Endotoxin Activity Assay-Guided Patient Selection for Polymyxin B Hemoperfusion: Lessons from the TIGRIS Trial and Future Directions
Abstract
1. Introduction
2. EAA: Principle and Clinical Use
3. EAA and Clinical Studies
4. Limitation of EAA
5. Alternative Test to EAA
6. Lessons from the TIGRIS Trial
7. Alternative Patient Selection
8. Future Perspectives
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cruz, D.N.; Antonelli, M.; Fumagalli, R.; Foltran, F.; Brienza, N.; Donati, A.; Malcangi, V.; Petrini, F.; Volta, G.; Bobbio Pallavicini, F.M.; et al. Early use of polymyxin B hemoperfusion in abdominal septic shock: The EUPHAS randomized controlled trial. JAMA 2009, 301, 2445–2452. [Google Scholar] [CrossRef]
- Payen, D.M.; Guilhot, J.; Launey, Y.; Lukaszewicz, A.C.; Kaaki, M.; Veber, B.; Pottecher, J.; Joannes-Boyau, O.; Martin-Lefevre, L.; Jabaudon, M.; et al. Early use of polymyxin B hemoperfusion in patients with septic shock due to peritonitis: A multicenter randomized control trial. Intensive Care Med. 2015, 41, 975–984. [Google Scholar] [CrossRef]
- Dellinger, R.P.; Bagshaw, S.M.; Antonelli, M.; Foster, D.M.; Klein, D.J.; Marshall, J.C.; Palevsky, P.M.; Weisberg, L.S.; Schorr, C.A.; Trzeciak, S.; et al. Effect of Targeted Polymyxin B Hemoperfusion on 28-Day Mortality in Patients With Septic Shock and Elevated Endotoxin Level: The EUPHRATES Randomized Clinical Trial. JAMA 2018, 320, 1455–1463. [Google Scholar] [CrossRef]
- Klein, D.J.; Foster, D.; Walker, P.M.; Bagshaw, S.M.; Mekonnen, H.; Antonelli, M. Polymyxin B hemoperfusion in endotoxemic septic shock patients without extreme endotoxemia: A post hoc analysis of the EUPHRATES trial. Intensive Care Med. 2018, 44, 2205–2212. [Google Scholar] [CrossRef]
- Marshall, J.C. Why have clinical trials in sepsis failed? Trends Mol. Med. 2014, 20, 195–203. [Google Scholar] [CrossRef]
- Romaschin, A.D.; Klein, D.J.; Marshall, J.C. Bench-to-bedside review: Clinical experience with the endotoxin activity assay. Crit. Care 2012, 16, 248. [Google Scholar] [CrossRef]
- EAA™ Endotoxin Activity Assay. Available online: https://spectraldx.com/eaa-for-clinicans/ (accessed on 14 October 2025).
- Marshall, J.C.; Foster, D.; Vincent, J.L.; Cook, D.J.; Cohen, J.; Dellinger, R.P.; Opal, S.; Abraham, E.; Brett, S.J.; Smith, T.; et al. Diagnostic and prognostic implications of endotoxemia in critical illness: Results of the MEDIC study. J. Infect. Dis. 2004, 190, 527–534. [Google Scholar] [CrossRef]
- Spectral Medical and Vantive Announce Topline Results from Spectral’s TIGRIS Trial Evaluating PMX Hemoadsorption Therapy for Endotoxic Septic Shock. Available online: https://spectraldx.com/spectral-medical-and-vantive-announce-topline-results-from-spectrals-tigris-trial-evaluating-pmx-hemoadsorption-therapy-for-endotoxic-septic-shock/ (accessed on 14 October 2025).
- Novelli, G.; Ferretti, G.; Poli, L.; Pretagostini, R.; Ruberto, F.; Perrella, S.M.; Levi Sandri, G.B.; Morabito, V.; Berloco, P.B. Clinical results of treatment of postsurgical endotoxin-mediated sepsis with polymyxin-B direct hemoperfusion. Transpl. Proc. 2010, 42, 1021–1024. [Google Scholar] [CrossRef]
- Yaguchi, A.; Yuzawa, J.; Klein, D.J.; Takeda, M.; Harada, T. Combining intermediate levels of the Endotoxin Activity Assay (EAA) with other biomarkers in the assessment of patients with sepsis: Results of an observational study. Crit. Care 2012, 16, R88. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, T.; Ikeda, K.; Suda, S.; Ueno, T. Usefulness of the endotoxin activity assay as a biomarker to assess the severity of endotoxemia in critically ill patients. Innate Immun. 2014, 20, 881–887. [Google Scholar] [CrossRef]
- Bottiroli, M.; Monti, G.; Pinciroli, R.; Vecchi, I.; Terzi, V.; Ortisi, G.; Casella, G.; Fumagalli, R. Prevalence and clinical significance of early high Endotoxin Activity in septic shock: An observational study. J. Crit. Care 2017, 41, 124–129. [Google Scholar] [CrossRef]
- Kellum, J.A.; Kamaluddin, E.; Foster, D. Targeted Rapid Endotoxin Adsorption: Can We Bring Precision Medicine to Sepsis? Blood Purif. 2025, 11, 1–12. [Google Scholar] [CrossRef]
- Ye, Q.; Wang, H.; Yang, Q.; Yang, Q.; Li, Z.; Zhang, Z.; Wang, Y.; Liu, K.; Ran, Y. Triple-optimization fiber-optic endotoxin-sensing strategy utilizing Limulus Amebocyte Lysate (LAL). Talanta 2025, 297, 128520. [Google Scholar] [CrossRef] [PubMed]
- Kalhorn, T.F.; Kiavand, A.; Cohen, I.E.; Nelson, A.K.; Ernst, R.K. A sensitive liquid chromatography/mass spectrometry-based assay for quantitation of amino-containing moieties in lipid A. Rapid Commun. Mass Spectrom. 2009, 23, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Cotoia, A.; Parisano, V.; Mariotti, P.S.; Lizzi, V.; Netti, G.S.; Ranieri, E.; Forfori, F.; Cinnella, G. Kinetics of Different Blood Biomarkers during Polymyxin-B Extracorporeal Hemoperfusion in Abdominal Sepsis. Blood Purif. 2024, 53, 574–582. [Google Scholar] [CrossRef]
- Antcliffe, D.B.; Burnham, K.L.; Al-Beidh, F.; Santhakumaran, S.; Brett, S.J.; Hinds, C.J.; Ashby, D.; Knight, J.C.; Gordon, A.C. Transcriptomic Signatures in Sepsis and a Differential Response to Steroids. From the VANISH Randomized Trial. Am. J. Respir. Crit. Care Med. 2019, 199, 980–986. [Google Scholar] [CrossRef]
- Miyamoto, K.; Kawazoe, Y.; Miyagawa, N.; Yamamura, H.; Ohta, Y.; Kimura, T.; Toyoda, Y.; Kyo, M.; Sato, T.; Kinjo, M.; et al. Hemodynamic response by polymyxin B hemoperfusion and its clinical outcomes in patients with refractory septic shock: A post-hoc sub-analysis of prospective cohort study. Shock 2025, 64, 397–404. [Google Scholar] [CrossRef]
- Gao, M.; Wang, X.; Zhang, X.; Ha, T.; Ma, H.; Liu, L.; Kalbfleisch, J.H.; Gao, X.; Kao, R.L.; Williams, D.L.; et al. Attenuation of Cardiac Dysfunction in Polymicrobial Sepsis by MicroRNA-146a Is Mediated via Targeting of IRAK1 and TRAF6 Expression. J. Immunol. 2015, 195, 672–682. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, Y.; Hou, H.; Yao, Y.; Meng, H. MiR-150 predicts survival in patients with sepsis and inhibits LPS-induced inflammatory factors and apoptosis by targeting NF-κB1 in human umbilical vein endothelial cells. Biochem. Biophys. Res. Commun. 2018, 500, 828–837. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, Y.; Lin, S.; Li, Y.; Hua, Y.; Zhou, K. Diagnostic significance of microRNAs in sepsis. PLoS ONE 2023, 18, e0279726. [Google Scholar] [CrossRef]
- Mu, J.; Shen, Y.; Zhu, F.; Zhang, Q. Association of TLR4 polymorphisms (Asp299Gly and Thr399Ile) with sepsis: A meta-analysis and trial sequence analysis. APMIS 2024, 132, 869–880. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yang, J.; Xu, X.; Liang, L.; Sun, H.; Liu, G.; Zhang, L.; Su, Y. The influence of genetic polymorphisms in TLR4 and TIRAP, and their expression levels in peripheral blood, on susceptibility to sepsis. Exp. Ther. Med. 2016, 11, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Fujii, T.; Ganeko, R.; Kataoka, Y.; Furukawa, T.A.; Featherstone, R.; Doi, K.; Vincent, J.L.; Pasero, D.; Robert, R.; Ronco, C.; et al. Polymyxin B-immobilized hemoperfusion and mortality in critically ill adult patients with sepsis/septic shock: A systematic review with meta-analysis and trial sequential analysis. Intensive Care Med. 2018, 44, 167–178. [Google Scholar] [CrossRef]
- Seymour, C.W.; Kennedy, J.N.; Wang, S.; Chang, C.H.; Elliott, C.F.; Xu, Z.; Berry, S.; Clermont, G.; Cooper, G.; Gomez, H.; et al. Derivation, Validation, and Potential Treatment Implications of Novel Clinical Phenotypes for Sepsis. JAMA 2019, 321, 2003–2017. [Google Scholar] [CrossRef]
- Fujimori, K.; Tarasawa, K.; Fushimi, K. Effectiveness of polymyxin B hemoperfusion for sepsis depends on the baseline SOFA score: A nationwide observational study. Ann. Intensive Care 2021, 11, 141. [Google Scholar] [CrossRef]
- Osawa, I.; Goto, T.; Kudo, D.; Hayakawa, M.; Yamakawa, K.; Kushimoto, S.; Foster, D.M.; Kellum, J.A.; Doi, K. Targeted therapy using polymyxin B hemadsorption in patients with sepsis: A post-hoc analysis of the JSEPTIC-DIC study and the EUPHRATES trial. Crit. Care 2023, 27, 245. [Google Scholar] [CrossRef]
- Molinari, L.; Tidswell, M.A.; Al-Khafaji, A.; Davison, D.; Galphin, C.; Kamaluddin, E.; Foster, D.M.; Kellum, J.A. Organ Failure, Endotoxin Activity, and Mortality in Septic Shock. Crit. Care Explor. 2025, 7, e1308. [Google Scholar] [CrossRef]
- Iba, T.; Helms, J.; Maier, C.L.; Ferrer, R.; Levy, J.H. Evolution of Clinical Trials in Anticoagulation for Sepsis: Bridging Past to Future. Semin. Thromb. Hemost. 2025. [Google Scholar] [CrossRef]
Study/Trial | Population | EAA Threshold | Key Findings | Reference |
---|---|---|---|---|
MEDIC Trial (2004) | ICU patients with SIRS, n = 857 | ≥0.40 (intermediate), ≥0.60 (high) | EAA correlated with Gram-negative infection risk, severity, and mortality; NPV for Gram-negative infection was 98.6%. | [8] |
EAA-J Trial (2007) | ICU patients with sepsis, n = 215 | ≥0.60 | Distribution: 22% <0.40, 35% 0.40–0.59, 43% ≥0.60. PMX-HP reduced EAA by ~26%. | [6] |
Novelli et al. (2010) | Post-surgical sepsis, n = 17 | >0.60 for PMX-DHP treatment | EAA-guided PMX therapy reduced EAA levels; hemodynamic improvement was observed. | [10] |
Yaguchi et al. (2012) | Severe sepsis, n = 210 | ≥0.40 (intermediate), ≥0.60 (high) | Positive cultures for GNs: 0.47 (IQR 0.27) vs. negative: 0.34 (IQR 0.22); p < 0.0001 | [11] |
Ikeda et al. (2014) | ICU patients n = 314 | ≥0.40 (intermediate), ≥0.60 (high) | EAA levels were 0.39 ± 0.25 (mean ± SD) in patients, 0.52 ± 0.22 in sepsis, and 0.10 ± 0.09 in healthy volunteers | [12] |
Bottiroli et al. (2017) | Septic shock n = 107 | ≥0.40 (intermediate), ≥0.60 (high) | Positive cultures for GNs: 0.63 ± 0.18 (mean ± SD) vs. negative: 0.53 ± 0.22; p < 0.05 | [13] |
EUPHRATES Trial (2018) | Septic shock with EAA ≥ 0.60, n = 450 | ≥0.60 | No overall mortality benefit. Post hoc: benefit in MODS >9 and EAA 0.60–0.89 subgroup. | [3] |
TIGRIS Trial (2025) | Septic shock, EAA 0.60–0.89, MODS > 9, n = 151 | 0.60–0.89 | 28-day ARR 6.4%; 90-day ARR 17.4%; NNT = 8.1. Confirmed benefit in biomarker-defined subgroup. | [9] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iba, T.; Okada, H.; Miki, T.; Mineshima, M.; Nagaoka, I. Endotoxin Activity Assay-Guided Patient Selection for Polymyxin B Hemoperfusion: Lessons from the TIGRIS Trial and Future Directions. Healthcare 2025, 13, 2603. https://doi.org/10.3390/healthcare13202603
Iba T, Okada H, Miki T, Mineshima M, Nagaoka I. Endotoxin Activity Assay-Guided Patient Selection for Polymyxin B Hemoperfusion: Lessons from the TIGRIS Trial and Future Directions. Healthcare. 2025; 13(20):2603. https://doi.org/10.3390/healthcare13202603
Chicago/Turabian StyleIba, Toshiaki, Hideshi Okada, Takahiro Miki, Michio Mineshima, and Isao Nagaoka. 2025. "Endotoxin Activity Assay-Guided Patient Selection for Polymyxin B Hemoperfusion: Lessons from the TIGRIS Trial and Future Directions" Healthcare 13, no. 20: 2603. https://doi.org/10.3390/healthcare13202603
APA StyleIba, T., Okada, H., Miki, T., Mineshima, M., & Nagaoka, I. (2025). Endotoxin Activity Assay-Guided Patient Selection for Polymyxin B Hemoperfusion: Lessons from the TIGRIS Trial and Future Directions. Healthcare, 13(20), 2603. https://doi.org/10.3390/healthcare13202603