Impact of Chemotherapy on Motor–Cognitive Dual-Task Performance in Strength and Mobility Tests
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Measurement of Outcomes
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Cancer Group vs. Control Group Comparison
3.3. Comparisons Between Cancer Patients Undergoing Chemotherapy, Cancer Survivors, and Healthy Control Individuals
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CRCI | Chemotherapy-related cognitive impairment |
| DT | Dual task |
| DTC | Dual-task cost |
| TUG | Timed Up and Go |
| CIPN | Chemotherapy-induced peripheral neuropathy |
| IPAQ | International Physical Activity Questionnaire |
| FACT-G | Functional Assessment of Chronic Illness Therapy for quality of life |
| FACIT-F | Functional Assessment of Chronic Illness Therapy for fatigue |
| MOCA | Montreal Cognitive Assessment |
| CST | Chair Stand Test |
| ACT | Arm Curl Test |
| SFT | Senior Fitness Test |
| BMI | Body mass index |
References
- Ferlay, J.; Ervik, M.; Lam, F.; Laversanne, M.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory: Cancer Today. Available online: https://gco.iarc.fr/today/en/dataviz/tables?mode=population&types=1 (accessed on 20 September 2025).
- Allemani, C.; Matsuda, T.; Di Carlo, V.; Harewood, R.; Matz, M.; Niksic, M.; Bonaventure, A.; Valkov, M.; Johnson, C.J.; Esteve, J.; et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): Analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet 2018, 391, 1023–1075. [Google Scholar] [CrossRef] [PubMed]
- Anand, U.; Dey, A.; Chandel, A.K.S.; Sanyal, R.; Mishra, A.; Pandey, D.K.; De Falco, V.; Upadhyay, A.; Kandimalla, R.; Chaudhary, A.; et al. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2023, 10, 1367–1401. [Google Scholar] [CrossRef]
- Pituskin, E. Cancer as a new chronic disease: Oncology nursing in the 21st Century. Can. Oncol. Nurs. J. 2022, 32, 87–92. [Google Scholar]
- Morrow, G.R.; Andrews, P.L.; Hickok, J.T.; Roscoe, J.A.; Matteson, S. Fatigue associated with cancer and its treatment. Support. Care Cancer 2002, 10, 389–398. [Google Scholar] [CrossRef]
- Dillon, H.T.; Foulkes, S.J.; Baik, A.H.; Scott, J.M.; Touyz, R.M.; Herrmann, J.; Haykowsky, M.J.; Gerche, A.L.; Howden, E.J. Cancer Therapy and Exercise Intolerance: The Heart Is But a Part. JACC CardioOncology 2024, 6, 496–513. [Google Scholar] [CrossRef]
- Jones, J.M.; Olson, K.; Catton, P.; Catton, C.N.; Fleshner, N.E.; Krzyzanowska, M.K.; McCready, D.R.; Wong, R.K.S.; Jiang, H.; Howell, D. Cancer-related fatigue and associated disability in post-treatment cancer survivors. J. Cancer Surviv. 2016, 10, 51–61. [Google Scholar] [CrossRef]
- Ryan, A.M.; Power, D.G.; Daly, L.; Cushen, S.J.; Ní Bhuachalla, Ē.; Prado, C.M. Cancer-associated malnutrition, cachexia and sarcopenia: The skeleton in the hospital closet 40 years later. Proc. Nutr. Soc. 2016, 75, 199–211. [Google Scholar] [CrossRef]
- Neo, J.; Fettes, L.; Gao, W.; Higginson, I.J.; Maddocks, M. Disability in activities of daily living among adults with cancer: A systematic review and meta-analysis. Cancer Treat. Rev. 2017, 61, 94–106. [Google Scholar] [CrossRef]
- Leskinen, S.; Alsalek, S.; Galvez, R.; Ononogbu-Uche, F.C.; Shah, H.A.; Vojnic, M.; D’Amico, R.S. Chemotherapy-Related Cognitive Impairment and Changes in Neural Network Dynamics. Neurology 2025, 104, e210130. [Google Scholar] [CrossRef]
- Simó, M.; Rifà-Ros, X.; Rodriguez-Fornells, A.; Bruna, J. Chemobrain: A systematic review of structural and functional neuroimaging studies. Neurosci. Biobehav. Rev. 2013, 37, 1311–1321. [Google Scholar] [CrossRef]
- Kim, H.-G.; Rashid, M.A.; Poleschuk, M.; Ullah, F.; Lee, S.H.; Kim, S.H.; Qin, B.; Zheng, X.F.S.; Jang, M.-H. Cognitive dysfunction in chemobrain: Molecular mechanisms and therapeutic implications. Biomed. Pharmacother. 2025, 192, 118581. [Google Scholar] [CrossRef]
- Janelsins, M.C.; Kohli, S.; Mohile, S.G.; Usuki, K.; Ahles, T.A.; Morrow, G.R. An Update on Cancer- and Chemotherapy-Related Cognitive Dysfunction: Current Status. Semin. Oncol. 2011, 38, 431–438. [Google Scholar] [CrossRef]
- Janelsins, M.C.; Kesler, S.R.; Ahles, T.A.; Morrow, G.R. Prevalence, mechanisms, and management of cancer-related cognitive impairment. Int. Rev. Psychiatry 2014, 26, 102–113. [Google Scholar] [CrossRef]
- Hsu, T.; Ennis, M.; Hood, N.; Graham, M.; Goodwin, P.J. Quality of Life in Long-Term Breast Cancer Survivors. J. Clin. Oncol. 2013, 31, 3540–3548. [Google Scholar] [CrossRef] [PubMed]
- Reid-Arndt, S.A.; Hsieh, C.; Perry, M.C. Neuropsychological functioning and quality of life during the first year after completing chemotherapy for breast cancer. Psycho-Oncol. 2010, 19, 535–544. [Google Scholar] [CrossRef]
- Ahles, T.A.; Saykin, A.J.; Furstenberg, C.T.; Cole, B.; Mott, L.A.; Skalla, K.; Whedon, M.B.; Bivens, S.; Mitchell, T.; Greenberg, E.R.; et al. Neuropsychologic Impact of Standard-Dose Systemic Chemotherapy in Long-Term Survivors of Breast Cancer and Lymphoma. J. Clin. Oncol. 2002, 20, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Ahles, T.A.; Root, J.C.; Ryan, E.L. Cancer- and Cancer Treatment–Associated Cognitive Change: An Update on the State of the Science. J. Clin. Oncol. 2012, 30, 3675–3686. [Google Scholar] [CrossRef]
- Della, S.; Baddeley, A.; Papagno, C.; Spinnler, H. Dual-Task Paradigm: A Means To Examine the Central Executive. Ann. N. Y. Acad. Sci. 1995, 769, 161–172. [Google Scholar] [CrossRef]
- Yang, L.; Lam, F.M.H.; Liao, L.R.; Huang, M.Z.; He, C.Q.; Pang, M.Y.C. Psychometric properties of dual-task balance and walking assessments for individuals with neurological conditions: A systematic review. Gait Posture 2017, 52, 110–123. [Google Scholar] [CrossRef]
- Reinmann, A.; Bodmer, A.; Koessler, T.; Gligorov, J.; Bruyneel, A.-V. Postural control impairments following neurotoxic chemotherapy in women with cancer: A prospective observational study. BMC Women’s Health 2025, 25, 269. [Google Scholar] [CrossRef]
- Blackwood, J.; Rybicki, K. Assessment of Gait Speed and Timed Up and Go Measures as Predictors of Falls in Older Breast Cancer Survivors. Integr. Cancer Ther. 2021, 20, 15347354211006462. [Google Scholar] [CrossRef]
- Monfort, S.M.; Pan, X.; Loprinzi, C.L.; Lustberg, M.B.; Chaudhari, A.M.W. Exploring the Roles of Central and Peripheral Nervous System Function in Gait Stability: Preliminary Insights from Cancer Survivors. Gait Posture 2019, 71, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Worthen-Chaudhari, L.C.; Crasta, J.E.; Schnell, P.M.; Lantis, K.; Martis, J.; Wilder, J.; Bland, C.R.; Hackney, M.E.; Lustberg, M.B. Neurologic dance training and home exercise improve motor-cognitive dual-task function similarly, but through potentially different mechanisms, among breast cancer survivors with chemotherapy-induced neuropathy: Initial results of a randomized, controlled clinical trial. J. Alzheimer’s Dis. 2025, 105, 1114–1130. [Google Scholar] [CrossRef]
- Liao, J.; Wang, J.; Jia, S.; Cai, Z.; Liu, H. Correlation of muscle strength, working memory, and activities of daily living in older adults. Front. Aging Neurosci. 2024, 16, 1453527. [Google Scholar] [CrossRef] [PubMed]
- Vega, M.C.; Laviano, A.; Pimentel, G.D. Sarcopenia and chemotherapy-mediated toxicity. Einstein 2016, 14, 580–584. [Google Scholar] [CrossRef]
- Morishita, S.; Mitobe, Y.; Tsubaki, A.; Aoki, O.; Fu, J.B.; Onishi, H.; Tsuji, T. Differences in Balance Function Between Cancer Survivors and Healthy Subjects: A Pilot Study. Integr. Cancer Ther. 2018, 17, 1144–1149. [Google Scholar] [CrossRef]
- Ruiz-Casado, A.; Alejo, L.B.; Santos-Lozano, A.; Soria, A.; Ortega, M.J.; Pagola, I.; Fiuza-Luces, C.; Palomo, I.; Garatachea, N.; Cebolla, H.; et al. Validity of the Physical Activity Questionnaires IPAQ-SF and GPAQ for Cancer Survivors: Insights from a Spanish Cohort. Int. J. Sports Med. 2016, 37, 979–985. [Google Scholar] [CrossRef]
- Brucker, P.S.; Yost, K.; Cashy, J.; Webster, K.; Cella, D. General Population and Cancer Patient Norms for the Functional Assessment of Cancer Therapy-General (FACT-G). Eval. Health Prof. 2005, 28, 192–211. [Google Scholar] [CrossRef]
- Lindqvist Bagge, A.-S.; Carlander, A.; Fahlke, C.; Olofsson Bagge, R. Health-related quality of life (FACT-GP) in Sweden. Health Qual. Life Outcomes 2020, 18, 172. [Google Scholar] [CrossRef]
- Butt, Z.; Lai, J.-s.; Rao, D.; Heinemann, A.W.; Bill, A.; Cella, D. Measurement of fatigue in cancer, stroke, and HIV using the Functional Assessment of Chronic Illness Therapy—Fatigue (FACIT-F) scale. J. Psychosom. Res. 2013, 74, 64–68. [Google Scholar] [CrossRef]
- Arcuri, G.G.; Palladini, L.; Dumas, G.; Lemoignan, J.; Gagnon, B. Exploring the measurement properties of the Montreal Cognitive Assessment in a population of people with cancer. Support. Care Cancer 2015, 23, 2779–2787. [Google Scholar] [CrossRef]
- Podsiadlo, D.; Richardson, S. The Timed “Up & Go”: A Test of Basic Functional Mobility for Frail Elderly Persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Rikli, R.E.; Jones, C.J. Senior Fitness Test Manual; Human Kinetics: Champaign, IL, USA, 2013. [Google Scholar]
- Almugbel, F.A.; Timilshina, N.; Papadopoulos, E.; Al-Showbaki, L.; Alibhai, S.M.H. The role of grip strength and short physical performance battery test in predicting chemotherapy-related outcomes in older adults with cancer. J. Geriatr. Oncol. 2022, 13, 318–324. [Google Scholar] [CrossRef] [PubMed]
- The Jamovi Project Jamovi, version 2.6; Sydney, NSW, Australia, 2025.
- Gultekin, S.C.; Cakir, A.B.; Guc, Z.G.; Ozalp, F.R.; Keskinkilic, M.; Yavuzsen, T.; Yavuzsen, H.T.; Karadibak, D. The comparison of functional status and health-related parameters in ovarian cancer survivors with healthy controls. Support. Care Cancer 2024, 32, 119. [Google Scholar] [CrossRef] [PubMed]
- Antwi, G.O.; Jayawardene, W.; Lohrmann, D.K.; Mueller, E.L. Physical activity and fitness among pediatric cancer survivors: A meta-analysis of observational studies. Support. Care Cancer 2019, 27, 3183–3194. [Google Scholar] [CrossRef]
- Edvardsen, E.; Ruud, E.; Rueegg, C.S.; Kvidaland, H.K.; Torsvik, I.K.; Bovim, L.P.V.; Grydeland, M.; Von Der Weid, N.; Anderssen, S.A.; Kriemler, S.; et al. Physical Fitness and Physical Activity in Adolescent Childhood Cancer Survivors and Controls: The PACCS Study. Med. Sci. Sports Exerc. 2025, 57, 2286–2293. [Google Scholar] [CrossRef]
- Ballesteros, S.; Manga, D.; Coello, T. Attentional resources in dual-task performance. Bull. Psychon. Soc. 1989, 27, 425–428. [Google Scholar] [CrossRef]
- Bloem, B.R.; Grimbergen, Y.A.M.; van Dijk, J.G.; Munneke, M. The “posture second” strategy: A review of wrong priorities in Parkinson’s disease. J. Neurol. Sci. 2006, 248, 196–204. [Google Scholar] [CrossRef]
- Yogev-Seligmann, G.; Rotem-Galili, Y.; Mirelman, A.; Dickstein, R.; Giladi, N.; Hausdorff, J.M. How Does Explicit Prioritization Alter Walking During Dual-Task Performance? Effects of Age and Sex on Gait Speed and Variability. Phys. Ther. 2010, 90, 177–186. [Google Scholar] [CrossRef]
- Ebrahimi, N.; Javadinia, S.A.; Salek, R.; Fanipakdel, A.; Sepahi, S.; Dehghani, M.; Valizadeh, N.; Mohajeri, S.A. Randomized, Double-Blind, Placebo-Controlled Clinical Trial of Concurrent Use of Crocin During Chemoradiation for Esophageal Squamous Cell Carcinoma. Cancer Investig. 2024, 42, 155–164. [Google Scholar] [CrossRef]
- Sedighi Pashaki, A.; Sheida, F.; Moaddab Shoar, L.; Hashem, T.; Fazilat-Panah, D.; Nemati Motehaver, A.; Ghanbari Motlagh, A.; Nikzad, S.; Bakhtiari, M.; Tapak, L.; et al. A Randomized, Controlled, Parallel-Group, Trial on the Long-term Effects of Melatonin on Fatigue Associated with Breast Cancer and Its Adjuvant Treatments. Integr. Cancer Ther. 2023, 22, 15347354231168624. [Google Scholar] [CrossRef]
- Sadeghi Yazdankhah, S.; Javadinia, S.A.; Welsh, J.S.; Mosalaei, A. Efficacy of Melatonin in Alleviating Radiotherapy-Induced Fatigue, Anxiety, and Depression in Breast Cancer Patients: A Randomized, Triple-Blind, Placebo-Controlled Trial. Integr. Cancer Ther. 2025, 24, 15347354251371705. [Google Scholar] [CrossRef]
- Bianchini, E.; Warmerdam, E.; Romijnders, R.; Hansen, C.; Pontieri, F.E.; Maetzler, W. Cognitive dual-task cost depends on the complexity of the cognitive task, but not on age and disease. Front. Neurol. 2022, 13, 964207. [Google Scholar] [CrossRef]
- Henderson, F.M.; Cross, A.J.; Baraniak, A.R. ‘A new normal with chemobrain’: Experiences of the impact of chemotherapy-related cognitive deficits in long-term breast cancer survivors. Health Psychol. Open 2019, 6, 2055102919832234. [Google Scholar] [CrossRef]
| Variables | Treatment Mean (SD) | Survivors Mean (SD) | Controls Mean (SD) | p-Value | |
|---|---|---|---|---|---|
| Age (years) | 49.82 (6.57) | 54.80 (9.84) | 51.06 (7.02) | 0.246 | |
| Weight (kg) | 64.81 (12.74) | 66.81 (11.82) | 69.24 (14.21) | 0.674 | |
| BMI (kg/m2) | 24.40 (4.87) | 25.50 (3.86) | 25.06 (4.44) | 0.818 | |
| MoCA | 27.36 (2.11) | 27.67 (1.99) | 27.56 (1.58) | 0.919 | |
| FACIT-F total score | 121.45 (19.88) | 122.93 (19.17) | 115.22 (15.01) | 0.427 | |
| IPAQ (n) | Active | 3 | 9 | 7 | 0.455 |
| Moderate | 7 | 4 | 7 | ||
| Sedentary | 1 | 2 | 4 | ||
| Cancer type (n) | Breast | 8 | 7 | - | - |
| Appendix | 1 | 1 | - | ||
| Colorectal | 0 | 2 | - | ||
| Retroperitoneal | 1 | 0 | - | ||
| Multiple myeloma | 0 | 1 | - | ||
| Testicle | 1 | 0 | - | ||
| Hemat lymphoma | 0 | 1 | - | ||
| Pancreas | 0 | 1 | - | ||
| Cervix | 1 | 1 | - | ||
| Sex (n) | Female | 9 | 12 | 7 | 0.370 |
| Male | 2 | 3 | 7 | ||
| Variables | Group | Single-Task | Dual-Task | Within-Group Comparison | Between-Group Comparisons | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| Mean (SD) | Mean (SD) | p-Value | ES | Single-Task | Dual-Task | |||||
| p-Value | ES | p-Value | ES | |||||||
| CST | Repetitions | Cancer | 13.00 (3.79) | 11.69 (2.87) | 0.011 * b | 0.65 | 0.035 * e | 0.37 | 0.142 c | 0.46 |
| Control | 14.06 (1.83) | 12.94 (2.51) | 0.001 * b | 0.61 | ||||||
| Operations | Cancer | 17.77 (6.37) | 15.50 (5.31) | 0.054 a | 0.4 | 0.227 c | 0.38 | 0.936 d | 0.02 | |
| Control | 20.06 (5.63) | 15.61 (3.81) | <0.001 * a | 0.56 | ||||||
| Success | Cancer | 17.65 (6.52) | 15.12 (5.29) | 0.029 * a | 0.45 | 0.285 c | 0.33 | 0.908 d | 0.03 | |
| Control | 19.78 (6.22) | 15.28 (3.94) | <0.001 * a | 0.6 | ||||||
| Errors | Cancer | 0.12 (0.33) | 0.38 (0.70) | 0.097 b | 0.67 | 0.948 e | 0.01 | 0.717 e | 0.05 | |
| Control | 0.28 (0.83) | 0.33 (0.77) | 0.122 b | 0.5 | ||||||
| ACT | Repetitions | Cancer | 17.92 (4.99) | 16.65 (5.00) | 0.110 a | 0.33 | 0.055 c | 0.62 | 0.970 c | 0.01 |
| Control | 20.88 (4.50) | 16.71 (3.10) | <0.001 * a | 0.58 | ||||||
| Operations | Cancer | 17.77 (6.37) | 17.77 (5.04) | 1.000 a | 0 | 0.227 c | 0.38 | 0.742 c | 0.1 | |
| Control | 20.06 (5.63) | 17.29 (3.80) | 0.055 a | 0.3 | ||||||
| Success | Cancer | 17.65 (6.52) | 17.65 (5.09) | 1.000 a | 0 | 0.285 c | 0.33 | 0.661 c | 0.14 | |
| Control | 19.78 (6.22) | 17.00 (4.15) | 0.046 * a | 0.31 | ||||||
| Errors | Cancer | 0.12 (0.33) | 0.12 (0.33) | 1.000 b | 0 | 0.948 e | 0.01 | 0.893 e | 0.02 | |
| Control | 0.28 (0.83) | 0.29 (0.85) | 0.407 b | 0.33 | ||||||
| TUG | Time | Cancer | 6.12 (0.89) | 7.14 (1.42) | <0.001 * b | 0.9 | 0.692 c | 0.12 | 0.567 e | 0.1 |
| Control | 6.02 (0.84) | 6.84 (1.42) | <0.001 * b | 0.95 | ||||||
| Operations | Cancer | 4.42 (2.06) | 4.35 (1.60) | 0.809 b | 0.07 | 0.309 e | 0.18 | 0.286 c | 0.33 | |
| Control | 4.89 (2.19) | 3.83 (1.47) | 0.118 b | 0.32 | ||||||
| Success | Cancer | 4.35 (2.19) | 4.15 (1.78) | 0.670 b | 0.12 | 0.535 c | 0.19 | 0.253 e | 0.2 | |
| Control | 4.78 (2.34) | 3.67 (1.41) | 0.083 b | 0.35 | ||||||
| Errors | Cancer | 0.08 (0.39) | 0.19 (0.49) | 0.490 b | 0.4 | 0.397 e | 0.07 | 0.970 e | 0.01 | |
| Control | 0.11 (0.32) | 0.17 (0.38) | 0.340 b | 0.39 | ||||||
| Test | Variables | Cancer Mean (SD) | Control Mean (SD) | p-Value | ES |
|---|---|---|---|---|---|
| Chair Stand Test | DTC motor (%) a | −8.07 (16.39) | −7.66 (15.68) | 0.934 a | 0.03 |
| DTC cognitive (%) b | −3.77 (41.69) | −16.81 (27.46) | 0.504 b | 0.12 | |
| DTC success (%) b | −3.24 (51.18) | −15.14 (31.26) | 0.633 b | 0.09 | |
| Arm Curl Test | DTC motor (%) b | −2.83 (34.03) | −16.59 (17.39) | 0.046 * b | 0.36 |
| DTC cognitive (%) b | 7.54 (34.44) | −18.02 (0.31) | 0.005 * b | 0.50 | |
| DTC success (%) b | 9.40 (37.91) | −18.89 30.37) | 0.004 * b | 0.52 | |
| Timed Up and Go | DTC motor (%) b | 16.75 (16.30) | 13.63 (15.92) | 0.500 b | 0.12 |
| DTC cognitive (%) b | 11.27 (50.61) | −5.24 (82.61) | 0.088 b | 0.30 | |
| DTC success (%) b | 0.95 (53.63) | −6.81 (82.90) | 0.171 b | 0.24 |
| Test | Variables | Group | Single-Task | Dual-Task | Within-Group Comparison | Between-Group Comparisons | ||||
|---|---|---|---|---|---|---|---|---|---|---|
| Mean (SD) | Mean (SD) | p-Value | ES | Single-Task | Dual-Task | |||||
| p-Value | ES | p-Value | ES | |||||||
| CST | Repetitions | Treatment | 13.18 (3.28) | 12.18 (2.68) | 0.283 b | 0.42 | 0.069 e | 0.12 | 0.255 c | 0.06 |
| Survivors | 12.87 (4.24) | 11.33 (3.04) | 0.018 * b | 0.82 | ||||||
| Control | 14.06 (1.83) | 12.94 (2.51) | 0.045 * b | 0.57 | ||||||
| Operations | Treatment | 18.18 (4.40) | 16.64 (3.98) | 0.379 a | 0.28 | 0.466 c | 0.04 | 0.609 d | 0.03 | |
| Survivors | 17.47 (7.64) | 14.67 (6.10) | 0.090 a | 0.47 | ||||||
| Control | 20.06 (5.63) | 15.61 (3.81) | 0.003 * a | 0.83 | ||||||
| Success | Treatment | 18.00 (4.65) | 16.09 (4.01) | 0.268 a | 0.35 | 0.554 c | 0.03 | 0.700 d | 0.02 | |
| Survivors | 17.40 (7.77) | 14.40 (6.10) | 0.068 a | 0.51 | ||||||
| Control | 19.78 (6.22) | 15.28 (3.94) | 0.003 * a | 0.83 | ||||||
| Errors | Treatment | 0.18 (0.40) | 0.55 (0.82) | 0.265 b | 0.7 | 0.688 e | 0.02 | 0.567 e | 0.03 | |
| Survivors | 0.07 (0.26) | 0.27 (0.59) | 0.345 b | 0.6 | ||||||
| Control | 0.28 (0.83) | 0.33 (0.77) | 0.850 b | 0.2 | ||||||
| ACT | Repetitions | Treatment | 18.55 (5.94) | 17.45 (3.98) | 0.383 a | 0.28 | 0.139 c | 0.09 | 0.728 c | 0.02 |
| Survivors | 17.47 (4.32) | 16.07 (5.70) | 0.196 a | 0.35 | ||||||
| Control | 20.88 (4.50) | 16.71 (3.10) | <0.001 * a | 1 | ||||||
| Operations | Treatment | 18.18 (4.40) | 18.45 (2.50) | 0.855 a | 0.06 | 0.466 c | 0.04 | 0.770 c | 0.01 | |
| Survivors | 17.47 (7.64) | 17.27 (6.34) | 0.847 a | 0.05 | ||||||
| Control | 20.06 (5.63) | 17.29 (3.80) | 0.003 * a | 0.83 | ||||||
| Success | Treatment | 18.00 (4.65) | 18.27 (2.57) | 0.862 a | 0.05 | 0.554 c | 0.03 | 0.776 c | 0.01 | |
| Survivors | 17.40 (7.77) | 17.20 (6.41) | 0.849 a | 0.05 | ||||||
| Control | 19.78 (6.22) | 17.00 (4.15) | 0.002 * a | 0.92 | ||||||
| Errors | Treatment | 0.18 (0.40) | 0.18 (0.40) | 1.000 b | 0 | 0.688 e | 0.02 | 0.688 e | 0.02 | |
| Survivors | 0.07 (0.26) | 0.07 (0.26) | 1.000 b | 0 | ||||||
| Control | 0.28 (0.83) | 0.29 (0.85) | 0.371 b | 1 | ||||||
| TUG | Time | Treatment | 5.90 (0.55) | 6.76 (1.10) | 0.024 * b | 0.76 | 0.517 d | 0.03 | 0.480 e | 0.03 |
| Survivors | 6.28 (1.06) | 7.42 (1.59) | <0.001 * b | 0.97 | ||||||
| Control | 6.02 (0.84) | 6.84 (1.42) | <0.001 * b | 0.86 | ||||||
| Operations | Treatment | 4.09 (1.76) | 4.45 (1.21) | 0.609 b | 0.25 | 0.493 e | 0.03 | 0.544 c | 0.03 | |
| Survivors | 4.67 (2.29) | 4.27 (1.87) | 0.502 b | 0.24 | ||||||
| Control | 4.89 (2.19) | 3.83 (1.47) | 0.037 * b | 0.66 | ||||||
| Success | Treatment | 3.91 (2.07) | 4.45 (1.21) | 0.412 a | 0.26 | 0.524 e | 0.03 | 0.465 c | 0.04 | |
| Survivors | 4.67 (2.29) | 3.93 (2.12) | 0.257 a | 0.31 | ||||||
| Control | 4.78 (2.34) | 3.67 (1.41) | 0.020 * a | 0.6 | ||||||
| Errors | Treatment | 0.18 (0.60) | 0.00 (0.00) | 1.000 b | 1 | 0.439 e | 0.04 | 0.183 e | 0.08 | |
| Survivors | 0.00 (0.00) | 0.33 (0.62) | 0.089 b | 1 | ||||||
| Control | 0.11 (0.32) | 0.17 (0.38) | 0.773 b | 0.33 | ||||||
| Test | Variables | Treatment Mean (SD) | Survivors Mean (SD) | Control Mean (SD) | p-Value | ES |
|---|---|---|---|---|---|---|
| CST | DTC motor (%) a | −5.67 (19.22) | −9.83 (14.42) | −7.66 (15.68) | 0.934 a | 0.03 |
| DTC cognitive (%) b | −4.80 (28.18) | −3.02 (50.34) | −16.81 (27.46) | 0.504 b | 0.12 | |
| DTC success (%) b | −6.92 (27.15) | −0.54 (64.29) | −15.14 (31.26) | 0.633 b | 0.09 | |
| ACT | DTC motor (%) b | 3.44 (44.97) | −7.43 (23.88) | −16.59 (17.39) | 0.046 * b | 0.36 |
| DTC cognitive (%) b | 6.93 (29.60) | 7.99 (38.63) | −18.02 (30.31) | 0.005 * b | 0.50 | |
| DTC success (%) b | 8.25 (34.11) | 10.25 (41.63) | −18.89 (30.37) | 0.004 * b | 0.52 | |
| TUG | DTC motor (%) b | 14.89 (18.33) | 18.12 (15.16) | 13.63 (15.92) | 0.500 b | 0.12 |
| DTC cognitive (%) b | 24.02 (53.55) | 1.92 (48.00) | −5.24 (82.61) | 0.088 b | 0.30 | |
| DTC success (%) b | 14.92 (47.51) | −9.30 (57.07) | −6.81 (82.90) | 0.171 b | 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Sánchez, A.; Guerrero-Torrico, C.; Dominguez-Muñoz, F.J.; Gusi, N.; Villafaina, S. Impact of Chemotherapy on Motor–Cognitive Dual-Task Performance in Strength and Mobility Tests. Healthcare 2025, 13, 2649. https://doi.org/10.3390/healthcare13202649
Martínez-Sánchez A, Guerrero-Torrico C, Dominguez-Muñoz FJ, Gusi N, Villafaina S. Impact of Chemotherapy on Motor–Cognitive Dual-Task Performance in Strength and Mobility Tests. Healthcare. 2025; 13(20):2649. https://doi.org/10.3390/healthcare13202649
Chicago/Turabian StyleMartínez-Sánchez, Almudena, Candela Guerrero-Torrico, Francisco Javier Dominguez-Muñoz, Narcis Gusi, and Santos Villafaina. 2025. "Impact of Chemotherapy on Motor–Cognitive Dual-Task Performance in Strength and Mobility Tests" Healthcare 13, no. 20: 2649. https://doi.org/10.3390/healthcare13202649
APA StyleMartínez-Sánchez, A., Guerrero-Torrico, C., Dominguez-Muñoz, F. J., Gusi, N., & Villafaina, S. (2025). Impact of Chemotherapy on Motor–Cognitive Dual-Task Performance in Strength and Mobility Tests. Healthcare, 13(20), 2649. https://doi.org/10.3390/healthcare13202649

