.; Strautmane, S.; Mičule, M.; Kočāne, E.; Karelis, G. The Impact of SARS-CoV-2 Infection on Sleep, Daytime Sleepiness, and Depression—Longitudinal Cohort Study. Medicina 2024, 60, 1352. [Google Scholar] [CrossRef]
- Crisafulli, A.; Pagliaro, P. Physical Activity/Inactivity and COVID-19. Eur. J. Prev. Cardiol. 2020, 28, e24–e26. [Google Scholar] [CrossRef]
- Gil-Almagro, F.; García-Hedrera, F.J.; Peñacoba-Puente, C.; Carmona-Monge, F.J. Anxiety Evolution among Healthcare Workers—A Prospective Study Two Years after the Onset of the COVID-19 Pandemic Including Occupational and Psychoemotional Variables. Medicina 2024, 60, 1230. [Google Scholar] [CrossRef]
- Young, D.R.; Sallis, J.F.; Baecker, A.; Cohen, D.A.; Nau, C.L.; Smith, G.N.; Sallis, R.E. Associations of Physical Inactivity and COVID-19 Outcomes Among Subgroups. Am. J. Prev. Med. 2023, 64, 492–502. [Google Scholar] [CrossRef]
- Sepúlveda-Loyola, W.; Rodríguez-Sánchez, I.; Pérez-Rodríguez, P.; Ganz, F.; Torralba, R.; Oliveira, D.V.; Rodríguez-Mañas, L. Impact of Social Isolation Due to COVID-19 on Health in Older People: Mental and Physical Effects and Recommendations. J. Nutr. Health Aging 2020, 24, 938–947. [Google Scholar] [CrossRef]
- Tache-Codreanu, D.-L.; Morcov, M.V.; Tache-Codreanu, A.-M.; Sporea, C.; Tache-Codreanu, A.; Cioca, I.E.; Poteca, T.D. The Influence of a Physical Rehabilitation Program on Anxiety and Depressive Symptoms in Post-COVID Patients. Balneo PRM Res. J. 2025, 16, 868. [Google Scholar] [CrossRef]
- Smolarczyk-Kosowska, J.; Szczegielniak, A.; Legutko, M.; Zaczek, A.; Kunert, Ł.; Piegza, M.; Pudlo, R. Assessment of the Impact of a Daily Rehabilitation Program on Anxiety and Depression Symptoms and the Quality of Life of People with Mental Disorders during the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2021, 18, 1434. [Google Scholar] [CrossRef] [PubMed]
- Delevatti, R.S.; Danielevicz, A.; Sirydakis, M.E.; de Melo, P.U.G.; de la Rocha Freitas, C.; Rech, C.R.; Guglielmo, L.G.A.; Speretta, G.F.F.; Hansen, F.; Fonseca, F.R.; et al. Effects of Physical Training on Functional, Clinical, Morphological, Behavioural and Psychosocial Outcomes in Post-COVID-19 Infection: COVID-19 and REhabilitation Study (CORE-Study)—A Study Protocol for a Randomised Controlled Clinical Trial. Trials 2023, 24, 39. [Google Scholar] [CrossRef] [PubMed]
- Podsiadlo, D.; Richardson, S. The Timed “Up & Go”: A Test of Basic Functional Mobility for Frail Elderly Persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef]
- Nicolini-Panisson, R.D.A.; Donadio, M.V.F. Timed “Up & Go” Test in Children and Adolescents. Rev. Paul. Pediatr. 2013, 31, 377–383. [Google Scholar] [CrossRef]
- Zakaria, N.A.; Kuwae, Y.; Tamura, T.; Minato, K.; Kanaya, S. Quantitative Analysis of Fall Risk Using TUG Test. Comput. Methods Biomech. Biomed. Eng. 2015, 18, 426–437. [Google Scholar] [CrossRef]
- Moulodi, B.; Azad, A.; Taghizadeh, G.; Roohi-Azizi, M.; Mohammadi, P. Reliability and Validity of Persian Version of Performance-Oriented Mobility Assessment (POMA) in Community-Dwelling Iranian Older Adults: Psychometric Properties. Iran. Rehabil. J. 2020, 18, 39–48. [Google Scholar] [CrossRef]
- Yücel, S.D.; Şahin, F.; Doğu, B.; Şahin, T.; Kuran, B.; Gürsakal, S. Reliability and Validity of the Turkish Version of the Performance-Oriented Mobility Assessment I. Eur. Rev. Aging Phys. Act. 2012, 9, 149–159. [Google Scholar] [CrossRef]
- Kloos, A.D.; Bello-Haas, V.D.; Thome, R.; Cassidy, J.; Lewis, L.; Cusma, T.; Mitsumoto, H. Interrater and Intrarater Reliability of the Tinetti Balance Test for Individuals with Amyotrophic Lateral Sclerosis. J. Neurol. Phys. Ther. 2004, 28, 12–19. [Google Scholar] [CrossRef]
- Reinmann, A.; Koessler, T.; Bodmer, A.; Baud-Grasset, A.; Mentha, G.; Gligorov, J.; Bruyneel, A.V. Feasibility, Criterion and Construct Convergent Validity of the 2-Minute Walk Test and the 10-Meter Walk Test in an Oncological Context. Heliyon 2023, 9, e22180. [Google Scholar] [CrossRef]
- Pangilinan, J.; Quanstrom, K.; Bridge, M.; Walter, L.C.; Finlayson, E.; Suskind, A.M. The Timed Up and Go Test as a Measure of Frailty in Urologic Practice. Urology 2017, 106, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Beck Jepsen, D.; Robinson, K.; Ogliari, G.; Montero-Odasso, M.; Kamkar, N.; Ryg, J.; Freiberger, E.; Tahir, M. Predicting Falls in Older Adults: An Umbrella Review of Instruments Assessing Gait, Balance, and Functional Mobility. BMC Geriatr. 2022, 22, 615. [Google Scholar] [CrossRef]
- Ponciano, V.; Pires, I.M.; Ribeiro, F.R.; Villasana, M.V.; Crisóstomo, R.; Teixeira, M.C.; Zdravevski, E. Mobile Computing Technologies for Health and Mobility Assessment: Research Design and Results of the Timed Up and Go Test in Older Adults. Sensors 2020, 20, 3481. [Google Scholar] [CrossRef] [PubMed]
- Amput, P.; Tapanya, W.; Sangkarit, N.; Konsanit, S.; Wongphon, S. Balance Ability and Quality of Life in Older Adult with Recovery from Mild COVID-19. Ann. Geriatr. Med. Res. 2023, 27, 235. [Google Scholar] [CrossRef]
- Figueroa-Padilla, I.; Rivera Fernández, D.E.; Cházaro Rocha, E.F.; Eugenio Gutiérrez, A.L.; Jáuregui-Renaud, K. Body Weight May Have a Role on Neuropathy and Mobility after Moderate to Severe COVID-19: An Exploratory Study. Medicina 2022, 58, 1401. [Google Scholar] [CrossRef] [PubMed]
- Althomali, O.W.; Hussain Shaik, D.; Kanwal, R.; Amin, J.; Acar, T.; Abdelmoniem Ibrahim, A.; Hussein, H.M.; Ansari, A.; Alhammad, A.A.; Shahid Ali, M.; et al. The Impact of COVID-19 on Functional Capacity and Pulmonary Outcomes in the Hail Region: A Cross-Sectional Study. J. Clin. Med. 2024, 13, 5571. [Google Scholar] [CrossRef]
- Eksombatchai, D.; Wongsinin, T.; Phongnarudech, T.; Thammavaranucupt, K.; Amornputtisathaporn, N.; Sungkanuparph, S. Pulmonary Function and Six-Minute-Walk Test in Patients after Recovery from COVID-19: A Prospective Cohort Study. PLoS ONE 2021, 16, e0257040. [Google Scholar] [CrossRef]
- Mayer, K.P.; Ismaeel, A.; Kalema, A.G.; Montgomery-Yates, A.A.; Soper, M.K.; Kern, P.A.; Starck, J.D.; Slone, S.A.; Morris, P.E.; Dupont-Versteegden, E.E.; et al. Persistent Fatigue, Weakness, and Aberrant Muscle Mitochondria in Survivors of Critical COVID-19. Crit. Care Explor. 2024, 6, e1164. [Google Scholar] [CrossRef]
- Spielmanns, M.; Pekacka-Egli, A.M.; Schoendorf, S.; Windisch, W.; Hermann, M. Effects of a Comprehensive Pulmonary Rehabilitation in Severe Post-COVID-19 Patients. Int. J. Environ. Res. Public Health 2021, 18, 2695. [Google Scholar] [CrossRef]
- Olezene, C.S.; Hansen, E.; Steere, H.K.; Giacino, J.T.; Polich, G.R.; Borg-Stein, J.; Zafonte, R.D.; Schneider, J.C. Functional Outcomes in the Inpatient Rehabilitation Setting Following Severe COVID-19 Infection. PLoS ONE 2021, 16, e0248824. [Google Scholar] [CrossRef]
- Mooren, J.M.; Garbsch, R.; Schäfer, H.; Kotewitsch, M.; Waranski, M.; Teschler, M.; Schmitz, B.; Mooren, F.C. Medical Rehabilitation of Patients with Post-COVID-19 Syndrome—A Comparison of Aerobic Interval and Continuous Training. J. Clin. Med. 2023, 12, 6739. [Google Scholar] [CrossRef]
- Ülker Ekşi, B.; Kısa, E.P.; Ertan Harputlu, Ö.; Kara Kaya, B.; Hoşbay, Z.; Akıncı, B. Exploring Medium- and Long-Term Respiratory and Functional Sequelae in Young Adults Post-COVID-19. Medicina 2025, 61, 86. [Google Scholar] [CrossRef] [PubMed]
- Tache-Codreanu, D.-L.; Bobocea, L.; David, I.; Burcea, C.C.; Sporea, C. The Role of the Six-Minute Walk Test in the Functional Evaluation of the Efficacy of Rehabilitation Programs After COVID-19. Life 2024, 14, 1514. [Google Scholar] [CrossRef]
- Klanidhi, K.B.; Chakrawarty, A.; Bhadouria, S.S.; George, S.M.; Sharma, G.; Chatterjee, P.; Kumar, V.; Vig, S.; Gupta, N.; Singh, V.; et al. Six-Minute Walk Test and Its Predictability in Outcome of COVID-19 Patients. J. Educ. Health Promot. 2022, 11, 58. [Google Scholar] [CrossRef] [PubMed]
- Azizi, S.D.; Khoshrou, A.; Rastgoo, K.; Rezaeetalab, F.; Sharifi Dalooei, S.M.A.; Akbari, F.; Poursadegh, F. Six Minute Walk Test in Covid 19 Recovery Patients. J. Cardio-Thoracic Med. 2024, 12, 1418–1426. [Google Scholar] [CrossRef]
- Furlan, G.J.; Marche, A.N.; Sardim, A.C.; Guerra, R.L.S.; Caboclo, R.F.; de Camargo, T.M. Functional Performance Analysis in Individuals Recovered from COVID-19: Assessment through the Six-Minute Walk Test. O Mundo Da Saúde 2025, 49, e17442025. [Google Scholar] [CrossRef]
- Academy of Neurologic Physical Therapy Core Measure: 10 Meter Walk Test (10mWT). Available online: https://neuropt-website-documents.s3.amazonaws.com/docs/default-source/cpgs/core-outcome-measures/core-measure-10-meter-walk-test- (accessed on 12 May 2025).
- Academy of Neurologic Physical Therapy 10 Meter Walk Test (10MWT). Available online: https://neuropt.org/docs/default-source/cpgs/core-outcome-measures/10mwt-pocket-guide-proof8- (accessed on 12 May 2025).
- Kowal, M.; Morgiel, E.; Winiarski, S.; Gieysztor, E.; Madej, M.; Sebastian, A.; Madziarski, M.; Wedel, N.; Proc, K.; Madziarska, K.; et al. Effect of COVID-19 on Musculoskeletal Performance in Gait and the Timed-Up and Go Test. J. Clin. Med. 2023, 12, 4184. [Google Scholar] [CrossRef]
- Morelli, N.; Parry, S.M.; Steele, A.; Lusby, M.; Montgomery-Yates, A.A.; Morris, P.E.; Mayer, K.P. Patients Surviving Critical COVID-19 Have Impairments in Dual-Task Performance Related to Post-Intensive Care Syndrome. J. Intensive Care Med. 2022, 37, 890–898. [Google Scholar] [CrossRef] [PubMed]
- Kostka, J.; Sosowska, N.; Guligowska, A.; Kostka, T. A Proposed Method of Converting Gait Speed and TUG Test in Older Subjects. Int. J. Environ. Res. Public Health 2022, 19, 12145. [Google Scholar] [CrossRef]
- Tan, T.C.; Guo, Y.Y.; Ho, D.J.; Sanwari, N.A.B.; Quek, P.H.; Tan, R.S.; Yap, F.S.; Yang, M.; Yeung, M.T. Reference Values, Determinants and Regression Equation for the Timed-Up and Go Test (TUG) in Healthy Asian Population Aged 21 to 85 Years. Int. J. Environ. Res. Public Health 2023, 20, 5712. [Google Scholar] [CrossRef]
- Hafsteinsdóttir, T.B.; Rensink, M.; Schuurmans, M. Clinimetric Properties of the Timed Up and Go Test for Patients With Stroke: A Systematic Review. Top. Stroke Rehabil. 2014, 21, 197–210. [Google Scholar] [CrossRef]
- Chiriac, O.C.; Sporea, C.; Miricescu, D.; Mitrea, A.R.; Vacaroiu, I.A.; Grigore, R.; Nica, A.S. The Effort, Dyspnea, and Cooperation Scores in Mild and Moderate Post-COVID-19 Patients: Results of a Retrospective Study. Adv. Respir. Med. 2025, 93, 43. [Google Scholar] [CrossRef]
- Burcea, C.-C.; Oancea, M.-D.-A.; Tache-Codreanu, D.-L.; Georgescu, L.; Neagoe, I.-C.; Sporea, C. The Benefits of a Rehabilitation Program Following Medial Patellofemoral Ligament Reconstruction. Life 2024, 14, 1355. [Google Scholar] [CrossRef]
- Liaghat, B.; Brorson, S. Effect of Structured Rehabilitation versus Non-Structured Rehabilitation Following Non-Surgical Management of Displaced Proximal Humerus Fractures: A Protocol for a Randomised Clinical Trial. BMJ Open 2022, 12, e064156. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, B.; Lundy, D.W.; Miclau, T.A.; Balogh, Z.J.; Kitada, S.; Leighton, R.; Putzeys, G.; Padilla Rojas, L.G.; Schipper, I.; Vallejo, L.; et al. Musculoskeletal Trauma Rehabilitation: A Global Comparison. OTA Int. 2025, 8, e437. [Google Scholar] [CrossRef] [PubMed]
- Burcea, C.-C.C.; Bobu, V.; Ferechide, D.; Neagoe, I.C.; Lupușoru, G.E.; Sporea, C.; Lupușoru, M.O.D. New Methodological Aspects in Rehabilitation after Proximal Humerus Fracture. Balneo PRM Res. J. 2023, 14, 555. [Google Scholar] [CrossRef]
- Zbogar, D.; Eng, J.J.; Miller, W.C.; Krassioukov, A.V.; Verrier, M.C. Physical Activity Outside of Structured Therapy during Inpatient Spinal Cord Injury Rehabilitation. J. Neuroeng. Rehabil. 2016, 13, 99. [Google Scholar] [CrossRef]
- Estatico, F.; Olivares, A.; Comini, L.; Paneroni, M.; Vitacca, M.; Tavolazzi, F.; Maffi, G.; Forlani, C.; Vezzadini, G. In-Hospital LSVT BIG Training Versus Structured Rehabilitation Treatment in Parkinson’s Disease: Feasibility and Primary Evaluation on Functional and Respiratory Outcomes. Appl. Sci. 2025, 15, 10611. [Google Scholar] [CrossRef]
- Alsaeed, M.S.; Alqahtani, Z.A.; Altamami, S.A.; Alshehri, A.A.A.; Alnawmasi, S.J.; Aziz, A.M.; Alyahya, B.A.; Homdi, M.A.; Al Assiry, H.A.H.; Alshehri, F.M. Optimizing Motor Function Recovery in Stroke Patients through Structured Exercise Programs. Rev. Iberoam. Psicol. Ejerc. Deport. 2025, 20, 244–248. [Google Scholar]
- Tache-Codreanu, D.-L.; David, I.; Blendea, D.C.; Tache-Codreanu, A.-M.; Morcov, M.-V.; Tache-Codreanu, A.; Sporea, C. Impact of a Multidisciplinary Functional Recovery Program on Post-Lung Transplant Outcomes: A One-Year Follow-Up. Balneo PRM Res. J. 2025, 16, 801. [Google Scholar] [CrossRef]
- Zhang, H.; Jin, Z.; Wang, H.; Guo, Y.; Lip, G.Y. Structured Rehabilitation for Patients with Atrial Fibrillation Based on an Integrated Care Approach: Protocol for a Prospective, Observational Cohort Study. Vasc. Health Risk Manag. 2023, 19, 485–494. [Google Scholar] [CrossRef]
- Pascual, B.P. Evaluación de La Eficacia de Un Programa de Rehabilitación Precoz En El Paciente Trasplantado de Pulmón. Ph.D. Thesis, Universitat Autònoma de Barcelona, Barcelona, Spain, 2024. [Google Scholar]
- Acán Acán, J.P. Rehabilitación Respiratoria En Pacientes Adultos Post Trasplante Pulmonar. Master’s Thesis, Universidad Nacional de Chimborazo, Riobamba, Ecuador, 2025. [Google Scholar]
- Sharma, B.; Singh, V. Pulmonary Rehabilitation: An Overview. Lung India 2011, 28, 276. [Google Scholar] [CrossRef]
- Tully, N.E.; Morgan, K.M.; Burke, H.M.; McGee, H.M. Patient Experiences of Structured Heart Failure Programmes. Rehabil. Res. Pract. 2010, 2010, 157939. [Google Scholar] [CrossRef] [PubMed]
- Ciubean, A.D.; Popa, T.; Ciortea, V.M.; Dogaru, G.; Irsay, L. Disrupted Circadian Rhythms as a Novel Driver of Sarcopenia: Mechanisms, Evidence, and Future Directions. Balneo PRM Res. J. 2025, 16, 814. [Google Scholar] [CrossRef]
- Falsetti, L.; Zaccone, V.; Santoro, L.; Santini, S.; Guerrieri, E.; Giuliani, L.; Viticchi, G.; Cataldi, S.; Gasbarrini, A.; Landi, F.; et al. The Relationship between Post-COVID Syndrome and the Burden of Comorbidities Assessed Using the Charlson Comorbidity Index. Medicina 2023, 59, 1583. [Google Scholar] [CrossRef]
- Yu, L.; Guo, S.; Ji, W.; Sun, H.; Lee, S.; Zhang, D. Intervention Effects of Physical Activity on Type 2 Diabetic Patients Potentially Infected with COVID-19. Medicina 2023, 59, 1772. [Google Scholar] [CrossRef]
- Crapo, R.O.; Casaburi, R.; Coates, A.L.; Enright, P.L.; MacIntyre, N.R.; McKay, R.T.; Johnson, D.; Wanger, J.S.; Zeballos, R.J.; Bittner, V.; et al. ATS Statement. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Yi, D.; Yim, J. Remote Home-Based Exercise Program to Improve the Mental State, Balance, and Physical Function and Prevent Falls in Adults Aged 65 Years and Older During the COVID-19 Pandemic in Seoul, Korea. Med. Sci. Monit. 2021, 27, e935496-1–e935496-11. [Google Scholar] [CrossRef] [PubMed]
- da Costa, R.F.; Silva, I.C.; Rebouças, E.R.N.; Ramos, T.R.; Cavalcante, R.N.; de Sousa, B.G.; Vinhote, J.F.C.; Campos, N.G.; Pereira, E.D.B. Evaluation of the Relation between the Demographic and Clinical Profile of Individuals with COVID-19 and the Functional Outcomes after Hospital Discharge: A Cross-Sectional Study. J. Bodyw. Mov. Ther. 2025, 43, 456–462. [Google Scholar] [CrossRef]
- Sirayder, U.; Inal-Ince, D.; Kepenek-Varol, B.; Acik, C. Long-Term Characteristics of Severe COVID-19: Respiratory Function, Functional Capacity, and Quality of Life. Int. J. Environ. Res. Public Health 2022, 19, 6304. [Google Scholar] [CrossRef]
- Joaquín, C.; Bretón, I.; Ocón-Bretón, M.J.; Zabalegui, A.; Bellido, D.; Matía Martín, P.; Martínez-Olmos, M.Á.; Zugasti, A.; Riestra, M.; Botella, F.; et al. Nutritional and Physical Rehabilitation in Post-Critical Coronavirus Disease 2019 (COVID-19) Ambulatory Patients: The NutriEcoMuscle Study. Nutrients 2025, 17, 1722. [Google Scholar] [CrossRef] [PubMed]
- Curci, C.; Negrini, F.; Ferrillo, M.; Bergonzi, R.; Bonacci, E.; Camozzi, D.M.; Ceravolo, C.; De Franceschi, S.; Guarnieri, R.; Moro, P.; et al. Functional Outcome after Inpatient Rehabilitation in Postintensive Care Unit COVID-19 Patients: Findings and Clinical Implications from a Real-Practice Retrospective Study. Eur. J. Phys. Rehabil. Med. 2021, 57, 443–450. [Google Scholar] [CrossRef]
- Steinmetz, A.; Gross, S.; Lehnert, K.; Lücker, P.; Friedrich, N.; Nauck, M.; Bahlmann, S.; Fielitz, J.; Dörr, M. Longitudinal Clinical Features of Post-COVID-19 Patients—Symptoms, Fatigue and Physical Function at 3- and 6-Month Follow-Up. J. Clin. Med. 2023, 12, 3966. [Google Scholar] [CrossRef] [PubMed]
- Tache-Codreanu, D.-L.; David, I.; Butum-Cristea, M.A.; Tache-Codreanu, A.-M.; Burcea, C.C.; Rusu, E.; Tache-Codreanu, A.; Olteanu, R.; Poteca, T.D.; Sporea, C. The Role of Body Mass Index in Outcomes of Radial Shock Wave Therapy for Adhesive Capsulitis. Biomedicines 2025, 13, 2117. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Hu, C.C.; Weng, P.W.; Huang, Y.M.; Chiang, C.J.; Chen, C.H.; Tsuang, Y.H.; Yang, R.S.; Sun, J.S.; Cheng, C.K. Extracorporeal Shockwave Therapy Improves Short-Term Functional Outcomes of Shoulder Adhesive Capsulitis. J. Shoulder Elb. Surg. 2014, 23, 1843–1851. [Google Scholar] [CrossRef] [PubMed]
- Sharahili, T.M.; Alzahrani, H.A. Effect of Radial Extracorporeal Shockwave Therapy Combined with Evidence-Based Physical Therapy for Adhesive Capsulitis of the Shoulder. Saudi Med. J. 2025, 46, 816–824. [Google Scholar] [CrossRef]
- Lee, S.; Lee, S.; Jeong, M.; Oh, H.; Lee, K. The Effects of Extracorporeal Shock Wave Therapy on Pain and Range of Motion in Patients with Adhesive Capsulitis. J. Phys. Ther. Sci. 2017, 29, 1907–1909. [Google Scholar] [CrossRef]
- Tache-Codreanu, D.-L.; David, I.; Tache-Codreanu, A.-M.; Sporea, C.; Burcea, C.C.; Blendea, D.C.; Morcov, M.V.; Cioca, I.E. RESWT in Shoulder Periarthritis: Does the Protocol Intensity Matter?—A Quasi-Experimental Non-Randomized Comparative Study. Life 2025, 15, 922. [Google Scholar] [CrossRef]
- Stiller, P.; Schmitz, C. Radial Extracorporeal Shock Wave Therapy to Support Breathing in Case of Coronavirus Disease 2019 (COVID-19): A Case Report. Preprints 2021, 2021030192. [Google Scholar] [CrossRef]
- Silaghi-Dumitrescu, R.; Patrascu, I.; Lehene, M.; Bercea, I. Comorbidities of COVID-19 Patients. Medicina 2023, 59, 1393. [Google Scholar] [CrossRef]
- Ursescu, C.; Teodoru, G.; Bucurica, S.; Nica, R.I.; Lazăr, Ș.D.; Popescu, M.N.; Ciobanu, I.; Berteanu, M. Using the ClinFIT COVID-19 Instrument to Assess the Functional Impairments Specific to Post-COVID-19 Patients in Romania. Diagnostics 2024, 14, 1540. [Google Scholar] [CrossRef]
- Borges, F.F.d.R.; Braga, A.C.B.; Viana, B.S.; Valente, J.; Bemfica, J.M.; Sant’Anna, T.; Goulart, C.d.L.; Almeida-Val, F.; Arêas, G.P.T. Functional Capacity Impairment in Long COVID After 17 Months of Severe Acute Disease. Int. J. Environ. Res. Public Health 2025, 22, 276. [Google Scholar] [CrossRef] [PubMed]
- Dzięcioł-Anikiej, Z.; Kuryliszyn-Moskal, A.; Pociene, M.; Dzięcioł, J.; Dakowicz, A.; Kostro, A. Clinical and Functional Effects of Rehabilitation of Patients after COVID-19 Infection. J. Clin. Med. 2024, 13, 3257. [Google Scholar] [CrossRef] [PubMed]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 Guidelines on Physical Activity and Sedentary Behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- National Institute for Health and Care Excellence Overview|COVID-19 Rapid Guideline: Managing the Long-Term Effects of COVID-19|Guidance|NICE. Available online: https://www.nice.org.uk/guidance/ng188 (accessed on 3 October 2025).
- Cottrell, M.A.; Galea, O.A.; O’Leary, S.P.; Hill, A.J.; Russell, T.G. Real-Time Telerehabilitation for the Treatment of Musculoskeletal Conditions Is Effective and Comparable to Standard Practice: A Systematic Review and Meta-Analysis. Clin. Rehabil. 2017, 31, 625–638. [Google Scholar] [CrossRef]
- Milaciu, M.V.; Gerdanovics, A.C.; Perné, M.G.; Alexescu, T.G.; Ciulei, G.; Cozma, A.; Hilda, O.; Vlad, V.; Leach, N.V.; Cium, L. The Impact of the COVID-19 Pandemic on the Cardiac Rehabilitation in Diabetic Patients with Cardiovascular Comorbidities Admitted in a Hospital from Transylvania. Balneo PRM Res. J. 2025, 16, 850. [Google Scholar] [CrossRef]
- Ambrosino, N.; Makhabah, D.N.; Sutanto, Y.S. Tele-Medicine in Respiratory Diseases. Multidiscip. Respir. Med. 2017, 12, 9. [Google Scholar] [CrossRef] [PubMed]
- Paneroni, M.; Vitacca, M.; Bernocchi, P.; Bertacchini, L.; Scalvini, S. Feasibility of Tele-Rehabilitation in Survivors of COVID-19 Pneumonia. Pulmonology 2022, 28, 152–154. [Google Scholar] [CrossRef]
- Diciolla, N.S.; Ampuero-López, A.; Marques, A.; Jiménez-Martín, A.; García-De Villa, S.; Torres-Lacomba, M.; Yuste-Sánchez, M.J. Physical Activity and Sedentary Behaviour in People with Long COVID: A Follow-Up from 12 to 18 Months After Discharge. J. Clin. Med. 2025, 14, 3641. [Google Scholar] [CrossRef]
- Gherghel, C.L.; Chiriac, O.C.; Iordan, D.A.; Ștefănescu, C.A.; Onu, I. The Use of the 360 MD Huber Platform in Rehabilitation of Lumbar Radiculopathies, Chronic Period. Balneo PRM Res. J. 2024, 15, 728. [Google Scholar] [CrossRef]
- Seo, Y.-M.; Park, K.-S. The Effect of COVID-19 Outbreak and Incidence on the Health-Related Behaviors and Depression of Gyeongnam Residents in Republic of Korea. Medicina 2023, 59, 1672. [Google Scholar] [CrossRef]
- Bauraitė, K.; Gudaitytė, R.; Maleckas, A. The Impact of COVID-19 Pandemic on Weight Loss, Eating Behaviour and Quality of Life after Roux-En-Y Gastric Bypass. Medicina 2023, 59, 1597. [Google Scholar] [CrossRef] [PubMed]
- Veronese-Araújo, A.; de Lucena, D.D.; Aguiar-Brito, I.; Cristelli, M.P.; Tedesco-Silva, H.; Medina-Pestana, J.O.; Rangel, É.B. Sex Differences among Overweight/Obese Kidney Transplant Recipients Requiring Oxygen Support Amid the COVID-19 Pandemic. Medicina 2023, 59, 1555. [Google Scholar] [CrossRef] [PubMed]
- Damian, A.C.; Mihăilescu, A.I.; Anghele, C.; Ciobanu, C.A.; Petrescu, C.; Riga, S.; Dionisie, V.; Ciobanu, A.M. Quality of Life Predictors in a Group of Informal Caregivers during the COVID-19 Pandemic. Medicina 2023, 59, 1486. [Google Scholar] [CrossRef]
- Baumann, I.; Hage, R.; Gasche-Soccal, P.; Aubert, J.-D.; Schuurmans, M.M. Impact of SARS-CoV-2-Related Hygiene Measures on Community-Acquired Respiratory Virus Infections in Lung Transplant Recipients in Switzerland. Medicina 2023, 59, 1473. [Google Scholar] [CrossRef] [PubMed]
| Phase/Setting | Main Objectives | Exercises and Techniques | Frequency/Duration | Progression Criteria |
|---|---|---|---|---|
| Early phase (bed-based rehabilitation) | Prevent deconditioning, improve respiratory efficiency |
| 5 sessions/day × 10 days | Stable oxygen saturation, tolerance to sitting |
| Mobilization and flexibility training | Facilitate trunk control and limb mobility |
| Daily during hospitalization | Independent sitting and tolerance to orthostatism |
| Verticalization and gait initiation | Improve balance and prevent orthostatic hypotension |
| Daily during late inpatient phase | Independent gait initiation |
| Outpatient rehabilitation (Huber 360 Evolution) | Enhance strength, coordination, posture, and respiratory capacity |
| 2 sessions/week × 30 min, 10 sessions per cycle (every 3 months, up to 1 year) | Achievement of functional level 4–5 |
| Final goals |
| — | — | — |
| Characteristic | Total (n = 193) | Study Group (n = 160) | Control Group (n = 33) |
|---|---|---|---|
| Age (years), mean ± SD | 58.79 ± 13.21 | 58.54 ± 13.30 | 59.97 ± 12.92 |
| Age group, n (%) | |||
| <60 years | 48.11 ± 7.23 | 47.98 ± 7.33 | 48.81 ± 6.87 |
| ≥60 years | 70.64 ± 6.51 | 70.68 ± 6.47 | 70.47 ± 6.92 |
| Sex, n (%) | |||
| Women | 115 (59.59%) | 97 (60.63%) | 18 (54.54%) |
| Men | 78 (40.41%) | 63 (39.37%) | 15 (45.46%) |
| Group | n | Pre A (n, %) | Pre B (n, %) | Pre C (n, %) | Post A (n, %) | Post B (n, %) | Post C (n, %) | p-Value | |
|---|---|---|---|---|---|---|---|---|---|
| Study group | 160 | 49 (30.63%) | 39 (24.37%) | 72 (45.00%) | 97 (60.63%) | 52 (32.50%) | 11 (6.88%) | <0.001 | |
| Women | 97 | 31 (31.96%) | 23 (23.71%) | 43 (44.33%) | 60 (61.86%) | 26 (26.80%) | 11 (11.34%) | ||
| Men | 63 | 18 (28.57%) | 16 (25.40%) | 29 (46.03%) | 37 (58.73%) | 26 (41.27%) | 0 | ||
| <60 years | 86 | 37 (43.53%) | 23 (27.06%) | 25 (29.41%) | 64 (75.29%) | 17 (20.00%) | 4 (4.71%) | ||
| ≥60 years | 74 | 12 (16.22%) | 16 (21.62%) | 46 (62.16%) | 33 (44.59%) | 34 (45.95%) | 7 (9.46%) | ||
| Control group | 33 | 0 | 25 (75.76%) | 8 (24.24%) | 4 (12.12%) | 8 (24.24%) | 21 (63.64%) | 0.125 | |
| Women | 18 | 0 | 13 (72.22%) | 5 (27.78%) | 1 (5.56%) | 5 (27.77%) | 12 (66.67%) | ||
| Men | 15 | 0 | 12 (80.00%) | 3 (20.00%) | 3 (20.00%) | 3 (20.00%) | 9 (60.00%) | ||
| <60 years | 16 | 0 | 15 (93.75%) | 1 (6.25%) | 3 (18.75%) | 8 (50.00%) | 5 (31.25%) | ||
| ≥60 years | 17 | 0 | 10 (58.82%) | 7 (41.18%) | 1 (5.88%) | 0 | 16 (94.12%) | ||
| Group | n | Pre A (n, %) | Pre B (n, %) | Pre C (n, %) | Post A (n, %) | Post B (n, %) | Post C (n, %) | p-Value | |
|---|---|---|---|---|---|---|---|---|---|
| Study group | 160 | 77 (48.13%) | 81 (50.63%) | 2 (1.25%) | 23 (14.38%) | 96 (60.00%) | 41 (25.63%) | < 0.001 | |
| Women | 97 | 45 (46.39%) | 51 (52.58%) | 1 (1.03%) | 18 (18.56%) | 55 (56.70%) | 24 (24.74%) | ||
| Men | 63 | 32 (50.79%) | 30 (47.62%) | 1 (1.59%) | 5 (7.94%) | 41 (65.08%) | 17 (26.98%) | ||
| <60 years | 86 | 26 (30.23%) | 58 (67.44%) | 1 (1.16%) | 9 (10.47%) | 41 (47.67%) | 35 (40.70%) | ||
| ≥60 years | 74 | 50 (67.57%) | 23 (31.08%) | 1 (1.35%) | 14 (18.92%) | 54 (72.97%) | 6 (8.11%) | ||
| Control group | 33 | 5 (15.15%) | 28 (84.85%) | 0 | 13 (39.39%) | 17 (51.52%) | 3 (9.09%) | <0.001 | |
| Women | 18 | 2 (11.11%) | 16 (88.89%) | 0 | 7 (38.89%) | 8 (44.44%) | 3 (16.67%) | ||
| Men | 15 | 3 (20.00%) | 12 (80.00%) | 0 | 6 (40.00%) | 9 (60.00%) | 0 | ||
| <60 years | 16 | 0 | 16 (100%) | 0 | 1 (6.25%) | 12 (75.00%) | 3 (18.75%) | ||
| ≥60 years | 17 | 5 (29.41%) | 12 (70.59%) | 0 | 12 (70.59%) | 5 (29.41%) | 0 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiriac, O.C.; Miricescu, D.; Sporea, C.; Stanciu, S.-M.; Lunca, D.C.; Badoiu, S.C.; Vacaroiu, I.A.; Mititelu, R.; Grigore, R.; Mitrea, A.R.; et al. Post-COVID-19 Rehabilitation Improves Mobility and Gait Performance: Evidence from TUG and 10MWT. Healthcare 2025, 13, 2892. https://doi.org/10.3390/healthcare13222892
Chiriac OC, Miricescu D, Sporea C, Stanciu S-M, Lunca DC, Badoiu SC, Vacaroiu IA, Mititelu R, Grigore R, Mitrea AR, et al. Post-COVID-19 Rehabilitation Improves Mobility and Gait Performance: Evidence from TUG and 10MWT. Healthcare. 2025; 13(22):2892. https://doi.org/10.3390/healthcare13222892
Chicago/Turabian StyleChiriac, Ovidiu Cristian, Daniela Miricescu, Corina Sporea, Silviu-Marcel Stanciu, Dragos Constantin Lunca, Silviu Constantin Badoiu, Ileana Adela Vacaroiu, Raluca Mititelu, Raluca Grigore, Ana Raluca Mitrea, and et al. 2025. "Post-COVID-19 Rehabilitation Improves Mobility and Gait Performance: Evidence from TUG and 10MWT" Healthcare 13, no. 22: 2892. https://doi.org/10.3390/healthcare13222892
APA StyleChiriac, O. C., Miricescu, D., Sporea, C., Stanciu, S.-M., Lunca, D. C., Badoiu, S. C., Vacaroiu, I. A., Mititelu, R., Grigore, R., Mitrea, A. R., & Nica, S. A. (2025). Post-COVID-19 Rehabilitation Improves Mobility and Gait Performance: Evidence from TUG and 10MWT. Healthcare, 13(22), 2892. https://doi.org/10.3390/healthcare13222892

