The Relationship Between Attitude Toward Pain and the Effects of Foam Rolling on Biomechanical Parameters of Soft Tissues Measured with the MyotonPRO Device
Highlights
- Pain-related attitudes are correlated with FR-induced changes
- Fewer associations were found after longer rolling, potentially indicating a time-dependent effect
- Identifying negative pain attitudes may improve pain management and enhance FR effectiveness
- Screening for pain beliefs may help tailor FR strategies
Abstract
1. Introduction
2. Materials and Methods
2.1. The Study Design
2.2. Sample Size
2.3. Participants
2.4. Measures
2.5. Interventions
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Correlations
3.2.1. Analysis of Correlations in the ROL30 Group
3.2.2. Analysis of Correlations in the ROL120 Group
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| FR | Foam Rolling |
| FAB | Fear-Avoidance Beliefs |
| GC | Gastrocnemius muscle |
| BF | Biceps Femoris muscle |
| LE | Lumbar Erector spinae muscle |
| CE | Cervical Erector spinae muscle |
| PCS | Pain Catastrophization Scale |
| SOPA | The Survey of Pain Attitudes |
| SOPA-B | SOPA-Brief |
| ROL30 | The first group performed hamstring foam rolling for 30 s |
| ROL120 | The second group performed the same intervention for 120 s |
| D | Elasticity (logarithmic decrement) |
| R | Relaxation time |
| S | Stiffness |
| F | Tone (frequency) |
| C | Creep |
| BMI | Body Mass Index |
| SUM D | overall effect on parameter D |
References
- Zügel, M.; Maganaris, C.N.; Wilke, J.; Jurkat-Rott, K.; Klingler, W.; Wearing, S.C.; Findley, T.; Barbe, M.F.; Steinacker, J.M.; Vleeming, A.; et al. Fascial tissue research in sports medicine: From molecules to tissue adaptation, injury and diagnostics: Consensus statement. Br. J. Sports Med. 2018, 52, 1497. [Google Scholar] [CrossRef]
- Dębski, P.; Białas, E.; Gnat, R. The effect of hamstrings foam rolling on tissue mechanical properties as measured by MyotonPRO in healthy men—A randomized controlled trial. J. Bodyw. Mov. Ther. 2025, 42, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, E.R.; Aguilera, L.M.; Ruá-Alonso, M.; Araújo, G.d.S.; Neto, V.G.C.; Bentes, C.M.; Vilaça-Alves, J.; Reis, V.M.; Ferreira, A.d.S.; Marchetti, P.H.; et al. Effect of Manual Massage, Foam Rolling, and Strength Training on Hemodynamic and Autonomic Responses in Adults: A Scoping Review. Healthcare 2025, 13, 1371. [Google Scholar] [CrossRef]
- Lastova, K.; Nordvall, M.; Walters-Edwards, M.; Allnutt, A.; Wong, A. Cardiac Autonomic and Blood Pressure Responses to an Acute Foam Rolling Session. J. Strength Cond. Res. 2018, 32, 2825–2830. [Google Scholar] [CrossRef] [PubMed]
- Hendricks, S.; Hill, H.; Hollander, S.D.; Lombard, W.; Parker, R. Effects of foam rolling on performance and recovery: A systematic review of the literature to guide practitioners on the use of foam rolling. J. Bodyw. Mov. Ther. 2020, 24, 151–174. [Google Scholar] [CrossRef] [PubMed]
- Habscheid, C.; Szikszay, T.M.; Luedtke, K. The effect of foam rolling on local and distant pain sensitivity assessed with pressure pain thresholds in healthy participants and musculoskeletal pain patients: A systematic review. J. Bodyw. Mov. Ther. 2024, 40, 786–796. [Google Scholar] [CrossRef]
- Lautenbacher, S.; Roscher, S.; Strian, F. Inhibitory effects do not depend on the subjective experience of pain during heterotopic noxious conditioning stimulation (HNCS): A contribution to the psychophysics of pain inhibition. Eur. J. Pain 2002, 6, 365–374. [Google Scholar] [CrossRef]
- Raja, S.N.; Carr, D.B.; Cohen, M.; Finnerup, N.B.; Flor, H.; Gibson, S.; Keefe, F.J.; Mogil, J.S.; Ringkamp, M.; Sluka, K.A.; et al. The revised International Association for the Study of Pain definition of pain: Concepts, challenges, and compromises. Pain 2020, 161, 1976–1982. [Google Scholar] [CrossRef]
- Sullivan, M.J.L.; Bishop, S.R.; Pivik, J. The Pain Catastrophizing Scale: Development and validation. Psychol. Assess. 1995, 7, 524–532. [Google Scholar] [CrossRef]
- Somers, T.J.; Keefe, F.J.; Carson, J.W.; Pells, J.J.; LaCaille, L. Pain catastrophizing in borderline morbidly obese and morbidly obese individuals with osteoarthritic knee pain. Pain Res. Manag. 2008, 13, 401–406. [Google Scholar] [CrossRef]
- Geva, N.; Defrin, R. Enhanced pain modulation among triathletes: A possible explanation for their exceptional capabilities. Pain 2013, 154, 2317–2323. [Google Scholar] [CrossRef]
- Buer, N.; Linton, S.J. Fear-avoidance beliefs and catastrophizing: Occurrence and risk factor in back pain and ADL in the general population. Pain 2002, 99, 485–491. [Google Scholar] [CrossRef]
- Knechtle, D.; Schmid, S.; Suter, M.; Riner, F.; Moschini, G.; Senteler, M.; Schweinhardt, P.; Meier, M.L. Fear-avoidance beliefs are associated with reduced lumbar spine flexion during object lifting in pain-free adults. Pain 2021, 162, 1621–1631. [Google Scholar] [CrossRef]
- Hunt, E.R.; Baez, S.E.; Olson, A.D.; Butterfield, T.A.; Dupont-Versteegden, E. Using Massage to Combat Fear-Avoidance and the Pain Tension Cycle. Int. J. Athl. Ther. Train. 2019, 24, 198–201. [Google Scholar] [CrossRef]
- Kamonseki, D.H.; Christenson, P.; Rezvanifar, S.C.; Calixtre, L.B. Effects of manual therapy on fear avoidance, kinesiophobia and pain catastrophizing in individuals with chronic musculoskeletal pain: Systematic review and meta-analysis. Musculoskelet. Sci. Pract. 2021, 51, 102311. [Google Scholar] [CrossRef] [PubMed]
- Hopewell, S.; Chan, A.-W.; Collins, G.S.; Hróbjartsson, A.; Moher, D.; Schulz, K.F.; Tunn, R.; Aggarwal, R.; Berkwits, M.; Berlin, J.A.; et al. CONSORT 2025 statement: Updated guideline for reporting randomised trials. BMJ 2025, 389, e081123. [Google Scholar] [CrossRef] [PubMed]
- Hopewell, S.; Chan, A.-W.; Collins, G.S.; Hróbjartsson, A.; Moher, D.; Schulz, K.F.; Tunn, R.; Aggarwal, R.; Berkwits, M.; Berlin, J.A.; et al. CONSORT 2025 explanation and elaboration: Updated guideline for reporting randomised trials. BMJ 2025, 389, e081124. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.-W.; Tetzlaff, J.M.; Altman, D.G.; Laupacis, A.; Gøtzsche, P.C.; Krleža-Jerić, K.; Hróbjartsson, A.; Mann, H.; Dickersin, K.; Berlin, J.A.; et al. SPIRIT 2013 statement: Defining standard protocol items for clinical trials. Ann. Intern. Med. 2013, 158, 200–207. [Google Scholar] [CrossRef]
- Rutka, M.; Myśliwiec, A.; Wolny, T.; Gogola, A.; Linek, P. Influence of Chest and Diaphragm Manual Therapy on the Spirometry Parameters in Patients with Cerebral Palsy: A Pilot Study. BioMed Res. Int. 2021, 2021, 6263973. [Google Scholar] [CrossRef]
- Mansournia, M.A.; Collins, G.S.; Nielsen, R.O.; Nazemipour, M.; Jewell, N.P.; Altman, D.G.; Campbell, M.J. A CHecklist for statistical Assessment of Medical Papers (the CHAMP statement): Explanation and elaboration. Br. J. Sports Med. 2021, 55, 1009–1017. [Google Scholar] [CrossRef]
- Biały, M.; Adamczyk, W.; Stranc, T.; Gogola, A.; Gnat, R. The Association between Pelvic Asymmetry and Lateral Abdominal Muscle Activity in a Healthy Population. J. Hum. Kinet. 2024, 97, 77–87. [Google Scholar] [CrossRef]
- Garcia-Bernal, M.-I.; Heredia-Rizo, A.M.; Gonzalez-Garcia, P.; Cortés-Vega, M.-D.; Casuso-Holgado, M.J. Validity and reliability of myotonometry for assessing muscle viscoelastic properties in patients with stroke: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 5062. [Google Scholar] [CrossRef]
- Wilke, J.; Krause, F.; Vogt, L.; Banzer, W. What Is Evidence-Based About Myofascial Chains: A Systematic Review. Arch. Phys. Med. Rehabil. 2016, 97, 454–461. [Google Scholar] [CrossRef]
- Russo, L.; Montagnani, E.; Pietrantuono, D.; D’angona, F.; Fratini, T.; Di Giminiani, R.; Palermi, S.; Ceccarini, F.; Migliaccio, G.M.; Lupu, E.; et al. Self-Myofascial Release of the Foot Plantar Surface: The Effects of a Single Exercise Session on the Posterior Muscular Chain Flexibility after One Hour. Int. J. Environ. Res. Public Health 2023, 20, 974. [Google Scholar] [CrossRef] [PubMed]
- Leung, L. Pain catastrophizing: An updated review. Indian J. Psychol. Med. 2012, 34, 204–217. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, C.H.B.; Williams, A.C.d.C.; Morley, S.J. Meta-analysis of the psychometric properties of the Pain Catastrophizing Scale and associations with participant characteristics. Pain 2019, 160, 1946–1953. [Google Scholar] [CrossRef]
- Jensen, M.P.; Karoly, P.; Huger, R. The development and preliminary validation of an instrument to assess patients’ attitudes toward pain. J. Psychosom. Res. 1987, 31, 393–400. [Google Scholar] [CrossRef]
- Strong, J.; Ashton, R.; Chant, D. The measurement of attitudes towards and beliefs about pain. Pain 1992, 48, 227–236. [Google Scholar] [CrossRef]
- ISO 9001:2009; Quality Management Systems—Requirements. International Organization for Standardization: Geneva, Switzerland, 2009.
- ISO 14001:2005; Environmental Management Systems—Requirements with Guidance for Use. International Organization for Standardization: Geneva, Switzerland, 2005.
- Couture, G.; Karlik, D.; Glass, S.C.; Hatzel, B.M. The Effect of Foam Rolling Duration on Hamstring Range of Motion. Open Orthop. J. 2015, 9, 450–455. [Google Scholar] [CrossRef]
- Dębski, P.; Białas, E.; Gnat, R. The Parameters of Foam Rolling, Self-Myofascial Release Treatment: A Review of the Literature. Biomed. Hum. Kinet. 2019, 11, 36–46. [Google Scholar] [CrossRef]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- Nakamura, M.; Konrad, A.; Kiyono, R.; Sato, S.; Yahata, K.; Yoshida, R.; Yasaka, K.; Murakami, Y.; Sanuki, F.; Wilke, J. Local and Non-local Effects of Foam Rolling on Passive Soft Tissue Properties and Spinal Excitability. Front. Physiol. 2021, 12, 702042. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, G.; Pang, X.; Li, X.; Yao, Y.; Liu, Y.; Bi, Y.; Sha, M. Evaluating the impact of self myofascial release and traditional recovery strategies on volleyball athletes using thermal imaging and biochemical assessments. Sci. Rep. 2025, 15, 6443. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Kim, B. Effects of Vibration Foam Rolling on Pain, Fatigue, and Range of Motion in Individuals with Muscle Fatigue: A Systematic Review. Healthcare 2025, 13, 1391. [Google Scholar] [CrossRef]
- Wilkerson, M.; Anderson, B.C.; Grosicki, G.J.; Flatt, A.A. Perceived Pain Responses to Foam Rolling Associate with Basal Heart Rate Variability. Int. J. Ther. Massage Bodywork: Res. Educ. Pract. 2021, 14, 14–21. [Google Scholar] [CrossRef]
- Aboodarda, S.J.; Spence, A.J.; Button, D.C. Pain pressure threshold of a muscle tender spot increases following local and non-local rolling massage. BMC Musculoskelet. Disord. 2015, 16, 265. [Google Scholar] [CrossRef]
- Grabow, L.; Young, J.D.; Alcock, L.R.; Quigley, P.J.; Byrne, J.M.; Granacher, U.; Škarabot, J.; Behm, D.G. Higher Quadriceps Roller Massage Forces Do Not Amplify Range-of-Motion Increases nor Impair Strength and Jump Performance. J. Strength Cond. Res. 2018, 32, 3059–3069. [Google Scholar] [CrossRef] [PubMed]
- Hirose, N.; Yoshimura, A.; Akiyama, K.; Furusho, A. Sex and pressure effects of foam rolling on acute range of motion in the hamstring muscles. PLoS ONE 2025, 20, e0319148. [Google Scholar] [CrossRef]

| Characteristics | ROL30 (n = 16) | ROL120 (n = 16) | p |
|---|---|---|---|
| Age (years) | 24.19 ± 3.89 | 24.41 ± 5.23 | 0.26 |
| Height (cm) | 175.63 ± 5.45 | 178.65 ± 8.18 | 0.37 |
| Weight (kg) | 75.81 ± 8.36 | 77.41 ± 8.18 | 0.93 |
| BMI (kg/m2) | 24.54 ± 1.89 | 24.26 ± 2.21 | 0.55 |
| Parameters | ROL30 (n = 16) | ROL120 (n = 16) | p |
|---|---|---|---|
| PCS rumin. | 7.00 (4.50; 8.50) | 6.50 (3.50; 7.50) | 0.03 * |
| PCS magnif. | 3.00 (2.00; 4.00) | 3.00(2.00; 4.00) | 0.21 |
| PCS helples. | 2.50 (1.00; 3.50) | 2.00 (1.00; 4.50) | 0.36 |
| PCS sum | 12.00 (10.00; 16.00) | 10.50 (8.00; 14.50) | 0.03 * |
| SOPA emot. | 0.88 (0.13; 1.75) | 1.50 (0.25; 1.63) | 0.81 |
| SOPA contr. | 2.10 (1.80; 2.90) | 2.50 (1.90; 2.80) | 0.16 |
| SOPA phys. Harm. | 2.70 (2.20; 3.00) | 2.30 (2.00; 2.60) | 0.29 |
| SOPA Sum | 15.48 (12.20; 19.90) | 13.88 (10.83; 19.13) | 0.98 |
| GC-F | 5.00 (4.38; 5.65) | 4.93 (4.42; 5.67) | 0.37 |
| BF-F | 5.05 (4.79; 5.38) | 5.16 (4.65; 5.70) | 0.64 |
| LE-F | 4.62 (4.38; 4.93) | 4.88 (4.55; 5.16) | 0.31 |
| CE-F | 5.32 (4.91; 5.92) | 5.36 (4.98; 5.78) | 0.50 |
| Sum-F | 19.77 (19.16; 21.07) | 20.24 (19.65; 21.38) | 0.14 |
| GC-D | −5.46 (−5.94; −4.87) | −5.13 (−5.55; −4.71) | 0.82 |
| BF-D | −5.14 (−5.23; −4.77) | −5.13 (−5.53; −4.58) | 0.91 |
| LE-D | −4.65 (−4.88; −4.34) | −4.90 (−5.19; −4.74) | 0.58 |
| CE-D | −5.46 (−5.97; −5.09) | −5.33 (−5.60; −5.06) | 0.65 |
| Sum-D | −20.46 (−21.45; −19.66) | −20.36 (−21.36; −19.56) | 0.90 |
| GC-S | 99.25 (92.04; 111.17) | 97.96 (91.58; 104.82) | 0.51 |
| BF-S | 95.88 (90.41; 106.08) | 100.25 (90.69; 113.73 | 0.21 |
| LE-S | 90.02 (79.95; 99.64) | 91.43 (83.55; 99.16) | 0.07 |
| CE-S | 97.37 (94.71; 115.45) | 102.26 (92.63; 112.96) | 0.49 |
| Sum-S | 391.83 (362.82; 418.17) | 386.99 (374.99; 428.50) | 0.11 |
| GC-R | −95.90 (−110.15; −87.52) | −90.63 (−97.30; −85.68) | 0.41 |
| BF-R | −93.58 (−99.72; −85.65) | −96.48 (−105.67; −87.32) | 0.60 |
| LE-R | −88.55 (−93.87; −73.45) | −91.68 (−96.08; −84.50) | 0.55 |
| CE-R | −102.05 (−116.78; −90.55) | −98.02 (−104.83; −91.85) | 0.75 |
| Sum-R | −370.82 (−410.03; −350.53) | −375.25 (−399.20; −360.58) | 0.51 |
| GC-C | −5.51 (−6.13; −4.98) | −5.96 (−6.41; −5.57) | 0.39 |
| BF-C | −5.68 (−5.93; −5.21) | −5.49 (−6.07; −5.11) | 0.84 |
| LE-C | −5.77 (−6.38; −5.48) | −5.43 (−5.78; −5.19) | 0.90 |
| CE-C | −5.05 (−5.45; −4.51) | −5.12 (−5.35; −4.83) | 0.95 |
| Sum-C | −22.30 (−23.00; −20.90) | −22.20 (−23.02; −20.81) | 0.81 |
| PCS Rumin. | PCS Magnif. | PCS Helplesn. | PCS Sum | SOPA Emotions | SOPA Control | SOPA Phys. Harm. | SOPA Sum | |
|---|---|---|---|---|---|---|---|---|
| GC-F | 0.00 | −0.01 | −0.18 | −0.06 | −0.04 | −0.23 | 0.21 | 0.09 |
| BF-F | 0.05 | 0.12 | −0.41 | −0.09 | −0.40 | −0.23 | −0.24 | −0.34 |
| LE-F | −0.46 | −0.76 * | 0.02 | −0.46 | −0.14 | 0.49 | 0.18 | 0.16 |
| CE-F | −0.03 | −0.27 | 0.34 | −0.01 | −0.02 | 0.08 | −0.01 | 0.03 |
| Sum-F | −0.09 | −0.15 | 0.05 | −0.11 | −0.23 | −0.22 | −0.03 | −0.14 |
| GC-D | −0.04 | −0.43 | 0.08 | −0.07 | −0.21 | −0.04 | 0.07 | −0.02 |
| BF-D | −0.02 | −0.01 | 0.02 | −0.04 | 0.05 | 0.17 | 0.54 * | 0.32 |
| LE-D | 0.22 | −0.06 | 0.24 | 0.23 | 0.30 | 0.28 | 0.65 * | 0.49 |
| CE-D | −0.68 * | −0.46 | −0.09 | −0.65 * | −0.43 | −0.26 | −0.16 | −0.39 |
| Sum-D | −0.55 * | −0.61 * | 0.01 | −0.55 * | −0.31 | −0.02 | 0.19 | −0.04 |
| GC-S | −0.21 | −0.03 | −0.32 | −0.26 | −0.23 | 0.04 | 0.04 | 0.01 |
| BF-S | 0.17 | 0.18 | −0.30 | 0.05 | −0.17 | −0.16 | −0.04 | −0.12 |
| LE-S | −0.35 | −0.62 * | −0.10 | −0.38 | −0.06 | 0.44 | 0.30 | 0.24 |
| CE-S | −0.24 | −0.46 | 0.36 | −0.19 | −0.05 | 0.05 | −0.01 | −0.01 |
| Sum-S | −0.39 | −0.28 | −0.09 | −0.40 | −0.22 | −0.07 | −0.08 | −0.12 |
| GC-R | 0.08 | 0.02 | 0.46 | 0.23 | 0.27 | 0.23 | −0.00 | 0.14 |
| BF-R | −0.07 | −0.08 | 0.28 | 0.04 | 0.37 | 0.36 | 0.32 | 0.41 |
| LE-R | 0.47 | 0.77 * | 0.01 | 0.48 | 0.16 | −0.41 | −0.29 | −0.19 |
| CE-R | 0.10 | 0.36 | −0.43 | 0.05 | 0.02 | −0.13 | −0.04 | −0.05 |
| Sum-R | 0.30 | 0.42 | 0.05 | 0.37 | 0.41 | 0.08 | −0.04 | 0.15 |
| GC-C | −0.06 | −0.10 | 0.45 | 0.10 | 0.11 | 0.23 | −0.05 | 0.06 |
| BF-C | −0.21 | −0.17 | 0.22 | −0.09 | 0.30 | 0.32 | 0.35 | 0.38 |
| LE-C | 0.44 | 0.77 * | −0.07 | 0.45 | 0.08 | −0.42 | −0.24 | −0.19 |
| CE-C | 0.09 | 0.38 | −0.45 | 0.04 | 0.00 | −0.08 | 0.00 | −0.02 |
| Sum-C | 0.27 | 0.42 | 0.10 | 0.39 | 0.30 | 0.06 | 0.05 | 0.16 |
| PCS Rumin. | PCS Magnif. | PCS Helplesn. | PCS Sum | SOPA Emotions | SOPA Control | SOPA Phys. Harm | SOPA Sum | |
|---|---|---|---|---|---|---|---|---|
| GC-F | −0.22 | −0.17 | 0.08 | −0.15 | −0.10 | −0.15 | 0.12 | −0.10 |
| BF-F | −0.14 | 0.03 | −0.11 | −0.13 | −0.09 | −0.38 | −0.01 | −0.12 |
| LE-F | 0.06 | −0.19 | −0.23 | −0.00 | 0.02 | −0.09 | 0.13 | 0.00 |
| CE-F | −0.11 | 0.28 | 0.00 | −0.10 | −0.16 | −0.15 | −0.06 | −0.26 |
| Sum-F | −0.02 | 0.26 | 0.12 | 0.07 | −0.27 | −0.43 | −0.05 | −0.31 |
| GC-D | −0.04 | −0.62 * | −0.46 | −0.32 | 0.30 | −0.16 | 0.26 | 0.18 |
| BF-D | 0.03 | 0.11 | −0.06 | 0.09 | 0.22 | −0.27 | 0.41 | 0.25 |
| LE-D | −0.19 | −0.05 | −0.61 * | −0.37 | 0.34 | 0.05 | −0.07 | 0.23 |
| CE-D | 0.16 | 0.07 | −0.12 | 0.09 | 0.16 | −0.02 | 0.01 | 0.22 |
| Sum-D | 0.11 | −0.21 | −0.60 * | −0.16 | 0.48 | −0.27 | 0.32 | 0.41 |
| GC-S | −0.02 | −0.22 | 0.04 | −0.03 | 0.10 | −0.18 | 0.17 | 0.07 |
| BF-S | −0.05 | 0.02 | −0.09 | 0.02 | −0.15 | −0.17 | 0.09 | −0.10 |
| LE-S | −0.08 | −0.19 | −0.30 | −0.13 | 0.10 | −0.11 | 0.17 | 0.05 |
| CE-S | −0.16 | 0.10 | −0.09 | −0.22 | 0.02 | −0.09 | −0.06 | −0.13 |
| Sum-S | −0.14 | 0.06 | −0.09 | −0.09 | 0.10 | −0.17 | 0.20 | 0.04 |
| GC-R | 0.19 | 0.08 | 0.00 | 0.15 | −0.05 | 0.19 | −0.10 | −0.00 |
| BF-R | −0.00 | −0.20 | −0.12 | −0.15 | 0.20 | 0.10 | −0.02 | 0.10 |
| LE-R | 0.16 | 0.25 | 0.29 | 0.20 | −0.09 | −0.02 | −0.14 | −0.05 |
| CE-R | 0.20 | −0.11 | −0.01 | 0.21 | 0.00 | 0.00 | 0.03 | 0.13 |
| Sum-R | 0.07 | −0.07 | −0.14 | −0.03 | −0.06 | 0.02 | −0.18 | −0.09 |
| GC-C | 0.20 | 0.07 | 0.02 | 0.15 | −0.05 | 0.23 | −0.13 | 0.00 |
| BF-C | −0.07 | −0.24 | −0.17 | −0.22 | 0.29 | 0.09 | 0.07 | 0.17 |
| LE-C | 0.19 | 0.39 | 0.31 | 0.26 | −0.07 | 0.03 | −0.14 | −0.01 |
| CE-C | 0.15 | 0.04 | 0.02 | 0.22 | 0.06 | 0.06 | 0.06 | 0.21 |
| Sum-C | 0.08 | 0.08 | −0.02 | 0.05 | 0.09 | 0.11 | −0.08 | 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dębski, P.; Szlachta, G.; Biały, M.; Białas, E.; Kublin, K. The Relationship Between Attitude Toward Pain and the Effects of Foam Rolling on Biomechanical Parameters of Soft Tissues Measured with the MyotonPRO Device. Healthcare 2025, 13, 2809. https://doi.org/10.3390/healthcare13212809
Dębski P, Szlachta G, Biały M, Białas E, Kublin K. The Relationship Between Attitude Toward Pain and the Effects of Foam Rolling on Biomechanical Parameters of Soft Tissues Measured with the MyotonPRO Device. Healthcare. 2025; 13(21):2809. https://doi.org/10.3390/healthcare13212809
Chicago/Turabian StyleDębski, Przemysław, Grzegorz Szlachta, Maciej Biały, Ewelina Białas, and Kamil Kublin. 2025. "The Relationship Between Attitude Toward Pain and the Effects of Foam Rolling on Biomechanical Parameters of Soft Tissues Measured with the MyotonPRO Device" Healthcare 13, no. 21: 2809. https://doi.org/10.3390/healthcare13212809
APA StyleDębski, P., Szlachta, G., Biały, M., Białas, E., & Kublin, K. (2025). The Relationship Between Attitude Toward Pain and the Effects of Foam Rolling on Biomechanical Parameters of Soft Tissues Measured with the MyotonPRO Device. Healthcare, 13(21), 2809. https://doi.org/10.3390/healthcare13212809

