Real-World Evidence on the Use of Traditional Korean Medicine in Managing Intervertebral Disc Disease
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Source and Study Participants
2.2. Outcome and Explanatory Variables
2.3. Statistical Analysis
3. Results
3.1. General Characteristics of Users of Healthcare for Intervertebral Disc Disease
3.2. Factors Associated with Healthcare Use for Intervertebral Disc Disease
3.3. Healthcare Services for Patients with Intervertebral Disc Disease
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CMHC | Conventional medicine healthcare |
DDD | Degenerative disc disease |
IVDD | Intervertebral disc disease |
KHPS | Korea Health Panel Survey |
KMHC | Korean medicine healthcare |
MRI | Magnetic resonance imaging |
RWE | Real-world evidence |
References
- Wu, P.H.; Kim, H.S.; Jang, I.T. Intervertebral Disc Diseases PART 2: A Review of the Current Diagnostic and Treatment Strategies for Intervertebral Disc Disease. Int. J. Mol. Sci. 2020, 21, 2135. [Google Scholar] [CrossRef]
- MedlinePlus. Bethesda (MD): National Library of Medicine (US). Intervertebral Disc Disease. Available online: https://medlineplus.gov/genetics/condition/intervertebral-disc-disease/ (accessed on 13 November 2024).
- Katz, J.N. Lumbar disc disorders and low-back pain: Socioeconomic factors and consequences. J. Bone Joint Surg. Am. 2006, 88 (Suppl. 2), 21–24. [Google Scholar] [CrossRef]
- Donnally, C.J., III.; Hanna, A.; Varacallo, M. Lumbar Degenerative Disk Disease. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK448134/ (accessed on 19 November 2024).
- HIRA Bigdata Open Portal. Statistics of Frequent Diseases. Available online: https://opendata.hira.or.kr/op/opc/olapHifrqSickInfoTab1.do (accessed on 13 November 2024).
- Medical Advisory Secretariat. Artificial discs for lumbar and cervical degenerative disc disease-update: An evidence-based analysis. Ont. Health Technol. Assess. Ser. 2006, 6, 1–98. [Google Scholar]
- Zhao, X.M.; Chen, A.F.; Lou, X.X.; Zhang, Y.G. Comparison of Three Common Intervertebral Disc Discectomies in the Treatment of Lumbar Disc Herniation: A Systematic Review and Meta-Analysis Based on Multiple Data. J. Clin. Med. 2022, 11, 6604. [Google Scholar] [CrossRef]
- Gugliotta, M.; da Costa, B.R.; Dabis, E.; Theiler, R.; Jüni, P.; Reichenbach, S.; Landolt, H.; Hasler, P. Surgical versus conservative treatment for lumbar disc herniation: A prospective cohort study. BMJ Open 2016, 6, e012938. [Google Scholar] [CrossRef] [PubMed]
- Sung, A.D.; Choi, S.Y.; Park, M.; Sung, S.-H. A Study on the Characteristics of the Awareness and Satisfication Level of Musculoskeletal Patients and Non-Musculoskeletal Patients that Use Korean Medical Institutions. J. Soc. Prev. Korean Med. 2020, 24, 27–38. [Google Scholar]
- Park, Y.; Goo, B.; Lee, S.; Baek, Y.; Nam, S.; Kim, D.; Jo, D.; Kim, K.; Kim, S.; Seo, B. Integrative treatment package for degenerative disc disease in the lumbar spine: A retrospective case series. Eur. J. Integr. Med. 2018, 19, 10–16. [Google Scholar] [CrossRef]
- Lee, N.W.; Lee, J.; Yun, J.M.; Kim, S.; Chung, W.S. Integrative Medicine Focusing on Ultrasound-Guided High-Dose Shinbaro 2 Pharmacopuncture for Acute Herniated Intervertebral Discs: A Case Report. Healthcare 2024, 12, 1620. [Google Scholar] [CrossRef]
- Lim, K.-T.; Hwang, E.-H.; Cho, J.-H.; Jung, J.-Y.; Kim, K.-W.; Ha, I.-H.; Kim, M.-r.; Nam, K.; Lee, A.M.h.; Lee, J.-H.; et al. Comparative effectiveness of Chuna manual therapy versus conventional usual care for non-acute low back pain: A pilot randomized controlled trial. Trials 2019, 20, 216. [Google Scholar] [CrossRef]
- Park, J.H.; Choi, K.E.; Kim, S.G.; Chu, H.Y.; Lee, S.W.; Kim, T.J.; Cho, H.W.; Kim, S.D.; Park, K.S.; Lee, Y.J.; et al. Long-Term Follow-Up of Inpatients with Failed Back Surgery Syndrome Who Received Integrative Korean Medicine Treatment: A Retrospective Analysis and Questionnaire Survey Study. J. Clin. Med. 2021, 10, 1703. [Google Scholar] [CrossRef]
- Sherman, R.E.; Anderson, S.A.; Dal Pan, G.J.; Gray, G.W.; Gross, T.; Hunter, N.L.; LaVange, L.; Marinac-Dabic, D.; Marks, P.W.; Robb, M.A.; et al. Real-World Evidence—What Is It and What Can It Tell Us? N. Engl. J. Med. 2016, 375, 2293–2297. [Google Scholar] [CrossRef]
- Burns, L.; Le Roux, N.; Kalesnik-Orszulak, R.; Christian, J.; Dudinak, J.; Rockhold, F.; Khozin, S.; O’Donnell, J. Real-world evidence for regulatory decision-making: Updated guidance from around the world. Front. Med. 2023, 10, 1236462. [Google Scholar] [CrossRef]
- Andersen, R.M. Revisiting the behavioral model and access to medical care: Does it matter? J. Health Soc. Behav. 1995, 36, 1–10. [Google Scholar] [CrossRef]
- Gelberg, L.; Andersen, R.M.; Leake, B.D. The Behavioral Model for Vulnerable Populations: Application to medical care use and outcomes for homeless people. Health Serv. Res. 2000, 34, 1273–1302. [Google Scholar] [PubMed]
- Andersen, R.M. National health surveys and the behavioral model of health services use. Med. Care 2008, 46, 647–653. [Google Scholar] [CrossRef] [PubMed]
- Andersen, R.M.; Davidson, P.L.; Baumeister, S.E. Improving access to care. In Changing the U.S. Health Care System: Key Issues in Health Services Policy and Management, 4th ed.; Kominski, G.F., Ed.; Jossey-Bass: San Francisco, CA, USA, 2013. [Google Scholar]
- Andersen, R.; Newman, J.F. Societal and individual determinants of medical care utilization in the United States. Milbank Mem. Fund. Q. Health Soc. 1973, 51, 95–124. [Google Scholar] [CrossRef] [PubMed]
- Aday, L.A.; Andersen, R. A framework for the study of access to medical care. Health Serv. Res. 1974, 9, 208–220. [Google Scholar]
- Wan, T.T.; Yates, A.S. Prediction of dental services utilization: A multivariate approach. Inquiry 1975, 12, 143–156. [Google Scholar]
- Chern, J.Y.; Wan, T.T.; Begun, J.W. A structural equation modeling approach to examining the predictive power of determinants of individuals’ health expenditures. J. Med. Syst. 2002, 26, 323–336. [Google Scholar] [CrossRef]
- El-Habil, A.M. An application on multinomial logistic regression model. Pak. J. Stat. Oper. Res. 2012, 8, 271–291. [Google Scholar] [CrossRef]
- Wang, B.R.; Choi, I.Y.; Kim, K.J.; Kwon, Y.D. Use of traditional Korean medicine by patients with musculoskeletal disorders. PLoS ONE 2013, 8, e63209. [Google Scholar] [CrossRef]
- Krzyż, E.Z.; Antunez Martinez, O.F.; Lin, H.R. Uses of Andersen health services utilization framework to determine healthcare utilization for mental health among migrants-a scoping review. Front. Public Health 2023, 11, 1284784. [Google Scholar] [CrossRef]
- Collier Villaume, S.; Chen, S.; Adam, E.K. Age Disparities in Prevalence of Anxiety and Depression Among US Adults During the COVID-19 Pandemic. JAMA Netw. Open 2023, 6, e2345073. [Google Scholar] [CrossRef]
- Laryionava, K.; Heußner, P.; Hiddemann, W.; Winkler, E.C. “Rather one more chemo than one less…”: Oncologists and Oncology Nurses’ Reasons for Aggressive Treatment of Young Adults with Advanced Cancer. Oncologist 2018, 23, 256–262. [Google Scholar] [CrossRef]
- Sung, A.D.; Baik, Y.S.; Jang, S.; Park, J.K.; Sung, H.K.; Lee, J.Y.; Shin, B.C.; Choi, S.Y.; Sung, S.H. Utilization of Traditional Korean Medicine Services by the Older Population: A Cross-Sectional Study. Healthcare 2022, 10, 1444. [Google Scholar] [CrossRef] [PubMed]
- Turrentine, F.E.; Wang, H.; Simpson, V.B.; Jones, R.S. Surgical risk factors, morbidity, and mortality in elderly patients. J. Am. Coll. Surg. 2006, 203, 865–877. [Google Scholar] [CrossRef] [PubMed]
- Zazzara, M.B.; Palmer, K.; Vetrano, D.L.; Carfì, A.; Onder, G. Adverse drug reactions in older adults: A narrative review of the literature. Eur. Geriatr. Med. 2021, 12, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Jung, B.; Kim, J.; Ha, I.H.; Lee, J. Factors affecting utilisation of traditional Korean medical services by privately insured persons: A retrospective study using Korean Health Panel Survey (KHPS). BMJ Open 2020, 10, e033159. [Google Scholar] [CrossRef]
- Jang, H.-J.; Hong, S.-M.; Park, Y.-S.; Nam, D.-W.; Lim, D.-I.; Lee, J.-D.; Lee, Y.-H.; Lim, S. Economic evaluation of Eastern, Western and collaborative treatments for patients with frozen shoulder pain. J. Korean Med. 2007, 28, 72–86. [Google Scholar]
- Shin, J. Determinants of unmet healthcare needs among the community-dwelling Korean adults with disabilities: A case of the national health insurance beneficiaries. Health Soc. Welf. Rev. 2013, 33, 549–577. [Google Scholar] [CrossRef]
- Yim, M.H.; Lee, B. Factors affecting the use of herbal medicines for weight loss in overweight and obese adolescents. Front. Pediatr. 2023, 11, 1166786. [Google Scholar] [CrossRef]
- Bhoi, D.; Jain, D.; Garg, R.; Iyengar, K.P.; Hoda, W.; Vaishya, R.; Jain, V.K. Complementary and Alternative Modalities (CAM) for pain management in musculoskeletal diseases (MSDs). J. Clin. Orthop. Trauma 2021, 18, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.P.; Chen, T.J.; Kung, Y.Y.; Chen, Y.C.; Chou, L.F.; Chen, F.J.; Hwang, S.J. Use frequency of traditional Chinese medicine in Taiwan. BMC Health Serv. Res. 2007, 7, 26. [Google Scholar] [CrossRef] [PubMed]
- Clarke, T.C.; Black, L.I.; Stussman, B.J.; Barnes, P.M.; Nahin, R.L. Trends in the use of complementary health approaches among adults: United States, 2002–2012. Natl. Health Stat. Rep. 2015, 79, 1–16. [Google Scholar]
Variables | Total n (%) | CMHC-Only n (%) | Both KMHC and CMHC n (%) | KMHC-Only n (%) | p Value |
---|---|---|---|---|---|
Number of participants | 495 | 305 (65.72) † | 106 (21.76) † | 84 (12.53) † | |
Predisposing factors | |||||
Sex | 0.523 | ||||
Men | 188 (42.19) | 118 (44.17) | 44 (40.77) | 26 (34.31) | |
Women | 307 (57.81) | 187 (55.83) | 62 (59.23) | 58 (65.69) | |
Age | 0.030 * | ||||
19–44 | 64 (19.08) | 35 (16.32) | 20 (25.97) | 9 (21.58) | |
45–59 | 121 (40.71) | 83 (47.10) | 23 (29.62) | 15 (26.43) | |
60–74 | 202 (28.26) | 131 (26.34) | 41 (33.66) | 30 (28.95) | |
75 or older | 108 (11.95) | 56 (10.24) | 22 (10.74) | 30 (23.03) | |
Region | 0.045 * | ||||
Seoul/Incheon/Gyeonggi/Gangwon | 154 (55.62) | 107 (59.87) | 33 (52.56) | 14 (38.69) | |
Daejeon/Sejong/Chungcheong | 92 (10.97) | 53 (8.79) | 26 (15.72) | 13 (14.18) | |
Busan/Daegu/Ulsan/Gyeongsang | 124 (19.81) | 79 (20.48) | 24 (16.12) | 21 (22.68) | |
Gwangju/Jeolla/Jeju | 125 (13.60) | 66 (10.86) | 23 (15.60) | 36 (24.45) | |
Education level | 0.212 | ||||
Elementary school or below | 170 (19.23) | 104 (18.64) | 30 (15.27) | 36 (29.21) | |
Middle/High school | 211 (49.77) | 132 (49.63) | 50 (57.83) | 29 (36.48) | |
College or above | 114 (31.00) | 69 (31.72) | 26 (26.89) | 19 (34.31) | |
Marital status | 0.076 | ||||
Married/Living together | 363 (72.48) | 232 (74.93) | 80 (73.96) | 51 (57.08) | |
Widowed/Divorced/Separated/Never married | 132 (27.52) | 73 (25.07) | 26 (26.04) | 33 (42.92) | |
Enabling factors | |||||
Number of household members | 0.267 | ||||
1 | 79 (13.47) | 42 (12.23) | 14 (12.28) | 23 (22.04) | |
2 | 236 (29.71) | 152 (28.76) | 49 (34.02) | 35 (27.18) | |
3 | 71 (23.29) | 45 (21.05) | 14 (26.92) | 12 (28.72) | |
4 or more | 109 (33.54) | 66 (37.96) | 29 (26.77) | 14 (22.07) | |
Household income | 0.841 | ||||
1st quartile (lowest) | 115 (15.77) | 68 (15.53) | 18 (13.11) | 29 (21.60) | |
2nd quartile | 136 (19.57) | 81 (18.13) | 37 (24.72) | 18 (18.20) | |
3rd quartile | 116 (26.05) | 76 (26.63) | 21 (24.88) | 19 (25.01) | |
4th quartile (highest) | 128 (38.61) | 80 (39.71) | 30 (37.29) | 18 (35.20) | |
Indemnity private health insurance | 0.770 | ||||
No | 252 (33.63) | 154 (33.29) | 48 (31.98) | 50 (38.25) | |
Yes | 243 (66.37) | 151 (66.71) | 58 (68.02) | 34 (61.75) | |
Employment status | 0.327 | ||||
Unpaid family worker/unemployed | 221 (36.51) | 146 (37.17) | 38 (31.44) | 37 (41.85) | |
Employed | 209 (52.22) | 115 (49.63) | 53 (60.32) | 41 (51.74) | |
Self-employed | 65 (11.27) | 44 (13.20) | 15 (8.24) | 6 (6.41) | |
Need Factors | |||||
Disability | 0.071 | ||||
No | 439 (92.74) | 267 (91.32) | 99 (97.05) | 73 (92.71) | |
Yes | 56 (7.26) | 38 (8.68) | 7 (2.95) | 11 (7.29) | |
Perceived health status | 0.155 | ||||
Very good/Good | 104 (22.21) | 72 (24.42) | 16 (11.66) | 16 (28.94) | |
Fair | 220 (47.27) | 129 (47.53) | 53 (49.12) | 38 (42.72) | |
Poor/Very poor | 171 (30.52) | 104 (28.05) | 37 (39.22) | 30 (28.34) | |
Perceived stress | 0.722 | ||||
Barely | 110 (16.28) | 65 (16.24) | 19 (13.08) | 26 (22.06) | |
Low | 237 (50.54) | 145 (50.64) | 57 (54.62) | 35 (42.92) | |
High/Very high | 148 (33.18) | 95 (33.12) | 30 (32.30) | 23 (35.02) | |
Depressed mood | 0.780 | ||||
No | 451 (90.34) | 275 (90.80) | 98 (90.69) | 78 (87.28) | |
Yes | 44 (9.66) | 30 (9.20) | 8 (9.31) | 6 (12.72) | |
Regular physical activities | 0.046 * | ||||
No | 224 (47.99) | 151 (53.16) | 39 (39.00) | 34 (36.51) | |
Yes | 271 (52.01) | 154 (46.84) | 67 (61.00) | 50 (63.49) | |
Alcohol use | 0.609 | ||||
None | 244 (40.00) | 147 (37.30) | 52 (45.25) | 45 (45.01) | |
Monthly or less | 113 (25.95) | 68 (27.12) | 22 (20.66) | 23 (29.01) | |
2 or more times a month | 138 (34.05) | 90 (35.58) | 32 (34.09) | 16 (25.98) | |
Cigarette use | 0.262 | ||||
No | 437 (84.81) | 265 (83.56) | 93 (83.34) | 79 (93.94) | |
Yes | 58 (15.19) | 40 (16.44) | 13 (16.66) | 5 (6.06) | |
BMI | 0.593 | ||||
<23 | 188 (38.46) | 112 (37.28) | 42 (40.40) | 34 (41.32) | |
23.0–24.9 | 130 (24.34) | 83 (27.17) | 28 (20.05) | 19 (16.94) | |
≥25.0 | 177 (37.20) | 110 (35.56) | 36 (39.55) | 31 (41.73) | |
Arthritis | 0.664 | ||||
No | 357 (82.46) | 219 (82.51) | 82 (84.47) | 56 (78.71) | |
Yes | 138 (17.54) | 86 (17.49) | 24 (15.53) | 28 (21.29) | |
Shoulder joint diseases | 0.003 ** | ||||
No | 459 (94.58) | 288 (95.87) | 100 (96.25) | 71 (84.90) | |
Yes | 36 (5.42) | 17 (4.13) | 6 (3.75) | 13 (15.10) | |
Other spine diseases | 0.005 ** | ||||
No | 379 (84.62) | 241 (85.76) | 87 (89.70) | 51 (69.80) | |
Yes | 116 (15.38) | 64 (14.24) | 19 (10.30) | 33 (30.20) | |
Number of chronic diseases | 0.285 | ||||
0 | 230 (55.68) | 135 (53.94) | 56 (59.30) | 39 (58.50) | |
1 | 156 (27.07) | 107 (30.81) | 29 (20.22) | 20 (19.33) | |
2 or more | 109 (17.25) | 63 (15.25) | 21 (20.47) | 25 (22.17) |
Variables | Crude Analysis | Fully Adjusted Model | ||
---|---|---|---|---|
(Both KMHC and CMHC) vs. CMHC-Only | KMHC-Only vs. CMHC-Only | (Both KMHC and CMHC) vs. CMHC-Only | KMHC-Only vs. CMHC-Only | |
cOR (95% CI) | cOR (95% CI) | aOR (95% CI) | aOR (95% CI) | |
Predisposing factors | ||||
Sex | ||||
Men | 1 [Reference] | 1 [Reference] | 1 [Reference] | 1 [Reference] |
Women | 1.15 (0.63, 2.11) | 1.51 (0.75, 3.08) | 1.48 (0.69, 3.19) | 1.35 (0.55, 3.34) |
Age | ||||
19–44 | 1 [Reference] | 1 [Reference] | 1 [Reference] | 1 [Reference] |
45–59 | 0.40 * (0.16, 0.96) | 0.42 (0.14, 1.27) | 0.28 * (0.09, 0.89) | 0.49 (0.14, 1.77) |
60–74 | 0.80 (0.36, 1.79) | 0.83 (0.29, 2.34) | 0.68 (0.16, 2.87) | 1.40 (0.38, 5.11) |
75 or older | 0.66 (0.26, 1.69) | 1.70 (0.61, 4.75) | 1.15 (0.22, 5.99) | 4.80 (0.92, 25.09) |
Region | ||||
Seoul/Incheon/Gyeonggi/Gangwon | 1 [Reference] | 1 [Reference] | 1 [Reference] | 1 [Reference] |
Daejeon/Sejong/Chungcheong | 2.04 (0.93, 4.44) | 2.50 (0.81, 7.69) | 2.50 * (1.04, 6.02) | 2.59 (0.80, 8.38) |
Busan/Daegu/Ulsan/Gyeongsang | 0.90 (0.44, 1.85) | 1.71 (0.73, 4.01) | 1.20 (0.52, 2.74) | 1.58 (0.56, 4.40) |
Gwangju/Jeolla/Jeju | 1.64 (0.73, 3.65) | 3.48 ** (1.57, 7.70) | 2.95 * (1.23, 7.09) | 4.61 ** (1.67, 12.75) |
Education level | ||||
Elementary school or below | 1 [Reference] | 1 [Reference] | 1 [Reference] | 1 [Reference] |
Middle/High school | 1.42 (0.72, 2.82) | 0.47 (0.22, 1.02) | 1.81 (0.80, 4.08) | 0.97 (0.39, 2.44) |
College or above | 1.03 (0.48, 2.23) | 0.69 (0.31, 1.54) | 0.99 (0.27, 3.55) | 1.58 (0.45, 5.47) |
Marital status | ||||
Married/Living together | 1 [Reference] | 1 [Reference] | 1 [Reference] | 1 [Reference] |
Widowed/Divorced/Separated/Never married | 1.05 (0.55, 2.02) | 2.25 * (1.10, 4.59) | 0.71 (0.29, 1.71) | 1.85 (0.57, 5.94) |
Enabling factors | ||||
Number of household members | ||||
1 | 1 [Reference] | 1 [Reference] | 1 [Reference] | 1 [Reference] |
2 | 1.18 (0.49, 2.86) | 0.52 (0.22, 1.26) | 0.96 (0.28, 3.25) | 0.78 (0.21, 2.99) |
3 | 1.27 (0.44, 3.69) | 0.76 (0.27, 2.09) | 1.07 (0.28, 4.19) | 2.14 (0.51, 8.96) |
4 or more | 0.7 (0.27, 1.82) | 0.32 * (0.13, 0.82) | 0.56 (0.12, 2.55) | 0.82 (0.20, 3.45) |
Household income | ||||
1st quartile (lowest) | 1 [Reference] | 1 [Reference] | 1 [Reference] | 1 [Reference] |
2nd quartile | 1.62 (0.66, 3.98) | 0.72 (0.29, 1.83) | 1.56 (0.61, 4.02) | 0.98 (0.35, 2.75) |
3rd quartile | 1.11 (0.42, 2.92) | 0.68 (0.28, 1.63) | 0.98 (0.33, 2.90) | 1.17 (0.40, 3.42) |
4th quartile (highest) | 1.11 (0.45, 2.74) | 0.64 (0.26, 1.53) | 1.11 (0.39, 3.18) | 1.31 (0.32, 5.40) |
Indemnity private health insurance | ||||
No | 1 [Reference] | 1 [Reference] | 1 [Reference] | 1 [Reference] |
Yes | 1.06 (0.58, 1.93) | 0.81 (0.43, 1.52) | 1.34 (0.52, 3.48) | 1.73 (0.67, 4.46) |
Employment status | ||||
Unpaid family worker/unemployed | 1 [Reference] | 1 [Reference] | 1 [Reference] | 1 [Reference] |
Employed | 1.44 (0.75, 2.77) | 0.93 (0.45, 1.90) | 2.37 * (1.06, 5.30) | 1.45 (0.53, 3.94) |
Self-employed | 0.74 (0.31, 1.76) | 0.43 (0.14, 1.31) | 0.99 (0.34, 2.89) | 0.93 (0.21, 4.01) |
Need Factors | ||||
Disability | ||||
No | 1 [Reference] | 1 [Reference] | 1 [Reference] | 1 [Reference] |
Yes | 0.32 * (0.11, 0.90) | 0.83 (0.34, 2.01) | 0.27 * (0.09, 0.81) | 0.60 (0.20, 1.81) |
Perceived health status | ||||
Very good/Good | 1 [Reference] | 1 [Reference] | 1 [Reference] | 1 [Reference] |
Fair | 2.16 (0.89, 5.24) | 0.76 (0.32, 1.79) | 3.05 * (1.17, 8.00) | 0.84 (0.29, 2.48) |
Poor/Very poor | 2.93 * (1.16, 7.41) | 0.85 (0.34, 2.13) | 6.13 ** (2.04, 18.45) | 0.61 (0.20, 1.79) |
Perceived stress | ||||
Barely | 1 [Reference] | 1 [Reference] | 1 [Reference] | 1 [Reference] |
Low | 1.34 (0.62, 2.90) | 0.62 (0.27, 1.42) | 1.27 (0.57, 2.86) | 1 (0.36, 2.73) |
High/Very high | 1.21 (0.52, 2.81) | 0.78 (0.33, 1.85) | 1.07 (0.42, 2.69) | 1.51 (0.45, 5.04) |
Depressed mood | ||||
No | 1 [Reference] | 1 [Reference] | 1 [Reference] | 1 [Reference] |
Yes | 1.01 (0.40, 2.60) | 1.44 (0.52, 4.01) | 0.68 (0.26, 1.81) | 1.25 (0.36, 4.31) |
Regular physical activities | ||||
No | 1 [Reference] | 1 [Reference] | 1 [Reference] | 1 [Reference] |
Yes | 1.77 (0.96, 3.29) | 1.97 * (1.01, 3.84) | 1.88 (0.98, 3.61) | 2.65 * (1.19, 5.90) |
Alcohol use | ||||
None | 1 [Reference] | 1 [Reference] | 1 [Reference] | 1 [Reference] |
Monthly or less | 0.63 (0.28, 1.39) | 0.89 (0.39, 2.02) | 0.72 (0.31, 1.66) | 1.05 (0.41, 2.67) |
2 or more times a month | 0.79 (0.40, 1.55) | 0.61 (0.26, 1.39) | 0.83 (0.38, 1.81) | 0.68 (0.24, 1.92) |
Cigarette use | ||||
No | 1 [Reference] | 1 [Reference] | 1 [Reference] | 1 [Reference] |
Yes | 1.02 (0.43, 2.38) | 0.33 (0.09, 1.15) | 1.40 (0.55, 3.57) | 0.49 (0.10, 2.47) |
BMI | ||||
<23 | 1 [Reference] | 1 [Reference] | 1 [Reference] | 1 [Reference] |
23.0–24.9 | 0.68 (0.32, 1.47) | 0.56 (0.24, 1.32) | 0.66 (0.29, 1.50) | 0.65 (0.25, 1.70) |
≥25.0 | 1.03 (0.52, 2.04) | 1.06 (0.49, 2.3) | 1.08 (0.53, 2.20) | 1.62 (0.66, 3.97) |
Arthritis | ||||
No | 1 [Reference] | 1 [Reference] | 1 [Reference] | 1 [Reference] |
Yes | 0.87 (0.44, 1.69) | 1.28 (0.65, 2.52) | 0.76 (0.35, 1.63) | 0.58 (0.22, 1.54) |
Shoulder joint diseases | ||||
No | 1 [Reference] | 1 [Reference] | 1 [Reference] | 1 [Reference] |
Yes | 0.91 (0.29, 2.85) | 4.13 ** (1.56, 10.94) | 1.26 (0.34, 4.68) | 3.71 * (1.22, 11.29) |
Other spine diseases | ||||
No | 1 [Reference] | 1 [Reference] | 1 [Reference] | 1 [Reference] |
Yes | 0.69 (0.34, 1.42) | 2.61 * (1.25, 5.44) | 0.51 (0.21, 1.25) | 2.63 * (1.16, 5.96) |
Number of chronic diseases | ||||
0 | 1 [Reference] | 1 [Reference] | 1 [Reference] | 1 [Reference] |
1 | 0.60 (0.29, 1.22) | 0.58 (0.25, 1.34) | 0.56 (0.24, 1.26) | 0.51 (0.20, 1.29) |
2 or more | 1.22 (0.55, 2.71) | 1.34 (0.63, 2.85) | 1.17 (0.46, 2.95) | 1.49 (0.59, 3.75) |
Variables | Total | KMHC-Only | Both KMHC and CMHC | p Value |
---|---|---|---|---|
Number of participants | 190 | 84 | 106 | |
Healthcare services | ||||
Acupuncture | 182 (92.81) | 81 (91.93) | 101 (93.32) | 0.823 |
Moxibustion | 14 (8.63) | 5 (9.99) | 9 (7.84) | 0.711 |
Cupping therapy | 59 (27.46) | 31 (30.00) | 28 (26.00) | 0.641 |
Herbal decoction | 33 (13.94) | 13 (8.25) | 20 (17.22) | 0.073 |
Expensive herbal medicine preparations (such as Gongjindan) | 1 (0.23) | 1 (0.64) | 0 (0) | NA |
General herbal medicine preparations (such as granules and pills) | 25 (10.33) | 14 (12.99) | 11 (8.81) | 0.457 |
Pharmacopuncture | 46 (27.35) | 15 (19.95) | 31 (31.61) | 0.203 |
Chuna manual therapy | 18 (13.74) | 8 (12.49) | 10 (14.46) | 0.763 |
Manual therapy | 11 (6.98) | 2 (6.56) | 9 (7.22) | NA |
Physical therapy | 172 (90.54) | 71 (84.79) | 101 (93.85) | 0.202 |
Medical expenses of KMHC | ||||
Copayment per visit (KRW/visit) | 21,636 ± 2982 | 18,896 ± 4013 | 23,213 ± 4142 | 0.456 |
Day of healthcare uses | ||||
Annual number of healthcare uses (times/year) | 14.52 ± 1.91 | 14.38 ± 2.78 | 14.6 ± 2.54 | 0.953 |
Variables | Total | Both KMHC and CMHC | CMHC-Only | p Value |
---|---|---|---|---|
Number of participants | 411 | 106 | 305 | |
Healthcare services | ||||
High-cost imaging tests (MRI, CT, PET-CT) | 99 (26.48) | 36 (40.27) | 63 (21.92) | 0.010 * |
Intravenous injections (such as fluids and nutritional injections) | 46 (9.98) | 19 (17.23) | 27 (7.58) | 0.027 * |
Chemotherapy | 1 (0.06) | 0 (0) | 1 (0.08) | NA |
Manual therapy | 44 (14.42) | 9 (8.50) | 35 (16.38) | 0.090 |
Physical therapy | 266 (66.41) | 80 (78.51) | 186 (62.41) | 0.021 * |
Vaccination | 11 (1.64) | 3 (1.96) | 8 (1.53) | NA |
Blood test or urine test | 22 (5.54) | 5 (4.52) | 17 (5.87) | 0.651 |
Medical expenses of CMHC | ||||
Copayment per visit (KRW/visit) | 51,953 ± 4355 | 55,589 ± 8376 | 50,749 ± 5099 | 0.621 |
Day of healthcare uses | ||||
Annual number of healthcare uses (times/year) | 10.32 ± 1.21 | 12.31 ± 3.11 | 9.66 ± 1.22 | 0.429 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, B.; Jang, J.-S.; Yim, M.H. Real-World Evidence on the Use of Traditional Korean Medicine in Managing Intervertebral Disc Disease. Healthcare 2025, 13, 2661. https://doi.org/10.3390/healthcare13212661
Lee B, Jang J-S, Yim MH. Real-World Evidence on the Use of Traditional Korean Medicine in Managing Intervertebral Disc Disease. Healthcare. 2025; 13(21):2661. https://doi.org/10.3390/healthcare13212661
Chicago/Turabian StyleLee, Boram, Jun-Su Jang, and Mi Hong Yim. 2025. "Real-World Evidence on the Use of Traditional Korean Medicine in Managing Intervertebral Disc Disease" Healthcare 13, no. 21: 2661. https://doi.org/10.3390/healthcare13212661
APA StyleLee, B., Jang, J.-S., & Yim, M. H. (2025). Real-World Evidence on the Use of Traditional Korean Medicine in Managing Intervertebral Disc Disease. Healthcare, 13(21), 2661. https://doi.org/10.3390/healthcare13212661